1
|
Thi Huyen N, Suong TAS, Thi Thanh C, Tu NV, Van Trinh P, Van Tan T, Xuan LTQ, Hung Thang B, Hau TV, Tuan D, Duy Long P, Ngoc Minh P, Abe H, Chuc NV. Efficient photocatalytic degradation of methylene blue using 3D urchin-like TiO 2@rGO-hBN architecture. RSC Adv 2025; 15:10754-10762. [PMID: 40196827 PMCID: PMC11973568 DOI: 10.1039/d5ra00845j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/22/2025] [Indexed: 04/09/2025] Open
Abstract
3D urchin-like TiO2@rGO-hBN architectures were produced by a hydrothermal method, followed by a cold plasma jet process. The morphology, crystal structure, composition and photocatalytic performance of the 3D urchin-like TiO2@rGO-hBN architectures towards methylene blue (MB) were evaluated using SEM, Raman, XRD, EDS and UV-vis-NIR spectrophotometry. The obtained results indicated that under the same conditions, the MB degradation efficiencies were ∼72%, ∼81%, ∼87%, and ∼98% for 3D urchin-like TiO2, 3D urchin-like TiO2@rGO, 3D urchin-like TiO2@hBN, and 3D urchin-like TiO2@rGO-hBN, respectively, within 70 min under ultraviolet (UV) light irradiation with a wavelength of 365 nm. The significantly improved MB degradation efficiency was attributed to the effective separation of electron-hole pairs and the formation of ternary heterojunctions based on TiO2, rGO and hBN. The results show the promising potential of 3D urchin-like TiO2@rGO-hBN for applications in the photocatalytic degradation of organic pollutants.
Collapse
Affiliation(s)
- Nguyen Thi Huyen
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Tran Ai Suong Suong
- VNU University of Engineering and Technology 144 Xuan Thuy, Cau Giay Hanoi Vietnam
| | - Cao Thi Thanh
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Nguyen Van Tu
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Pham Van Trinh
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Tran Van Tan
- Faculty of Physics, University of Science, Vietnam National University 334 Nguyen Trai, Thanh Xuan Hanoi Vietnam
| | - Le Thi Quynh Xuan
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Bui Hung Thang
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Tran Van Hau
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Do Tuan
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Pham Duy Long
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Phan Ngoc Minh
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Hiroya Abe
- Joining and Welding Research Institute, Osaka University Osaka 5670047 Japan
| | - Nguyen Van Chuc
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| |
Collapse
|
2
|
Matias ML, Reis-Machado AS, Rodrigues J, Calmeiro T, Deuermeier J, Pimentel A, Fortunato E, Martins R, Nunes D. Microwave Synthesis of Visible-Light-Activated g-C 3N 4/TiO 2 Photocatalysts. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1090. [PMID: 36985984 PMCID: PMC10057508 DOI: 10.3390/nano13061090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
The preparation of visible-light-driven photocatalysts has become highly appealing for environmental remediation through simple, fast and green chemical methods. The current study reports the synthesis and characterization of graphitic carbon nitride/titanium dioxide (g-C3N4/TiO2) heterostructures through a fast (1 h) and simple microwave-assisted approach. Different g-C3N4 amounts mixed with TiO2 (15, 30 and 45 wt. %) were investigated for the photocatalytic degradation of a recalcitrant azo dye (methyl orange (MO)) under solar simulating light. X-ray diffraction (XRD) revealed the anatase TiO2 phase for the pure material and all heterostructures produced. Scanning electron microscopy (SEM) showed that by increasing the amount of g-C3N4 in the synthesis, large TiO2 aggregates composed of irregularly shaped particles were disintegrated and resulted in smaller ones, composing a film that covered the g-C3N4 nanosheets. Scanning transmission electron microscopy (STEM) analyses confirmed the existence of an effective interface between a g-C3N4 nanosheet and a TiO2 nanocrystal. X-ray photoelectron spectroscopy (XPS) evidenced no chemical alterations to both g-C3N4 and TiO2 at the heterostructure. The visible-light absorption shift was indicated by the red shift in the absorption onset through the ultraviolet-visible (UV-VIS) absorption spectra. The 30 wt. % of g-C3N4/TiO2 heterostructure showed the best photocatalytic performance, with a MO dye degradation of 85% in 4 h, corresponding to an enhanced efficiency of almost 2 and 10 times greater than that of pure TiO2 and g-C3N4 nanosheets, respectively. Superoxide radical species were found to be the most active radical species in the MO photodegradation process. The creation of a type-II heterostructure is highly suggested due to the negligible participation of hydroxyl radical species in the photodegradation process. The superior photocatalytic activity was attributed to the synergy of g-C3N4 and TiO2 materials.
