1
|
Abufalgha AA, Curson ARJ, Lea-Smith DJ, Pott RWM. The effect of Alcanivorax borkumensis SK2, a hydrocarbon-metabolising organism, on gas holdup in a 4-phase bubble column bioprocess. Bioprocess Biosyst Eng 2023; 46:635-644. [PMID: 36757455 DOI: 10.1007/s00449-023-02849-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/21/2023] [Indexed: 02/10/2023]
Abstract
To design bioprocesses utilising hydrocarbon-metabolising organisms (HMO) as biocatalysts, the effect of the organism on the hydrodynamics of bubble column reactor (BCR), such as gas holdup, needs to be investigated. Therefore, this study investigates the first use of an HMO, Alcanivorax borkumensis SK2, as a solid phase in the operation and hydrodynamics of a BCR. The study investigated the gas holdup in 3-phase and 4-phase systems in a BCR under ranges of superficial gas velocities (UG) from 1 to 3 cm/s, hydrocarbon (chain length C13-21) concentrations (HC) of 0, 5, and 10% v/v and microbial concentrations (MC) of 0, 0.35, 0.6 g/l. The results indicated that UG was the most significant parameter, as gas holdup increases linearly with increasing UG from 1 to 3 cm/s. Furthermore, the addition of hydrocarbons into the air-deionized water -SK2 system showed the highest increase in the gas holdup, particularly at high UG (above 2 cm/s). The solids (yeast, cornflour, and SK2) phases had differing effects on gas holdup, potentially due to the difference in surface activity. In this work, SK2 addition caused a reduction in the fluid surface tension in the bioprocess which therefore resulted in an increase in the gas holdup in BCR. This work builds upon previous investigations in optimising the hydrodynamics for bubble column hydrocarbon bioprocesses for the application of alkane bioactivation.
Collapse
Affiliation(s)
- Ayman A Abufalgha
- Department of Process Engineering, Stellenbosch University, Banghoek Road, Stellenbosch, 7600, South Africa.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,DST-NRF Centre of Excellence in Catalysis (C* Change), Rondebosch, South Africa
| | - Andrew R J Curson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,DST-NRF Centre of Excellence in Catalysis (C* Change), Rondebosch, South Africa
| | - David J Lea-Smith
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,DST-NRF Centre of Excellence in Catalysis (C* Change), Rondebosch, South Africa
| | - Robert W M Pott
- Department of Process Engineering, Stellenbosch University, Banghoek Road, Stellenbosch, 7600, South Africa. .,DST-NRF Centre of Excellence in Catalysis (C* Change), Rondebosch, South Africa.
| |
Collapse
|
2
|
Chong GG, Ding LY, Qiu YY, Qian XL, Dong YL, Li CX, Li A, Pan J, Xu JH. Building Flexible Escherichia coli Modules for Bifunctionalizing n-Octanol: The Byproduct of Oleic Acid Biorefinery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10543-10551. [PMID: 35997264 DOI: 10.1021/acs.jafc.2c04329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Artificial biorefinery of oleic acid into 1,10-decanedioic acid represents a revolutionizing route to the sustainable production of chemically difficult-to-make bifunctional chemicals. However, the carbon atom economy is extremely low (56%) due to the formation of unifunctional n-octanol. Here, we report a panel of recombinant Escherichia coli modules for diverse bifunctionalization, where the desired genetic parts are well distributed into different modules that can be flexibly combined in a plug-and-play manner. The designed ω-functionalizing modules could achieve ω-hydroxylation, consecutive ω-oxidation, or ω-amination of n-octanoic acid. By integrating these advanced modules with the reported oleic acid-cleaving modules, high-value C8 and C10 products, including ω-hydroxy acid, ω-amino acid, and α,ω-dicarboxylic acid, were produced with 100% carbon atom economy. These ω-functionalizing modules enabled the complete use of all of the carbon atoms from oleic acid (released from plant oil) for the green synthesis of structurally diverse bifunctional chemicals.
Collapse
Affiliation(s)
- Gang-Gang Chong
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Liang-Yi Ding
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yan-Yan Qiu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiao-Long Qian
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ya-Li Dong
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Chun-Xiu Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062 Wuhan, China
| | - Jiang Pan
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
3
|
Cannazza P, Rabuffetti M, Donzella S, De Vitis V, Contente ML, de Oliveira MDCF, de Mattos MC, Barbosa FG, de Souza Oliveira RP, Pinto A, Molinari F, Romano D. Whole cells of recombinant CYP153A6-E. coli as biocatalyst for regioselective hydroxylation of monoterpenes. AMB Express 2022; 12:48. [PMID: 35478304 PMCID: PMC9046528 DOI: 10.1186/s13568-022-01389-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Optimized recombinant whole cells of E. coli bearing CYP153A6 were employed for catalyzing the hydroxylation of different monoterpene derivatives. In most cases, high selectivity was observed with exclusive hydroxylation of the allylic methyl group bound to the aliphatic ring. In the case of (R)- and (S)-carvone, hydroxylation occurred also on the other allylic methyl group, although to a lesser extent. Biotransformations carried out in fed-batch mode on (S)-limonene and α-terpineol showed that recombinant whole cells retained activity for at least 24 h, allowing for the recovery of 3.25 mg mL−1 of (S)-perillyl alcohol and 5.45 mg mL−1 of 7-hydroxy-α-terpineol, respectively. Different monoterpenes can be regioselectively hydroxylated by CYP153A6 monooxygenase The biotransformation with whole cells is complementary to chemical oxyfunctionalization Fed-batch biotransformations have been applied for preparative purposes
Collapse
|
4
|
Sharma S, Pandey LM. Hydrophobic Surface Induced Biosorption and Microbial Ex Situ Remediation of Oil-Contaminated Sites. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Swati Sharma
- Bio-interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Lalit M. Pandey
- Bio-interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
5
|
Ebrecht AC, Aschenbrenner JC, Smit MS, Opperman DJ. Biocatalytic synthesis of non-vicinal aliphatic diols. Org Biomol Chem 2021; 19:439-445. [PMID: 33331366 DOI: 10.1039/d0ob02086a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Biocatalysts are receiving increased attention in the field of selective oxyfunctionalization of C-H bonds, with cytochrome P450 monooxygenases (CYP450s), and the related peroxygenases, leading the field. Here we report on the substrate promiscuity of CYP505A30, previously characterized as a fatty acid hydroxylase. In addition to its regioselective oxyfunctionalization of saturated fatty acids (ω-1 - ω-3 hydroxylation), primary fatty alcohols are also accepted with similar regioselectivities. Moreover, alkanes such as n-octane and n-decane are also readily accepted, allowing for the production of non-vicinal diols through sequential oxygenation.
Collapse
Affiliation(s)
- Ana C Ebrecht
- Department of Biotechnology, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa.
| | - Jasmin C Aschenbrenner
- Department of Biotechnology, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa. and South African DST-NRF Centre of Excellence in Catalysis, c*change, South Africa
| | - Martha S Smit
- Department of Biotechnology, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa. and South African DST-NRF Centre of Excellence in Catalysis, c*change, South Africa
| | - Diederik J Opperman
- Department of Biotechnology, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa.
| |
Collapse
|