1
|
Fullstone T, Rohm H, Kaltofen T, Hierlmayer S, Reichenbach J, Schweikert S, Knodel F, Loeffler AK, Mayr D, Jeschke U, Mahner S, Kessler M, Trillsch F, Rathert P. Identification of FLYWCH1 as a regulator of platinum-resistance in epithelial ovarian cancer. NAR Cancer 2025; 7:zcaf012. [PMID: 40191655 PMCID: PMC11970373 DOI: 10.1093/narcan/zcaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/20/2025] [Accepted: 03/25/2025] [Indexed: 04/09/2025] Open
Abstract
Platinum-based combination chemotherapy remains the backbone of first-line treatment for patients with advanced epithelial ovarian cancer (EOC). While most patients initially respond well to the treatment, patients with relapse ultimately develop platinum resistance. This study identified FLYWCH-type zinc finger-containing protein 1 (FLYWCH1) as an important regulator in the resistance development process. We showed that the loss of FLYWCH1 promotes platinum resistance in EOC cells, and the low FLYWCH1 expression is correlated with poor prognosis of EOC patients. In platinum-sensitive cells, FLYWCH1 colocalizes with H3K9me3, but this association is significantly reduced when cells acquire resistance. The suppression of FLYWCH1 induces gene expression changes resulting in the deregulation of pathways associated with resistance. In line with its connection to H3K9me3, FLYWCH1 induces gene silencing in a synthetic reporter assay and the suppression of FLYWCH1 alters H3K9me3 at promoter regions and repeat elements. The loss of FLYWCH1 leads to the derepression of LTR and Alu repeats, thereby increasing transcriptional plasticity and driving the resistance development process. Our data highlight the importance of FLYWCH1 in chromatin biology and acquisition of platinum resistance through transcriptional plasticity and propose FLYWCH1 as a potential biomarker for predicting treatment responses in EOC patients.
Collapse
MESH Headings
- Female
- Humans
- Drug Resistance, Neoplasm/genetics
- Carcinoma, Ovarian Epithelial/genetics
- Carcinoma, Ovarian Epithelial/drug therapy
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/metabolism
- Cell Line, Tumor
- Histones/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Neoplasms, Glandular and Epithelial/drug therapy
- Neoplasms, Glandular and Epithelial/genetics
- Neoplasms, Glandular and Epithelial/pathology
- Neoplasms, Glandular and Epithelial/metabolism
- Platinum/pharmacology
- Prognosis
- Promoter Regions, Genetic
- Antineoplastic Agents/pharmacology
Collapse
Affiliation(s)
- Tabea L Fullstone
- Department of Molecular Biochemistry, Institute of Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Helene Rohm
- Department of Molecular Biochemistry, Institute of Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Till Kaltofen
- Department of Obstetrics and Gynaecology, University Hospital, LMU Munich, 81377 Munich, Germany
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Sophia Hierlmayer
- Department of Obstetrics and Gynaecology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Juliane Reichenbach
- Department of Obstetrics and Gynaecology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Simon Schweikert
- Department of Molecular Biochemistry, Institute of Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Franziska Knodel
- Department of Molecular Biochemistry, Institute of Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Ann-Kathrin Loeffler
- Department of Molecular Biochemistry, Institute of Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Doris Mayr
- Institute of Pathology, LMU Munich, 81377 Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynaecology, University Hospital, LMU Munich, 81377 Munich, Germany
- Department of Obstetrics and Gynaecology, University Hospital Augsburg, 86156 Augsburg, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynaecology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Mirjana Kessler