Collapse
Affiliation(s)
- Maria Leonor Matias
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Ana S. Reis-Machado
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Joana Rodrigues
- Physics Department & I3N, Aveiro University, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Tomás Calmeiro
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Jonas Deuermeier
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Ana Pimentel
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Elvira Fortunato
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Rodrigo Martins
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Daniela Nunes
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| |
Collapse
|
3
|
Dutkova E, Baláž M, Daneu N, Tatykayev B, Karakirova Y, Velinov N, Kostova N, Briančin J, Baláž P. Properties of CuFeS 2/TiO 2 Nanocomposite Prepared by Mechanochemical Synthesis. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6913. [PMID: 36234253 PMCID: PMC9572411 DOI: 10.3390/ma15196913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
CuFeS2/TiO2 nanocomposite has been prepared by a simple, low-cost mechanochemical route to assess its visible-light-driven photocatalytic efficiency in Methyl Orange azo dye decolorization. The structural and microstructural characterization was studied using X-ray diffraction and high-resolution transmission electron microscopy. The presence of both components in the composite and a partial anatase-to-rutile phase transformation was proven by X-ray diffraction. Both components exhibit crystallite size below 10 nm. The crystallite size of both phases in the range of 10-20 nm was found and confirmed by TEM. Surface and morphological properties were characterized by scanning electron microscopy and nitrogen adsorption measurement. Scanning electron microscopy has shown that the nanoparticles are agglomerated into larger grains. The specific surface area of the nanocomposite was determined to be 21.2 m2·g-1. Optical properties using UV-Vis and photoluminescence spectroscopy were also investigated. CuFeS2/TiO2 nanocomposite exhibits strong absorption with the determined optical band gap 2.75 eV. Electron paramagnetic resonance analysis has found two types of paramagnetic ions in the nanocomposite. Mössbauer spectra showed the existence of antiferromagnetic and paramagnetic spin structure in the nanocomposite. The CuFeS2/TiO2 nanocomposite showed the highest discoloration activity with a MO conversion of ~ 74% after 120 min irradiation. This study has shown the possibility to prepare nanocomposite material with enhanced photocatalytic activity of decoloration of MO in the visible range by an environmentally friendly manner.
Collapse
Affiliation(s)
- Erika Dutkova
- Department of Mechanochemistry, Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia
| | - Matej Baláž
- Department of Mechanochemistry, Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia
| | - Nina Daneu
- Advanced Materials Department, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Batukhan Tatykayev
- Department of General and Inorganic Chemistry, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | | | - Nikolay Velinov
- Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Nina Kostova
- Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Jaroslav Briančin
- Department of Mechanochemistry, Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia
| | - Peter Baláž
- Department of Mechanochemistry, Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia
| |
Collapse
|
4
|
Li DQ, Meng YJ, Li J, Song YJ, Xu F. TiO2/carbonaceous nanocomposite from titanium-alginate coordination compound. Carbohydr Polym 2022; 288:119400. [DOI: 10.1016/j.carbpol.2022.119400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/12/2022] [Accepted: 03/19/2022] [Indexed: 11/02/2022]
|
5
|
Matias ML, Pimentel A, Reis-Machado AS, Rodrigues J, Deuermeier J, Fortunato E, Martins R, Nunes D. Enhanced Fe-TiO 2 Solar Photocatalysts on Porous Platforms for Water Purification. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1005. [PMID: 35335818 PMCID: PMC8955547 DOI: 10.3390/nano12061005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023]
Abstract
In this study, polyethylene glycol-modified titanium dioxide (PEG-modified TiO2) nanopowders were prepared using a fast solvothermal method under microwave irradiation, and without any further calcination processes. These nanopowders were further impregnated on porous polymeric platforms by drop-casting. The effect of adding iron with different molar ratios (1, 2, and 5%) of iron precursor was investigated. The characterization of the produced materials was carried out by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Optical characterization of all the materials was also carried out. SEM showed that pure TiO2 and Fe-TiO2 nanostructures presented similar nanosized and spherical particles, which uniformly covered the substrates. From XRD, pure TiO2 anatase was obtained for all nanopowders produced, which was further confirmed by Raman spectroscopy on the impregnated substrates. XPS and UV-VIS absorption spectroscopy emission spectra revealed that the presence of Fe ions on the Fe-TiO2 nanostructures led to the introduction of new intermediate energy levels, as well as defects that contributed to an enhancement in the photocatalytic performance. The photocatalytic results under solar radiation demonstrated increased photocatalytic activity in the presence of the 5% Fe-TiO2 nanostructures (Rhodamine B degradation of 85% after 3.5 h, compared to 74% with pure TiO2 for the same exposure time). The photodegradation rate of RhB dye with the Fe-TiO2 substrate was 1.5-times faster than pure TiO2. Reusability tests were also performed. The approach developed in this work originated novel functionalized photocatalytic platforms, which were revealed to be promising for the removal of organic dyes from wastewater.
