1
|
Chen Y, Wang B, Demeke D, Fan F, Berthier C, Mariani L, Lafata K, Holzman L, Hodgin J, Janowczyk A, Barisoni L, Madabhushi A. Clinical Relevance of Computational Pathology Analysis of Interplay Between Kidney Microvasculature and Interstitial Microenvironment. Clin J Am Soc Nephrol 2024; 20:01277230-990000000-00522. [PMID: 39714939 PMCID: PMC11835158 DOI: 10.2215/cjn.0000000597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND Interstitial fibrosis and tubular atrophy (IFTA), and density and shape of peritubular capillaries (PTCs), are independently prognostic of disease progression. This study aimed to identify novel digital biomarkers of disease progression and assess the clinical relevance of the interplay between a variety of PTC characteristics and their microenvironment in glomerular diseases. METHODS A total of 344 NEPTUNE/CureGN participants were included: 112 minimal change disease, 134 focal segmental glomerulosclerosis, 61 membranous nephropathy, and 37 IgA nephropathy. A PAS-stained whole slide image per patient was manually segmented for cortex, pre- and mature IFTA. Interstitial fractional space (IFS) was computationally quantified. A deep-learning model was applied to segment PTCs. Spatial and shape PTC pathomic features (230) were extracted from the cortex, IFTA, and non-IFTA sub-regions. Participants were divided into training and testing datasets (1:1). Univariate models incorporating IFTA subregions, and IFS-PTC density were constructed. LASSO regression models were used to identify the top PTC features associated with disease progression stratified by IFTA and non-IFTA sub-regions. Machine learning models were built using the top PTC features in IFTA and non-IFTA sub-regions to prognosticate disease progression. RESULTS PTC density in pre+mature IFTA and IFS, shape features in pre+mature IFTA, and spatial architecture features in the non-IFTA regions associated with disease progression. The machine learning generated risk scores showed a significant association with disease progression on the independent testing set. CONCLUSION We uncovered previously underrecognized digital biomarkers of disease progression and the clinical relevance of the complex interplay between the status of the PTCs and the interstitial microenvironment.
Collapse
Affiliation(s)
- Yijiang Chen
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Bangchen Wang
- Department of Pathology, Duke University, Durham, North Carolina
- Department of Pathology, John Hopkins University, Baltimore, MD
| | - Dawit Demeke
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Fan Fan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
- Department of Biomedical engineering, Emory University, Atlanta, Georgia
| | - Celine Berthier
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Laura Mariani
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Kyle Lafata
- Department of Pathology, Duke University, Durham, North Carolina
- Department of Radiology, Duke University, Durham, North Carolina
- Department of Radiation Oncology, Duke University, Durham, North Carolina
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina
| | - Lawrence Holzman
- Division of Nephrology, Department of Internal Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeffrey Hodgin
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Andrew Janowczyk
- Department of Biomedical engineering, Emory University, Atlanta, Georgia
- Division of Precision Oncology, Department of Oncology, University Hospital of Geneva, Geneva, Switzerland
- Division of Clinical Pathology, Department of Clinical Pathology, University Hospital of Geneva, Geneva, Switzerland
| | - Laura Barisoni
- Division of Nephrology, Department of Medicine, Duke University, Durham, North Carolina
| | - Anant Madabhushi
- Department of Biomedical engineering, Emory University, Atlanta, Georgia
- Atlanta Veterans Administration Medical Center, Atlanta, Georgia
| |
Collapse
|
2
|
Lanci A, Iacono E, Merlo B. Therapeutic Application of Extracellular Vesicles Derived from Mesenchymal Stem Cells in Domestic Animals. Animals (Basel) 2024; 14:2147. [PMID: 39123673 PMCID: PMC11310970 DOI: 10.3390/ani14152147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Recently, the therapeutic potential of extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) has been extensively studied in both human and veterinary medicine. EVs are nano-sized particles containing biological components commonly found in other biological materials. For that reason, EV isolation and characterization are critical to draw precise conclusions during their investigation. Research on EVs within veterinary medicine is still considered in its early phases, yet numerous papers were published in recent years. The conventional adult tissues for deriving MSCs include adipose tissue and bone marrow. Nonetheless, alternative sources such as synovial fluid, endometrium, gingiva, and milk have also been intermittently used. Fetal adnexa are amniotic membrane/fluid, umbilical cord and Wharton's jelly. Cells derived from fetal adnexa exhibit an intermediate state between embryonic and adult cells, demonstrating higher proliferative and differentiative potential and longer telomeres compared to cells from adult tissues. Summarized here are the principal and recent preclinical and clinical studies performed in domestic animals such as horse, cattle, dog and cat. To minimize the use of antibiotics and address the serious issue of antibiotic resistance as a public health concern, they will undoubtedly also be utilized in the future to treat infections in domestic animals. A number of concerns, including large-scale production with standardization of EV separation and characterization techniques, must be resolved for clinical application.