- Department of Obstetrics and Gynaecology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Fabian Trillsch
- Department of Obstetrics and Gynaecology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Philipp Rathert
- Department of Molecular Biochemistry, Institute of Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
2
|
Fan Z, Song H, Qi M, Wang M, Bai Y, Sun Y, Yu H. Impact of High-Temperature Stress on Maize Seed Setting: Cellular and Molecular Insights of Thermotolerance. Int J Mol Sci 2025; 26:1283. [PMID: 39941051 PMCID: PMC11818821 DOI: 10.3390/ijms26031283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Global warming poses a significant threat to crop production and food security, with maize (Zay mays L.) particularly vulnerable to high-temperature stress (HTS). This review explores the detrimental impacts of elevated temperatures on maize development across various growth stages, analyzed within the source-sink framework, with a particular focus on seed setting and yield reduction. It provides a broad analysis of maize cellular and molecular responses to HTS, highlighting the key roles of plant hormone abscisic acid (ABA) signaling, calcium signaling, chloroplast, and the DNA damage repair (DDR) system in maize. HTS disrupts ABA signaling pathways, impairing stomatal regulation and reducing water-use efficiency, while calcium signaling orchestrates stress responses by activating heat shock proteins and other protective mechanisms. Chloroplasts, as central to photosynthesis, are particularly sensitive to HTS, often exhibiting photosystem II damage and chlorophyll degradation. Recent studies also highlight the significance of the DDR system, with genes like ZmRAD51C playing crucial roles in maintaining genomic stability during reproductive organ development. DNA damage under HTS conditions emerges as a key factor contributing to reduced seed set, although the precise molecular mechanisms remain to be fully elucidated. Furthermore, the review examines cutting-edge genetic improvement strategies, aimed at developing thermotolerant maize cultivars. These recent research advances underscore the need for further investigation into the molecular basis of thermotolerance and open the door for future advancements in breeding thermotolerant crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Haidong Yu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
3
|
Almozyan S, Babaei‐Jadidi R, Aljohani A, Youssefi S, Dalleywater W, Kadam P, Spencer‐Dene B, Rakha E, Ilyas M, Shams Nateri A. Wnt/GSK-3β mediates posttranslational modifications of FLYWCH1 to regulate intestinal epithelial function and tumorigenesis in the colon. Cancer Commun (Lond) 2025; 45:9-14. [PMID: 39476194 PMCID: PMC11758259 DOI: 10.1002/cac2.12625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 01/25/2025] Open
Affiliation(s)
- Sheema Almozyan
- Cancer Genetics & Stem Cell GroupBioDiscovery InstituteSchool of MedicineUniversity of NottinghamNottinghamNottinghamshireUK
- Department of Cell Therapy and ImmunobiologyResearch & Innovation CentreKing Faisal Specialist Hospital & Research CentreRUHRiyadhSaudi Arabia
| | - Roya Babaei‐Jadidi
- Cancer Genetics & Stem Cell GroupBioDiscovery InstituteSchool of MedicineUniversity of NottinghamNottinghamNottinghamshireUK
- Respiratory MedicineBioDiscovery InstituteSchool of MedicineUniversity of NottinghamNottinghamNottinghamshireUK
| | - Abrar Aljohani
- University of Nottingham and Nottingham University City HospitalSchool of MedicineNottinghamNottinghamshireUK
- Department of Clinical Laboratory SciencesCollege of Applied Medical SciencesTaif UniversityTaifSaudi Arabia
| | - Sepideh Youssefi
- Cancer Genetics & Stem Cell GroupBioDiscovery InstituteSchool of MedicineUniversity of NottinghamNottinghamNottinghamshireUK