Collapse
Affiliation(s)
- Maria Leonor Matias
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal; (M.L.M.); (A.P.); (J.D.); (E.F.)
| | - Ana Pimentel
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal; (M.L.M.); (A.P.); (J.D.); (E.F.)
| | - Ana S. Reis-Machado
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Joana Rodrigues
- Physics Department & I3N, Aveiro University, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Jonas Deuermeier
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal; (M.L.M.); (A.P.); (J.D.); (E.F.)
| | - Elvira Fortunato
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal; (M.L.M.); (A.P.); (J.D.); (E.F.)
| | - Rodrigo Martins
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal; (M.L.M.); (A.P.); (J.D.); (E.F.)
| | - Daniela Nunes
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal; (M.L.M.); (A.P.); (J.D.); (E.F.)
| |
Collapse
|
6
|
Freire T, Fragoso AR, Matias M, Pinto JV, Marques AC, Pimentel A, Barquinha P, Huertas R, Fortunato E, Martins R, Nunes D. Enhanced solar photocatalysis of TiO2 nanoparticles and nanostructured thin films grown on paper. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abed40] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Titanium dioxide nanoparticles and nanostructured thin films were simultaneously synthesized using a microwave-assisted hydrothermal method. The synthesis formed very fine particles, appearing as nanospheres in the 11 nm size range. As for the nanostructured films, they have displayed similar structural characteristics to the nanoparticles, with thickness of 130 nm. These films covered uniformly and homogenously the Whatman paper, while maintaining its flexibility. The materials processed had their photocatalytic activity assessed from rhodamine B degradation under solar radiation (91% degradation after 40 min for the powder material and 68% after 6 h for the nanostructured thin films). Reusability experiments were also carried out, revealing superior performance concerning the Degussa P25, the most common photocatalyst used. The results of the present work can be thought as an option for the existing photocatalysts activated under solar light, namely for water purification, as it simultaneously produces enhanced photocatalytic powders and photocatalytic papers fully disposable and that can be easily recycled.
Collapse
|
7
|
High UV and Sunlight Photocatalytic Performance of Porous ZnO Nanostructures Synthesized by a Facile and Fast Microwave Hydrothermal Method. MATERIALS 2021; 14:ma14092385. [PMID: 34064309 PMCID: PMC8125317 DOI: 10.3390/ma14092385] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 01/15/2023]
Abstract
The degradation of organic pollutants in wastewaters assisted by oxide semiconductor nanostructures has been the focus of many research groups over the last decades, along with the synthesis of these nanomaterials by simple, eco-friendly, fast, and cost-effective processes. In this work, porous zinc oxide (ZnO) nanostructures were successfully synthesized via a microwave hydrothermal process. A layered zinc hydroxide carbonate (LZHC) precursor was obtained after 15 min of synthesis and submitted to different calcination temperatures to convert it into porous ZnO nanostructures. The influence of the calcination temperature (300, 500, and 700 °C) on the morphological, structural, and optical properties of the ZnO nanostructureswas investigated. All ZnO samples were tested as photocatalysts in the degradation of rhodamine B (RhB) under UV irradiation and natural sunlight. All samples showed enhanced photocatalytic activity under both light sources, with RhB being practically degraded within 60 min in both situations. The porous ZnO obtained at 700 °C showed the greatest photocatalytic activity due to its high crystallinity, with a degradation rate of 0.091 and 0.084 min-1 for UV light and sunlight, respectively. These results are a very important step towards the use of oxide semiconductors in the degradation of water pollutants mediated by natural sunlight.
Collapse
|
8
|
Abstract
The interest in advanced photocatalytic technologies with metal oxide-based nanomaterials has been growing exponentially over the years due to their green and sustainable characteristics. Photocatalysis has been employed in several applications ranging from the degradation of pollutants to water splitting, CO2 and N2 reductions, and microorganism inactivation. However, to maintain its eco-friendly aspect, new solutions must be identified to ensure sustainability. One alternative is creating an enhanced photocatalytic paper by introducing cellulose-based materials to the process. Paper can participate as a substrate for the metal oxides, but it can also form composites or membranes, and it adds a valuable contribution as it is environmentally friendly, low-cost, flexible, recyclable, lightweight, and earth abundant. In term of photocatalysts, the use of metal oxides is widely spread, mostly since these materials display enhanced photocatalytic activities, allied to their chemical stability, non-toxicity, and earth abundance, despite being inexpensive and compatible with low-cost wet-chemical synthesis routes. This manuscript extensively reviews the recent developments of using photocatalytic papers with nanostructured metal oxides for environmental remediation. It focuses on titanium dioxide (TiO2) and zinc oxide (ZnO) in the form of nanostructures or thin films. It discusses the main characteristics of metal oxides and correlates them to their photocatalytic activity. The role of cellulose-based materials on the systems’ photocatalytic performance is extensively discussed, and the future perspective for photocatalytic papers is highlighted.
Collapse
|
9
|
Bian Z, Feng Y, Li H, Yu H, Wu H. Adsorption-photocatalytic degradation and kinetic of sodium isobutyl xanthate using the nitrogen and cerium co-doping TiO 2-coated activated carbon. CHEMOSPHERE 2021; 263:128254. [PMID: 33297199 DOI: 10.1016/j.chemosphere.2020.128254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/18/2020] [Accepted: 09/02/2020] [Indexed: 05/23/2023]
Abstract
At present, the excessive use of sodium isobutyl xanthate (SIBX) in mineral processing has caused serious environmental problems, drawing ever-growing concern in China. A nitrogen and cerium co-doped TiO2-coated activated carbon (Ce/N-TiO2@AC) heterojunction were prepared through the sol-gel method to address these problems. The photocatalyst was characterized using XRD, TEM, SEM-EDS, PL, UV-Vis, XPS and a series of photoelectrochemical techniques. The results show that Ce/N-TiO2@AC photocatalyst possess a stable anatase phase, narrow band gap energy (2.24-2.61 eV) and high charge transport process. The photocatalytic activity of the photocatalyst was evaluated based on photodegradation kinetic studies of SIBX in aqueous solution, and it is found that it followed the Langmuir-Hinshelwood model very well. The Ce/N-TiO2@AC photocatalyst with 2% Ce appears to be the highest removal rate with 96.3% of SIBX and an apparent rate constant of 78.4 × 10-3 min-1. The reusability experiment for its potential applications was studied, and the removal rate of SIBX reached 95.8% after the fifth cycle. Besides, the proposed mechanism and degradation routes of SIBX were systematically studied, and certificate the concentration of SO2-4 ions in the final water sample was 95.9 mg/L, which was basically consistent with the theoretical value.