Collapse
Affiliation(s)
- Aliai Lanci
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sora 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (E.I.); (B.M.)
| | - Eleonora Iacono
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sora 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (E.I.); (B.M.)
- Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, 40100 Bologna, Italy
| | - Barbara Merlo
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sora 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (E.I.); (B.M.)
- Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, 40100 Bologna, Italy
| |
Collapse
|
3
|
Cheung SWY, Chamley LW, Barrett CJ, Lau SYS. Extracellular vesicles and their effect on vascular haemodynamics: a systematic review. Hypertens Res 2024; 47:1588-1606. [PMID: 38600279 PMCID: PMC11150158 DOI: 10.1038/s41440-024-01659-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/03/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
Extracellular vesicles (EVs) are released from all cell types studied to date and act as intercellular communicators containing proteins, nucleic acids and lipid cargos. They have been shown to be involved in maintaining homoeostasis as well as playing a role in the development of pathology including hypertension and cardiovascular disease. It is estimated that there is 109-1010 circulating EVs/mL in the plasma of healthy individuals derived from various sources. While the effect of EVs on vascular haemodynamic parameters will be dependent on the details of the model studied, we systematically searched and summarized current literature to find patterns in how exogenously injected EVs affected vascular haemodynamics. Under homoeostatic conditions, evidence from wire and pressure myography data demonstrate that injecting isolated EVs derived from cell types found in blood and blood vessels resulted in the impairment of vasodilation in blood vessels ex vivo. Impaired vasodilation was also observed in rodents receiving intravenous injections of human plasma EVs from cardiovascular diseases including valvular heart disease, acute coronary syndrome, myocardial infarction and end stage renal disease. When EVs were derived from models of metabolic syndromes, such as diabetes, these EVs enhanced vasoconstriction responses in blood vessels ex vivo. There were fewer publications that assessed the effect of EVs in anaesthetised or conscious animals to confirm whether effects on the vasculature observed in ex vivo studies translated into alterations in vascular haemodynamics in vivo. In the available conscious animal studies, the in vivo data did not always align with the ex vivo data. This highlights the importance of in vivo work to determine the effects of EVs on the integrative vascular haemodynamics.
Collapse
Affiliation(s)
- Sharon W Y Cheung
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Hub for Extracellular Vesicle Investigations, The University of Auckland, Auckland, New Zealand
| | - Carolyn J Barrett
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Sien Yee S Lau
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
4
|
Huang W, Hong S, Zhu X, Alsaeedi MH, Tang H, Krier JD, Gandhi D, Jordan KL, Saadiq IM, Jiang Y, Eirin A, Lerman LO. Obesity Blunts the Effect of Mesenchymal Stem Cell-Derived Extracellular Vesicles. Kidney Int Rep 2023; 8:1841-1851. [PMID: 37705914 PMCID: PMC10496020 DOI: 10.1016/j.ekir.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 09/15/2023] Open
Abstract
Introduction Mesenchymal stem/stromal cell-derived extracellular vesicles (MSC-EVs) are paracrine vectors with therapeutic functions comparable to their parent cells. However, it remains unclear if donor obesity affects their therapeutic functions. We tested the hypothesis that the curative effect of human adipose tissue-derived MSC-EVs (A-MSC-EVs) is blunted by obesity. Methods MSC-EVs were isolated by ultracentrifugation from mesenchymal stem/stromal cells (MSCs) collected from abdominal subcutaneous fat of obese and lean human subjects (obese and lean-MSC-EVs, respectively) and injected into the aorta of mice 2 weeks after renal artery stenosis (RAS) induction. Magnetic resonance imaging studies were conducted 2 weeks after MSC-EVs delivery to determine renal function. The effect of MSC-EVs on tissue injury was assessed by histology and gene expression of inflammatory factors, including interleukin (IL)-1β, IL-6, monocyte chemotactic protein-1 (MCP-1), and tumor necrosis factor alpha (TNF-α). Oxidative damage, macrophage infiltration, plasma renin, and hypoxia inducible factor-1α (HIF-1α) were also assessed. Results Tracking showed that MSC-EVs localized in the kidney tissue, including glomeruli and tubules. All MSC-EVs decreased systolic blood pressure (SBP) and plasma renin and improved the poststenotic kidney (STK) volume, but obese-MSC-EVs were less effective than lean-MSC-EVs in improving medullary hypoxia, fibrosis, and tubular injury. Lean-MSC-EVs decreased inflammation, whereas obesity attenuated this effect. Only lean-MSC-EVs decreased STK cortical HIF-1α expression. Conclusion Obesity attenuates the antihypoxia, antifibrosis, antiinflammation, and tubular repair functions of human MSC-EVs in chronic ischemic kidney disease. These observations may have implications for the self-repair potency of obese subjects and for the use of autologous MSC-EVs in regenerative medicine.