| | - William Dalleywater
- Histopathology, Queens Medical CentreSchool of MedicineUniversity of NottinghamNottinghamNottinghamshireUK
| | - Prerna Kadam
- Cancer Genetics & Stem Cell GroupBioDiscovery InstituteSchool of MedicineUniversity of NottinghamNottinghamNottinghamshireUK
| | - Bradley Spencer‐Dene
- Experimental HistopathologyThe Francis Crick InstituteLondonUK
- Non‐Clinical HistologyBioimagingGSKStevenageHertfordshireUK
| | - Emad Rakha
- University of Nottingham and Nottingham University City HospitalSchool of MedicineNottinghamNottinghamshireUK
| | - Mohammad Ilyas
- Histopathology, Queens Medical CentreSchool of MedicineUniversity of NottinghamNottinghamNottinghamshireUK
| | - Abdolrahman Shams Nateri
- Cancer Genetics & Stem Cell GroupBioDiscovery InstituteSchool of MedicineUniversity of NottinghamNottinghamNottinghamshireUK
- Academic Unit of Translational Medical SciencesSchool of MedicineUniversity of NottinghamNottinghamNottinghamshireUK
| |
Collapse
|
4
|
Wang X, Yao L, Li Z, Zhang J, Ruan M, Mulati Y, Gan Y, Zhang Q. ZNF471 Interacts with BANP to Reduce Tumour Malignancy by Inactivating PI3K/AKT/mTOR Signalling but is Frequently Silenced by Aberrant Promoter Methylation in Renal Cell Carcinoma. Int J Biol Sci 2024; 20:643-663. [PMID: 38169650 PMCID: PMC10758100 DOI: 10.7150/ijbs.89785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024] Open
Abstract
Background: Renal cell carcinoma (RCC) is one of the most common malignant tumours of the urinary system. However, the aetiology and pathogenesis of RCC remain unclear. The C2H2 zinc finger protein (ZNF) family is the largest transcriptional regulatory factor family found in mammals, and Krüppel-associated box domain-containing zinc finger proteins (KRAB-ZFPs) constitute the largest subfamily of the C2H2 zinc finger protein family and play an important role in the occurrence and development of tumours. The aim of this study was to explore the role of abnormal methylation of ZNF471 in the development of renal carcinoma. Methods: In this study, we first used the TCGA and EWAS Data Hub databases to analyse the expression and methylation levels of ZNF471 in renal carcinoma tissues and adjacent normal tissues. Second, we collected samples of renal cancer and adjacent normal tissues at Peking University First Hospital to investigate the expression and methylation level of ZNF471 in renal cancer tissues and the relationships between these levels and the clinicopathological features and prognosis of patients with renal cancer. Next, we investigated the effects of ZNF471 on the proliferation, metastasis, cell cycle progression, and apoptosis of renal cell carcinoma cells by cell biology experiments. Finally, we elucidated the underlying molecular mechanisms of ZNF471 in renal cell carcinoma by transcriptome sequencing, bioinformatics analysis and molecular biology experiments. Results: The expression of ZNF471 in renal carcinoma tissues and cell lines was significantly lower than that in adjacent normal tissues and cell lines due to abnormal promoter CpG methylation. Furthermore, the expression of ZNF471 in renal carcinoma tissues was negatively correlated with tumour stage and grade in patients with renal carcinoma. The results of the cell biology experiments showed that ZNF471 could significantly inhibit the proliferation, migration and cell cycle progression of renal cell carcinoma cells and promote apoptosis in these cells. In addition, ZNF471 could interact with BANP and suppress the malignant phenotype of RCC by inactivating the PI3K/AKT/mTOR signalling pathway. Conclusions: As an important tumour suppressor, ZNF471 can interact with BANP in renal cancer cells and inhibit the activation of the PI3K/AKT/mTOR signalling pathway, thereby inhibiting the occurrence and development of renal cancer.