Collapse
Affiliation(s)
- Zhenzhong Bian
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Yali Feng
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China.
| | - Haoran Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Hao Yu
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Hao Wu
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| |
Collapse
|
10
|
Aktar A, Ahmmed S, Hossain J, Ismail ABM. Solution-Processed Synthesis of Copper Oxide (Cu x O) Thin Films for Efficient Photocatalytic Solar Water Splitting. ACS OMEGA 2020; 5:25125-25134. [PMID: 33043191 PMCID: PMC7542592 DOI: 10.1021/acsomega.0c02754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
This article reports a solution-processed synthesis of copper oxide (Cu x O) to be used as a potential photocathode for solar hydrogen production in the solar water-splitting system. Cu x O thin films were synthesized through the reduction of copper iodide (CuI) thin films by sodium hydroxide (NaOH), which were deposited by the spin coating method from CuI solution in a polar aprotic solvent (acetonitrile). The phase and crystalline quality of the synthesized Cu x O thin films prepared at various annealing temperatures were investigated using various techniques. The X-ray diffraction and energy dispersive X-ray spectroscopy studies confirm the presence of Cu2O, CuO/Cu2O mixed phase, and pure CuO phase at annealing temperatures of 250, 300, and 350 °C, respectively. It is revealed from the experimental findings that the synthesized Cu x O thin films with an annealing temperature of 350 °C possess the highest crystallinity, smooth surface morphology, and higher carrier density. The highest photocurrent density of -19.12 mA/cm2 at -1 V versus RHE was achieved in the photoelectrochemical solar hydrogen production system with the use of the Cu x O photocathode annealed at a temperature of 350 °C. Therefore, it can be concluded that Cu x O synthesized by the spin coating method through the acetonitrile solvent route can be used as an efficient photocathode in the solar water-splitting system.
Collapse
Affiliation(s)
- Asma Aktar
- Solar Energy Laboratory, Department
of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Shamim Ahmmed
- Solar Energy Laboratory, Department
of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Jaker Hossain
- Solar Energy Laboratory, Department
of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Abu Bakar Md. Ismail
- Solar Energy Laboratory, Department
of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| |
Collapse
|
11
|
TiO2 Nanostructured Films for Electrochromic Paper Based-Devices. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10041200] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Electrochromic titanium dioxide (TiO2) nanostructured films were grown on gold coated papers using a microwave-assisted hydrothermal method at low temperature (80 °C). Uniform nanostructured films fully covered the paper substrate, while maintaining its flexibility. Three acids, i.e., acetic, hydrochloric and nitric acids, were tested during syntheses, which determined the final structure of the produced films, and consequently their electrochromic behavior. The structural characteristics of nanostructured films were correlated with electrochemical response and reflectance modulation when immersed in 1 M LiClO4-PC (lithium perchlorate with propylene carbonate) electrolyte, nevertheless the material synthesized with nitric acid resulted in highly porous anatase films with enhanced electrochromic performance. The TiO2 films revealed a notable contrast behavior, reaching for the nitric-based film optical modulations of 57%, 9% and 22% between colored and bleached states, at 250, 550 and 850 nm, respectively in reflectance mode. High cycling stability was also obtained performing up to 1500 cycles without significant loss of the electrochromic behavior for the nitric acid material. The approach developed in this work proves the high stability and durability of such devices, together with the use of paper as substrate that aggregates the environmentally friendly, lightweight, flexibility and recyclability characters of the substrate to the microwave synthesis features, i.e., simplicity, celerity and enhanced efficiency/cost balance.