Collapse
Affiliation(s)
- Weijun Huang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Siting Hong
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangyang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Mina H. Alsaeedi
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - James D. Krier
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Deep Gandhi
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Kyra L. Jordan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Ishran M. Saadiq
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Yamei Jiang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
5
|
Chen Y, Zee J, Janowczyk AR, Rubin J, Toro P, Lafata KJ, Mariani LH, Holzman LB, Hodgin JB, Madabhushi A, Barisoni L. Clinical Relevance of Computationally Derived Attributes of Peritubular Capillaries from Kidney Biopsies. KIDNEY360 2023; 4:648-658. [PMID: 37016482 PMCID: PMC10278770 DOI: 10.34067/kid.0000000000000116] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 02/13/2023] [Indexed: 04/06/2023]
Abstract
KEY POINTS Computational image analysis allows for the extraction of new information from whole-slide images with potential clinical relevance. Peritubular capillary (PTC) density is decreased in areas of interstitial fibrosis and tubular atrophy when measured in interstitial fractional space. PTC shape (aspect ratio) is associated with clinical outcome in glomerular diseases. BACKGROUND The association between peritubular capillary (PTC) density and disease progression has been studied in a variety of kidney diseases using immunohistochemistry. However, other PTC attributes, such as PTC shape, have not been explored yet. The recent development of computer vision techniques provides the opportunity for the quantification of PTC attributes using conventional stains and whole-slide images. METHODS To explore the relationship between PTC characteristics and clinical outcome, n=280 periodic acid–Schiff-stained kidney biopsies (88 minimal change disease, 109 focal segmental glomerulosclerosis, 46 membranous nephropathy, and 37 IgA nephropathy) from the Nephrotic Syndrome Study Network digital pathology repository were computationally analyzed. A previously validated deep learning model was applied to segment cortical PTCs. Average PTC aspect ratio (PTC major to minor axis ratio), size (PTC pixels per PTC segmentation), and density (PTC pixels per unit cortical area) were computed for each biopsy. Cox proportional hazards models were used to assess associations between these PTC parameters and outcome (40% eGFR decline or kidney failure). Cortical PTC characteristics and interstitial fractional space PTC density were compared between areas of interstitial fibrosis and tubular atrophy (IFTA) and areas without IFTA. RESULTS When normalized PTC aspect ratio was below 0.6, a 0.1, increase in normalized PTC aspect ratio was significantly associated with disease progression, with a hazard ratio (95% confidence interval) of 1.28 (1.04 to 1.59) (P = 0.019), while PTC density and size were not significantly associated with outcome. Interstitial fractional space PTC density was lower in areas of IFTA compared with non-IFTA areas. CONCLUSIONS Computational image analysis enables quantification of the status of the kidney microvasculature and the discovery of a previously unrecognized PTC biomarker (aspect ratio) of clinical outcome.