Collapse
Affiliation(s)
- Xiaofei Wang
- Department of Urology, Peking University First Hospital; Institute of Urology, Peking University; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, National Urological Cancer Center, Beijing 100034, China
| | - Lin Yao
- Department of Urology, Peking University First Hospital; Institute of Urology, Peking University; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, National Urological Cancer Center, Beijing 100034, China
| | - Zheng Li
- Department of Urology, Peking University First Hospital; Institute of Urology, Peking University; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, National Urological Cancer Center, Beijing 100034, China
| | - Jiaen Zhang
- Department of Urology, Peking University First Hospital; Institute of Urology, Peking University; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, National Urological Cancer Center, Beijing 100034, China
| | - Mingjian Ruan
- Department of Urology, Peking University First Hospital; Institute of Urology, Peking University; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, National Urological Cancer Center, Beijing 100034, China
| | - Yelin Mulati
- Department of Urology, Peking University First Hospital; Institute of Urology, Peking University; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, National Urological Cancer Center, Beijing 100034, China
| | - Ying Gan
- Department of Urology, Peking University First Hospital; Institute of Urology, Peking University; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, National Urological Cancer Center, Beijing 100034, China
| | - Qian Zhang
- Department of Urology, Peking University First Hospital; Institute of Urology, Peking University; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, National Urological Cancer Center, Beijing 100034, China
- Peking University Binhai Hospital, Tianjin 300450, China
| |
Collapse
|
5
|
Xu J, Si H, Zeng Y, Wu Y, Zhang S, Shen B. Transcriptome-wide association study reveals candidate causal genes for lumbar spinal stenosis. Bone Joint Res 2023; 12:387-396. [PMID: 37356815 PMCID: PMC10290907 DOI: 10.1302/2046-3758.126.bjr-2022-0160.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/27/2023] Open
Abstract
Aims Lumbar spinal stenosis (LSS) is a common skeletal system disease that has been partly attributed to genetic variation. However, the correlation between genetic variation and pathological changes in LSS is insufficient, and it is difficult to provide a reference for the early diagnosis and treatment of the disease. Methods We conducted a transcriptome-wide association study (TWAS) of spinal canal stenosis by integrating genome-wide association study summary statistics (including 661 cases and 178,065 controls) derived from Biobank Japan, and pre-computed gene expression weights of skeletal muscle and whole blood implemented in FUSION software. To verify the TWAS results, the candidate genes were furthered compared with messenger RNA (mRNA) expression profiles of LSS to screen for common genes. Finally, Metascape software was used to perform enrichment analysis of the candidate genes and common genes. Results TWAS identified 295 genes with permutation p-values < 0.05 for skeletal muscle and 79 genes associated for the whole blood, such as RCHY1 (PTWAS = 0.001). Those genes were enriched in 112 gene ontology (GO) terms and five Kyoto Encyclopedia of Genes and Genomes pathways, such as 'chemical carcinogenesis - reactive oxygen species' (LogP value = -2.139). Further comparing the TWAS significant genes with the differentially expressed genes identified by mRNA expression profiles of LSS found 18 overlapped genes, such as interleukin 15 receptor subunit alpha (IL15RA) (PTWAS = 0.040, PmRNA = 0.010). Moreover, 71 common GO terms were detected for the enrichment results of TWAS and mRNA expression profiles, such as negative regulation of cell differentiation (LogP value = -2.811). Conclusion This study revealed the genetic mechanism behind the pathological changes in LSS, and may provide novel insights for the early diagnosis and intervention of LSS.