Collapse
|
12
|
Günnemann C, Curti M, Gerrit Eckert J, Schneider J, Bahnemann DW. Tailoring the Photoelectrochemical Activity of TiO
2
Electrodes by Multilayer Screen‐Printing. ChemCatChem 2019. [DOI: 10.1002/cctc.201901872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Carsten Günnemann
- Institut für Technische ChemieGottfried Wilhelm Leibniz Universität Hannover Hannover 30167 Germany
| | - Mariano Curti
- Institut für Technische ChemieGottfried Wilhelm Leibniz Universität Hannover Hannover 30167 Germany
| | - J. Gerrit Eckert
- Institut für Technische ChemieGottfried Wilhelm Leibniz Universität Hannover Hannover 30167 Germany
| | - Jenny Schneider
- Department of ChemistryUniversity of North Carolina at Chapel Hill Chapel Hill NC-27599 USA
| | - Detlef W. Bahnemann
- Institut für Technische ChemieGottfried Wilhelm Leibniz Universität Hannover Hannover 30167 Germany
- Laboratory “Photoactive Nanocomposite Materials”Saint-Petersburg State University Saint Petersburg 198504 Russia
| |
Collapse
|
13
|
Microwave-Assisted Synthesis of High-Energy Faceted TiO 2 Nanocrystals Derived from Exfoliated Porous Metatitanic Acid Nanosheets with Improved Photocatalytic and Photovoltaic Performance. MATERIALS 2019; 12:ma12213614. [PMID: 31689889 PMCID: PMC6862389 DOI: 10.3390/ma12213614] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/26/2019] [Accepted: 10/30/2019] [Indexed: 11/16/2022]
Abstract
A facile one-pot microwave-assisted hydrothermal synthesis of rutile TiO2 quadrangular prisms with dominant {110} facets, anatase TiO2 nanorods and square nanoprisms with co-exposed {101}/[111] facets, anatase TiO2 nanorhombuses with co-exposed {101}/{010} facets, and anatase TiO2 nanospindles with dominant {010} facets were reported through the use of exfoliated porous metatitanic acid nanosheets as a precursor. The nanostructures and the formation reaction mechanism of the obtained rutile and anatase TiO2 nanocrystals from the delaminated nanosheets were investigated. The transformation from the exfoliated metatitanic nanosheets with distorted hexagonal cavities to TiO2 nanocrystals involved a dissolution reaction of the nanosheets, nucleation of the primary [TiO6]8− monomers, and the growth of rutile-type and anatase-type TiO2 nuclei during the microwave-assisted hydrothermal reaction. In addition, the photocatalytic activities of the as-prepared anatase nanocrystals were evaluated through the photocatalytic degradation of typical carcinogenic and mutagenic methyl orange (MO) under UV-light irradiation at a normal temperature and pressure. Furthermore, the dye-sensitized solar cell (DSSC) performance of the synthesized anatase TiO2 nanocrystals with various morphologies and crystal facets was also characterized. The {101}/[111]-faceted pH2.5-T175 nanocrystal showed the highest photocatalytic and photovoltaic performance compared to the other TiO2 samples, which could be attributed mainly to its minimum particle size and maximum specific surface area.
Collapse
|
14
|
Sanzaro S, Zontone F, Grosso D, Bottein T, Neri F, Smecca E, Mannino G, Bongiorno C, Spinella C, La Magna A, Alberti A. Bimodal Porosity and Stability of a TiO 2 Gig-Lox Sponge Infiltrated with Methyl-Ammonium Lead Iodide Perovskite. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1300. [PMID: 31514348 PMCID: PMC6781015 DOI: 10.3390/nano9091300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/31/2019] [Accepted: 09/06/2019] [Indexed: 02/05/2023]
Abstract
We created a blend between a TiO2 sponge with bimodal porosity and a Methyl-Ammonium Lead Iodide (MAPbI3) perovskite. The interpenetration of the two materials is effective thanks to the peculiar sponge structure. During the early stages of the growth of the TiO2 sponge, the formation of 5-10 nm-large TiO2 auto-seeds is observed which set the micro-porosity (<5 nm) of the layer, maintained during further growth. In a second stage, the auto-seeds aggregate into hundreds-of-nm-large meso-structures by their mutual shadowing of the grazing Ti flux for local oxidation. This process generates meso-pores (10-100 nm) treading across the growing layer, as accessed by tomographic synchrotron radiation coherent X-ray imaging and environmental ellipsometric porosimetry. The distributions of pore size are extracted before (>47% V) and after MAPbI3 loading, and after blend ageing, unfolding a starting pore filling above 80% in volume. The degradation of the perovskite in the blend follows a standard path towards PbI2 accompanied by the concomitant release of volatile species, with an activation energy of 0.87 eV under humid air. The use of dry nitrogen as environmental condition has a positive impact in increasing this energy by ~0.1 eV that extends the half-life of the material to 7 months under continuous operation at 60 °C.
Collapse
Affiliation(s)
- Salvatore Sanzaro
- National Research Council-Institute for Microelectronics and Microsystems (CNR-IMM), Zona Industriale-Strada VIII n°5, 95121 Catania, Italy.
- Department of Mathematical and Computational Sciences, Physics and Earth Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Federico Zontone
- ESRF, The European Synchrotron, CS40220, 38043 Grenoble CEDEX 9, France.
| | - David Grosso
- Institut Matériaux Microélectronique Nanosciences de Provence (IM2NP) Aix-Marseille Université, 13397 Marseille CEDEX 20, France.
| | - Thomas Bottein
- Institut Matériaux Microélectronique Nanosciences de Provence (IM2NP) Aix-Marseille Université, 13397 Marseille CEDEX 20, France.
| | - Fortunato Neri
- Department of Mathematical and Computational Sciences, Physics and Earth Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Emanuele Smecca
- National Research Council-Institute for Microelectronics and Microsystems (CNR-IMM), Zona Industriale-Strada VIII n°5, 95121 Catania, Italy.
| | - Giovanni Mannino
- National Research Council-Institute for Microelectronics and Microsystems (CNR-IMM), Zona Industriale-Strada VIII n°5, 95121 Catania, Italy.