Collapse
Affiliation(s)
- Yijiang Chen
- Center for Computational Imaging and Personalized Diagnostics, Case Western Reserve University, Cleveland, Ohio
| | - Jarcy Zee
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Andrew R. Janowczyk
- Geneva University Hospitals, Pathology and Oncology Departments, Geneva, Switzerland
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia
| | - Jeremy Rubin
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Paula Toro
- Department of Pathology, Cleveland Clinic, Cleveland, Ohio
| | - Kyle J. Lafata
- Department of Radiology, Duke University, Durham, North Carolina
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina
- Department of Radiation Oncology, Duke University, Durham, North Carolina
| | - Laura H. Mariani
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan
| | - Lawrence B. Holzman
- Department of Medicine, Renal-Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeffrey B. Hodgin
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Anant Madabhushi
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| | - Laura Barisoni
- Department of Pathology, Division of AI and Computational Pathology, Duke University, Durham, North Carolina
- Department of Medicine, Division of Nephrology, Duke University, Durham, North Carolina
| |
Collapse
|
6
|
Bian X, Conley SM, Eirin A, Zimmerman Zuckerman EA, Smith AL, Gowan CC, Snow ZK, Jarmi T, Farres H, Erben YM, Hakaim AG, Dietz MA, Zubair AC, Wyles SP, Wolfram JV, Lerman LO, Hickson LJ. Diabetic kidney disease induces transcriptome alterations associated with angiogenesis activity in human mesenchymal stromal cells. Stem Cell Res Ther 2023; 14:49. [PMID: 36949528 PMCID: PMC10035152 DOI: 10.1186/s13287-023-03269-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/08/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Therapeutic interventions that optimize angiogenic activities may reduce rates of end-stage kidney disease, critical limb ischemia, and lower extremity amputations in individuals with diabetic kidney disease (DKD). Infusion of autologous mesenchymal stromal cells (MSC) is a promising novel therapy to rejuvenate vascular integrity. However, DKD-related factors, including hyperglycemia and uremia, might alter MSC angiogenic repair capacity in an autologous treatment approach. METHODS To explore the angiogenic activity of MSC in DKD, the transcriptome of adipose tissue-derived MSC obtained from DKD subjects was compared to age-matched controls without diabetes or kidney impairment. Next-generation RNA sequencing (RNA-seq) was performed on MSC (DKD n = 29; Controls n = 9) to identify differentially expressed (DE; adjusted p < 0.05, |log2fold change|> 1) messenger RNA (mRNA) and microRNA (miRNA) involved in angiogenesis (GeneCards). Paracrine-mediated angiogenic repair capacity of MSC conditioned medium (MSCcm) was assessed in vitro using human umbilical vein endothelial cells incubated in high glucose and indoxyl sulfate for a hyperglycemic, uremic state. RESULTS RNA-seq analyses revealed 133 DE mRNAs (77 upregulated and 56 down-regulated) and 208 DE miRNAs (119 up- and 89 down-regulated) in DKD-MSC versus Control-MSC. Interestingly, miRNA let-7a-5p, which regulates angiogenesis and participates in DKD pathogenesis, interacted with 5 angiogenesis-associated mRNAs (transgelin/TAGLN, thrombospondin 1/THBS1, lysyl oxidase-like 4/LOXL4, collagen 4A1/COL4A1 and collagen 8A1/COL8A1). DKD-MSCcm incubation with injured endothelial cells improved tube formation capacity, enhanced migration, reduced adhesion molecules E-selectin, vascular cell adhesion molecule 1 and intercellular adhesion molecule 1 mRNA expression in endothelial cells. Moreover, angiogenic repair effects did not differ between treatment groups (DKD-MSCcm vs. Control-MSCcm). CONCLUSIONS MSC from individuals with DKD show angiogenic transcriptome alterations compared to age-matched controls. However, angiogenic repair potential may be preserved, supporting autologous MSC interventions to treat conditions requiring enhanced angiogenic activities such as DKD, diabetic foot ulcers, and critical limb ischemia.