| | - Corrado Bongiorno
- National Research Council-Institute for Microelectronics and Microsystems (CNR-IMM), Zona Industriale-Strada VIII n°5, 95121 Catania, Italy.
| | - Corrado Spinella
- National Research Council-Institute for Microelectronics and Microsystems (CNR-IMM), Zona Industriale-Strada VIII n°5, 95121 Catania, Italy.
| | - Antonino La Magna
- National Research Council-Institute for Microelectronics and Microsystems (CNR-IMM), Zona Industriale-Strada VIII n°5, 95121 Catania, Italy.
| | - Alessandra Alberti
- National Research Council-Institute for Microelectronics and Microsystems (CNR-IMM), Zona Industriale-Strada VIII n°5, 95121 Catania, Italy.
| |
Collapse
|
15
|
Improvement of the Photoelectrochemical Performance of TiO2 Nanorod Array by PEDOT and Oxygen Vacancy Co-Modification. Catalysts 2019. [DOI: 10.3390/catal9050407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, oxygen vacancy modified TiO2 nanorod array photoelectrode was prepared by reducing hydrogen atmosphere to increase its free charge carrier density. Subsequently, a p-type conductive poly 3,4-ethylenedioxythiophene (PEDOT) layer was deposited on the surface of oxygen vacancy modified TiO2, to inhibit the surface states. Meanwhile, a p-n heterojunction formed between PEDOT and TiO2 to improve the separation of photo-induced carriers further. The photocurrent of TiO2 nanorod array increased to nearly 0.9 mA/cm2 after the co-modification under standard sunlight illumination, whose value is nearly nine times higher than that of pure TiO2 nanorod array. Thus, this is a promising modification method for TiO2 photoanode photoelectrochemical (PEC) performance improving.
Collapse
|
16
|
Preparation of Visible Light Photocatalytic Graphene Embedded Rutile Titanium(IV) Oxide Composite Nanowires and Enhanced NOx Removal. Catalysts 2019. [DOI: 10.3390/catal9020170] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The quest for developing highly efficient TiO2-based photocatalysts is continuing and, in particular, evolving a new strategy is an important aspect in this regard. In general, much effort has been devoted to the anatase TiO2 modifications, despite there being only a few recent studies on rutile TiO2 (rTiO2). To the best of our knowledge, studies on the preparation and characterization of the photocatalysts based on the intentional inclusion of graphene (G) into rTiO2 nanostructures have not been reported yet. Herein, we develop a new type of TiO2-based photocatalyst comprising of G included pure rTiO2 nanowire (abbreviated as rTiO2(G) NW) with enhanced visible light absorption capability. To prepare rTiO2(G) NW, the G incorporated titanate electrospun fibers were obtained by electrospinning and subsequently heat treated at various temperatures (500 to 800 °C). Electrospinning conditions were optimized for producing good quality rTiO2(G) NW. The rTiO2(G) NW and their corresponding samples were characterized by appropriate techniques such as X-ray diffraction (XRD), scanning electron microscopy, high-resolution transmission electron microscopy and UV-vis diffuse reflectance spectroscopy to ascertain their material characteristics. XRD results show that the lattice strain occurs upon inclusion of G. We present here the first observation of an apparent bandgap lowering because of the G inclusion into TiO2 NW. While anatase TiO2 NW exhibited poor visible light photocatalysis towards NOx removal, the rTiO2(G) NW photocatalyst witnessed a significantly enhanced (~67%) photocatalytic performance as compared to anatase TiO2(G) NW. We concluded that the inclusion of G into rTiO2 nanostructures enhances the visible light photoactivity. A plausible mechanism for photocatalysis is suggested.
Collapse
|
17
|
Abstract
Dating from the seminal work of Fujishima et al. [...]
Collapse
|
18
|
Lakshminarayana B, Satyanarayana G, Subrahmanyam C. Bimetallic Pd-Au/TiO 2 Nanoparticles: An Efficient and Sustainable Heterogeneous Catalyst for Rapid Catalytic Hydrogen Transfer Reduction of Nitroarenes. ACS OMEGA 2018; 3:13065-13072. [PMID: 31458027 PMCID: PMC6645369 DOI: 10.1021/acsomega.8b02064] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/27/2018] [Indexed: 05/20/2023]
Abstract
Anilines are one of the important chemical feedstocks and are utilized for the preparation of a variety of pharmaceuticals, agrochemicals, pigments, and dyes. In this context, the catalytic reduction of nitro functionality is an industrially vital process for the synthesis of aniline derivatives. Herein, we report an efficient nanosized bimetallic Pd-Au/TiO2 nanomaterial which is proved to be quite efficient for rapid catalytic hydrogen transfer reduction of nitroarenes into corresponding amines. Significantly, the reduction process is successful under solvent-free and mild green atmospheric conditions. Bimetallic Pd-Au nanoparticles served as the active center, and TiO2 played as a support in hydrogen transfer from the source hydrazine monohydrate. Typical results highlighted that the reactions were very rapid and the products were obtained in good to excellent yields. Significantly, the process was successful in the presence of a very low amount catalyst (0.1 mol %). Furthermore, the reaction showed good chemoselectivity and compatiblity with double or triple bond, aldehyde, ketone, and ester functionalities on the aromatic ring. Typical results indicated the true heterogeneous nature of the Pd-Au/TiO2 nanocatalyst, where the catalyst retained the activity, without loss of its activity.
Collapse
|
19
|
Hou C, Liu W. One-step synthesis of OH-TiO 2/TiOF 2 nanohybrids and their enhanced solar light photocatalytic performance. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172005. [PMID: 30110486 PMCID: PMC6030343 DOI: 10.1098/rsos.172005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 05/01/2018] [Indexed: 05/27/2023]
Abstract
TiO2/TiOF2 nanohybrids were quickly synthesized through a hydrothermal process using titanium n-butoxide (TBOT), ethanol (C2H5OH) and hydrofluoric acid as precursors. The prepared nanohybrids underwent additional NaOH treatment (OH-TiO2/TiOF2) to enhance their photocatalytic performance. In this paper, the mechanism of NaOH affecting the pathway of transformation from TBOT (Ti precursor) to TiO2 nanosheets was discussed. The synthesized TiO2/TiOF2 and OH-TiO2/TiOF2 were characterized by field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction pattern (XRD), Fourier infrared spectroscopic analysis (FT-IR), Photoluminescence (PL) emission spectra and UV-visible diffuse reflection spectra (UV-vis DRS). The photocatalytic activity and stability of synthesized samples were evaluated by degradation of methylene blue (MB) under the simulated solar light. The results showed that a larger ratio of TiO2 to TiOF2 in TiO2/TiOF2 and OH-TiO2/TiOF2 nanohybrids could allow for even higher MB conversion compared with only TiO2 nanosheets. NaOH treatment can wash off the F ions from TiOF2 and induce this larger ratio. The highest efficiency of MB removal was just above 90% in 1 h. Lower electron-hole pairs recombination rate is the dominant factor that induces the photocatalytic performance enhancement of TiO2/TiOF2 nanohybrids. The synthesized OH-TiO2/TiOF2 nanohybrids exhibit great potential in the abatement of organic pollutants.
Collapse
Affiliation(s)
- Chentao Hou
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, People's Republic of China
| | | |
Collapse
|
20
|
|
21
|
Controlled Synthesis of Heterostructured SnO2-CuO Composite Hollow Microspheres as Efficient Cu-Based Catalysts for the Rochow Reaction. Catalysts 2018. [DOI: 10.3390/catal8040144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
22
|
Cheng J, Wang P, Hua C, Yang Y, Zhang Z. The Impact of Iron Adsorption on the Electronic and Photocatalytic Properties of the Zinc Oxide (0001) Surface: A First-Principles Study. MATERIALS 2018. [PMID: 29534524 PMCID: PMC5872996 DOI: 10.3390/ma11030417] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The structural stability, electronic structure, and optical properties of an iron-adsorbed ZnO (0001) surface with three high-symmetry adsorption sites are investigated with first-principle calculations on the basis of density functional theory and the Hubbard-U method. It is found that the iron adatom in the H3 adsorption site of ZnO (0001) surface has the lowest adsorption energy of −5.665 eV compared with T4 and Top sites. For the Top site, compared with the pristine ZnO (0001) surface, the absorption peak located at 1.17 eV has a red shift, and the elevation of the absorption coefficient is more pronounced in the visible-light region, because the Fe-related levels are introduced in the forbidden band and near the Fermi level. The electrostatic potential computation reveals that the work function of the ZnO (0001) surface is significantly decreased from 2.340 to 1.768 eV when iron is adsorbed on the Top site. Furthermore, the degradation mechanism based on the band structure is analyzed. It can be concluded that the adsorption of iron will promote the separation of photoinduced carriers, thus improving the photocatalytic activity of ZnO (0001) surface. Our study benefits research on the photocatalytic activity of ZnO and the utilization rate of solar energy.
Collapse
Affiliation(s)
- Jingsi Cheng
- State Key Laboratory of Integrated Service Networks, School of Telecommunications Engineering, Xidian University, Xi'an 710071, China.
| | - Ping Wang
- State Key Laboratory of Integrated Service Networks, School of Telecommunications Engineering, Xidian University, Xi'an 710071, China.
| | - Chao Hua
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yintang Yang
- School of Microelectronics, Xidian University, Xi'an 710071, China.
| | - Zhiyong Zhang
- College of Electronic and Informational Engineering, Northwestern University, Xi'an 710127, China.