Collapse
Affiliation(s)
- Xiaohui Bian
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Sabena M Conley
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Anastasia L Smith
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Cody C Gowan
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Zachary K Snow
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Tambi Jarmi
- Division of Transplant Nephrology, Department of Transplant Surgery, Mayo Clinic, Jacksonville, FL, USA
| | - Houssam Farres
- Division of Vascular Surgery, Department of Surgery, Mayo Clinic, Jacksonville, FL, USA
| | - Young M Erben
- Division of Vascular Surgery, Department of Surgery, Mayo Clinic, Jacksonville, FL, USA
| | - Albert G Hakaim
- Division of Vascular Surgery, Department of Surgery, Mayo Clinic, Jacksonville, FL, USA
| | - Matthew A Dietz
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Abba C Zubair
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, USA
- Center for Regenerative Biotherapeutics, Mayo Clinic, Jacksonville, FL, USA
| | | | - Joy V Wolfram
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, USA
- School of Chemical Engineering/Australian Institute for Bioengineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - LaTonya J Hickson
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
- Center for Regenerative Biotherapeutics, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
7
|
Lv K, Wang Y, Lou P, Liu S, Zhou P, Yang L, Lu Y, Cheng J, Liu J. Extracellular vesicles as advanced therapeutics for the resolution of organ fibrosis: Current progress and future perspectives. Front Immunol 2022; 13:1042983. [PMCID: PMC9630482 DOI: 10.3389/fimmu.2022.1042983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Organ fibrosis is a serious health challenge worldwide, and its global incidence and medical burden are increasing dramatically each year. Fibrosis can occur in nearly all major organs and ultimately lead to organ dysfunction. However, current clinical treatments cannot slow or reverse the progression of fibrosis to end-stage organ failure, and thus advanced anti-fibrotic therapeutics are urgently needed. As a type of naturally derived nanovesicle, native extracellular vesicles (EVs) from multiple cell types (e.g., stem cells, immune cells, and tissue cells) have been shown to alleviate organ fibrosis in many preclinical models through multiple effective mechanisms, such as anti-inflammation, pro-angiogenesis, inactivation of myofibroblasts, and fibrinolysis of ECM components. Moreover, the therapeutic potency of native EVs can be further enhanced by multiple engineering strategies, such as genetic modifications, preconditionings, therapeutic reagent-loadings, and combination with functional biomaterials. In this review, we briefly introduce the pathology and current clinical treatments of organ fibrosis, discuss EV biology and production strategies, and particularly focus on important studies using native or engineered EVs as interventions to attenuate tissue fibrosis. This review provides insights into the development and translation of EV-based nanotherapies into clinical applications in the future.
Collapse
Affiliation(s)
- Ke Lv
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yizhuo Wang
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Lou
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Shuyun Liu
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Pingya Zhou
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Yanrong Lu
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jingping Liu
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Jingping Liu,
| |
Collapse
|
8
|
Ma N, Li Y, Wang S, Li M, Li Y, Ai H, Zhu H, Wang Y, Guo F, Ren J. Dynamic changes of renal cortical blood perfusion before and after percutaneous transluminal renal artery stenting in patients with severe atherosclerotic renal artery stenosis. Chin Med J (Engl) 2022; 135:1570-1577. [PMID: 35864596 PMCID: PMC9532041 DOI: 10.1097/cm9.0000000000002162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND This study aims to observe the dynamic changes of renal artery (RA) disease and cortical blood perfusion (CBP) evaluated by contrast-enhanced ultrasound (CEUS) after percutaneous transluminal renal artery stenting (PTRAS) in patients with severe atherosclerotic renal artery stenosis (ARAS) and to analyze the relationship between CBP and prognosis. METHODS This was a single-center retrospective cohort study. A total of 98 patients with unilateral severe ARAS after successful PTRAS in Beijing Hospital from September 2017 to September 2020 were included. According to renal glomerular filtration rate (GFR) detected by radionuclide imaging at 12 months after PTRAS, all patients were divided into the poor prognosis group (n = 21, GFR decreased by ≥20% compared with baseline) and the control group (n = 77, GFR decreased by < 20% or improved compared with baseline). Renal artery stenosis was diagnosed by digital subtraction angiography, and renal CBP was evaluated by CEUS using TomTec Imaging Systems (Germany) before PTRAS, at 6 months and 12 months after discharge. The receiver operating characteristic (ROC) curve with area under the curve (AUC) was used to analyze the predictive value of CBP parameters, including area under ascending curve (AUC1), area under the descending curve (AUC2), rising time (RT), time to peak intensity (TTP), maximum intensity (IMAX), and mean transit time (MTT) for poor prognosis. RESULTS Among the 98 patients, there were 52 males (53.1%), aged 55-74 years old, with an average age of 62.1 ± 8.7 years, and an average artery stenosis of 82.3 ± 12.9%. The poor prognosis group was associated with significantly increased incidence of diabetes (76.2% vs. 41.6%), and lower levels of GFR of the stenotic kidney (21.8 mL/min vs. 25.0 mL/min) and total GFR (57.6 mL/min vs. 63.7 mL/min) (all P < 0.05), compared with the control group (P < 0.05). In addition, the rate of RA restenosis was significantly higher in the poor prognosis group than in the control group (9.5% vs. 0, χ2 = 9.462, P = 0.002). Compared with the control group, the poor prognosis group was associated with significantly decreased baseline AUC1 and AUC2, and extended duration of TTP and MTT (P < 0.05). At 6 months and 12 months of follow-up, patients in the control group were associated with markedly increased AUC1, AUC2, and IMAX, and shorter duration of RT and MTT (P < 0.05). The ROC curve showed that the predictive values of AUC1, AUC2, RT, TTP, IMAX, and MTT for poor prognosis were 0.812 (95% CI: 0.698-0.945), 0.752 (95% CI: 0.591-0.957), 0.724 (95% CI: 0.569-0.961), 0.720 (95% CI: 0.522-0.993), 0.693 (95% CI: 0.507-0.947), and 0.786 (95% CI: 0.631-0.979), respectively. CONCLUSIONS Preoperative renal CBP in severe ARAS patients with poor prognosis is significantly reduced, and does not show significant improvement after stent treatment over the first year of follow-up. The parameter AUC1 may be a good predictor for renal dysfunction after PTRAS in severe ARAS patients. Trial Registration: ChiCTR.org.cn, ChiCTR1800016252.
Collapse
Affiliation(s)
- Na Ma
- Department of Sonography, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing 100730, China
| | - Yan Li
- Department of Sonography, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing 100730, China
| | - Siyu Wang
- Department of Sonography, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing 100730, China
| | - Mengpu Li
- Department of Sonography, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing 100730, China
| | - Yongjun Li
- Department of Vascular Surgery, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing 100730, China
| | - Hu Ai
- Department of Cardiology, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing 100730, China
| | - Hui Zhu
- Department of Nuclear Medicine, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing 100730, China
| | - Yang Wang
- Department of Medical Research & Biometrics Center, National Center for Cardiovascular Diseases and Fuwai Hospital, CAMS and PUMC, Beijing 100037, China
| | - Fajin Guo
- Department of Sonography, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing 100730, China
| | - Junhong Ren
- Department of Sonography, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing 100730, China
| |
Collapse
|
9
|
Emergent players in renovascular disease. Clin Sci (Lond) 2022; 136:239-256. [PMID: 35129198 DOI: 10.1042/cs20210509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023]
Abstract
Renovascular disease (RVD) remains a common etiology of secondary hypertension. Recent clinical trials revealed unsatisfactory therapeutic outcomes of renal revascularization, leading to extensive investigation to unravel key pathophysiological mechanisms underlying irreversible functional loss and structural damage in the chronically ischemic kidney. Research studies identified complex interactions among various players, including inflammation, fibrosis, mitochondrial injury, cellular senescence, and microvascular remodeling. This interplay resulted in a shift of our understanding of RVD from a mere hemodynamic disorder to a pro-inflammatory and pro-fibrotic pathology strongly influenced by systemic diseases like metabolic syndrome (MetS), hypertension, diabetes mellitus, and hyperlipidemia. Novel diagnostic approaches have been tested for early detection and follow-up of RVD progression, using new imaging techniques and biochemical markers of renal injury and dysfunction. Therapies targeting some of the pathological pathways governing the development of RVD have shown promising results in animal models, and a few have moved from bench to clinical research. This review summarizes evolving understanding in chronic ischemic kidney injury.
Collapse
|
10
|
Stem Cells to the Rescue: Development and Application of Cell-Based Therapy for Microvascular Repair. Cells 2021; 10:cells10082144. [PMID: 34440914 PMCID: PMC8393633 DOI: 10.3390/cells10082144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/30/2022] Open
|