| |
Collapse
|
23
|
Hwang SH, Shahsavari R. Intrinsic Size Effect in Scaffolded Porous Calcium Silicate Particles and Mechanical Behavior of Their Self-Assembled Ensembles. ACS APPLIED MATERIALS & INTERFACES 2018; 10:890-899. [PMID: 29241004 DOI: 10.1021/acsami.7b15803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Scaffolded porous submicron particles with well-defined diameter, shape, and pore size have profound impacts on drug delivery, bone-tissue replacement, catalysis, sensors, photonic crystals, and self-healing materials. However, understanding the interplay between pore size, particle size, and mechanical properties of such ultrafine particles, especially at the level of individual particles and their ensemble states, is a challenge. Herein, we focus on porous calcium-silicate submicron particles with various diameters-as a model system-and perform extensive 900+ nanoindentations to completely map out their mechanical properties at three distinct structural forms from individual submicron particles to self-assembled ensembles to pressure-induced assembled arrays. Our results demonstrate a notable "intrinsic size effect" for individual porous submicron particles around ∼200-500 nm, induced by the ratio of particle characteristic diameter to pore characteristic size distribution. Increasing this ratio results in a brittle-to-ductile transition where the toughness of the submicron particles increases by 120%. This size effect becomes negligible as the porous particles form superstructures. Nevertheless, the self-assembled arrays collectively exhibit increasing elastic modulus as a function of applied forces, while pressure-induced compacted arrays exhibit no size effect. This study will impact tuning properties of individual scaffolded porous particles and can have implications on self-assembled superstructures exploiting porosity and particle size to impart new functionalities.
Collapse
Affiliation(s)
- Sung Hoon Hwang
- Department of Material Science and Nano Engineering, Rice University , Houston, Texas 77005, United States
| | - Rouzbeh Shahsavari
- Department of Material Science and Nano Engineering, Rice University , Houston, Texas 77005, United States
- Department of Civil and Environmental Engineering, Rice University , Houston, Texas 77005, United States
- The Smalley-Curl Institute, Rice University, Rice University , Houston, Texas 77005, United States
- C-Crete Technologies LLC , 13000 Murphy Rd, Ste 102, Stafford, Texas 77477, United States
| |
Collapse
|
24
|
Yang D, Gulzar A, Yang G, Gai S, He F, Dai Y, Zhong C, Yang P. Au Nanoclusters Sensitized Black TiO 2-x Nanotubes for Enhanced Photodynamic Therapy Driven by Near-Infrared Light. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1703007. [PMID: 29094517 DOI: 10.1002/smll.201703007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/11/2017] [Indexed: 05/22/2023]
Abstract
The low reactive oxygen species production capability and the shallow tissue penetration of excited light (UV) are still two barriers in photodynamic therapy (PDT). Here, Au cluster anchored black anatase TiO2-x nanotubes (abbreviated as Au25 /B-TiO2-x NTs) are synthesized by gaseous reduction of anatase TiO2 NTs and subsequent deposition of noble metal. The Au25 /B-TiO2-x NTs with thickness of about 2 nm exhibit excellent PDT performance. The reduction process increased the density of Ti3+ on the surface of TiO2 , which effectively depresses the recombination of electron and hole. Furthermore, after modification of Au25 nanoclusters, the PDT efficiency is further enhanced owing to the changed electrical distribution in the composite, which forms a shallow potential well on the metal-TiO2 interface to further hamper the recombination of electron and hole. Especially, the reduction of anatase TiO2 can expend the light response range (UV) of TiO2 to the visible and even near infrared (NIR) light region with high tissue penetration depth. When excited by NIR light, the nanoplatform shows markedly improved therapeutic efficacy attributed to the photocatalytic synergistic effect, and promotes separation or restrained recombination of electron and hole, which is verified by experimental results in vitro and in vivo.
Collapse
Affiliation(s)
- Dan Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Arif Gulzar
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Guixin Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Yunlu Dai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Chongna Zhong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| |
Collapse
|
25
|
Ultra-Fast Microwave Synthesis of ZnO Nanorods on Cellulose Substrates for UV Sensor Applications. MATERIALS 2017; 10:ma10111308. [PMID: 29140304 PMCID: PMC5706255 DOI: 10.3390/ma10111308] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/10/2017] [Accepted: 11/12/2017] [Indexed: 11/16/2022]
Abstract
In the present work, tracing and Whatman papers were used as substrates to grow zinc oxide (ZnO) nanostructures. Cellulose-based substrates are cost-efficient, highly sensitive and environmentally friendly. ZnO nanostructures with hexagonal structure were synthesized by hydrothermal under microwave irradiation using an ultrafast approach, that is, a fixed synthesis time of 10 min. The effect of synthesis temperature on ZnO nanostructures was investigated from 70 to 130 °C. An Ultra Violet (UV)/Ozone treatment directly to the ZnO seed layer prior to microwave assisted synthesis revealed expressive differences regarding formation of the ZnO nanostructures. Structural characterization of the microwave synthesized materials was carried out by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The optical characterization has also been performed. The time resolved photocurrent of the devices in response to the UV turn on/off was investigated and it has been observed that the ZnO nanorod arrays grown on Whatman paper substrate present a responsivity 3 times superior than the ones grown on tracing paper. By using ZnO nanorods, the surface area-to-volume ratio will increase and will improve the sensor sensibility, making these types of materials good candidates for low cost and disposable UV sensors. The sensors were exposed to bending tests, proving their high stability, flexibility and adaptability to different surfaces.
Collapse
|
26
|
Synthesis of NaOH-Modified TiOF2 and Its Enhanced Visible Light Photocatalytic Performance on RhB. Catalysts 2017. [DOI: 10.3390/catal7080243] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
27
|
Novel Synthesis of Plasmonic Ag/AgCl@TiO2 Continues Fibers with Enhanced Broadband Photocatalytic Performance. Catalysts 2017. [DOI: 10.3390/catal7040117] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|