Collapse
Affiliation(s)
- Jiawen Xu
- Orthopedic Research Institute, Department of Orthopedics, Sichuan University West China Hospital, Chengdu, China
| | - Haibo Si
- Orthopedic Research Institute, Department of Orthopedics, Sichuan University West China Hospital, Chengdu, China
| | - Yi Zeng
- Orthopedic Research Institute, Department of Orthopedics, Sichuan University West China Hospital, Chengdu, China
| | - Yuangang Wu
- Orthopedic Research Institute, Department of Orthopedics, Sichuan University West China Hospital, Chengdu, China
| | - Shaoyun Zhang
- Orthopedic Research Institute, Department of Orthopedics, Sichuan University West China Hospital, Chengdu, China
| | - Bin Shen
- Orthopedic Research Institute, Department of Orthopedics, Sichuan University West China Hospital, Chengdu, China
| |
Collapse
|
6
|
Iyer AS, Shaik MR, Raufman JP, Xie G. The Roles of Zinc Finger Proteins in Colorectal Cancer. Int J Mol Sci 2023; 24:10249. [PMID: 37373394 DOI: 10.3390/ijms241210249] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Despite colorectal cancer remaining a leading worldwide cause of cancer-related death, there remains a paucity of effective treatments for advanced disease. The molecular mechanisms underlying the development of colorectal cancer include altered cell signaling and cell cycle regulation that may result from epigenetic modifications of gene expression and function. Acting as important transcriptional regulators of normal biological processes, zinc finger proteins also play key roles in regulating the cellular mechanisms underlying colorectal neoplasia. These actions impact cell differentiation and proliferation, epithelial-mesenchymal transition, apoptosis, homeostasis, senescence, and maintenance of stemness. With the goal of highlighting promising points of therapeutic intervention, we review the oncogenic and tumor suppressor roles of zinc finger proteins with respect to colorectal cancer tumorigenesis and progression.
Collapse
Affiliation(s)
- Aishwarya S Iyer
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mohammed Rifat Shaik
- Department of Medicine, University of Maryland Medical Center Midtown Campus, Baltimore, MD 21201, USA
| | - Jean-Pierre Raufman
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- VA Maryland Healthcare System, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Guofeng Xie
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- VA Maryland Healthcare System, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
7
|
Soldatović TV, Šmit B, Mrkalić EM, Matić SL, Jelić RM, Serafinović MĆ, Gligorijević N, Čavić M, Aranđelović S, Grgurić-Šipka S. Exploring heterometallic bridged Pt(II)-Zn(II) complexes as potential antitumor agents. J Inorg Biochem 2023; 240:112100. [PMID: 36535193 DOI: 10.1016/j.jinorgbio.2022.112100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/03/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
The four novel complexes [{cis-PtCl(NH3)2(μ-4,4'-bipyridyl)ZnCl(terpy)}](ClO4)2 (C1), [{trans-PtCl(NH3)2(μ-4,4'-bipyridyl)ZnCl(terpy)}](ClO4)2 (C2), [{cis-PtCl(NH3)2(μ-pyrazine)ZnCl(terpy)}](ClO4)2 (C3) and [{trans-PtCl(NH3)2(μ-pyrazine)ZnCl(terpy)}](ClO4)2 (C4) (where terpy = 2,2':6',2''-terpyridine) were synthesized and characterized. Acid-base titrations and concentration dependent kinetic measurements for the reactions with biologically relevant ligands such as guanosine-5'-monophosphate (5'-GMP), inosine-5'-monophosphate (5'-IMP) and glutathione (GSH), were studied at pH 7.4 and 37 °C. The binding of the heterometallic bridged cis- or trans-Pt(II)-Zn(II) complexes to calf thymus DNA (CT-DNA) was studied by UV absorption and fluorescence emission spectroscopy and molecular docking. The results indicated that the complexes bind strongly to DNA, through groove binding, hydrogen bonds, and hydrophobic or electrostatic interaction. The possible in vitro DNA protective effect of cis- and trans-Pt-L-Zn complexes has shown that C3 had significant dose-dependent DNA-protective effect and the same ability to inhibit peroxyl as well as hydroxyl radicals. Antiproliferative effect of the complexes, mRNA expression of apoptosis and repair-related genes after treatment in cancer cells indicated that newly synthesized C2 exhibited highly selective cytotoxicity toward colon carcinoma HCT116 cells. Only treatment with trans analog C2 induced effect similar to the typical DNA damaging agent such as cisplatin, characterized by p53 mediated cell response, cell cycle arrest and certain induction of apoptotic related genes. Both cis- and trans-isomers C1 and C2 showed potency to elicit expression of PARP1 mRNA and in vitro DNA binding.
Collapse
Affiliation(s)
- Tanja V Soldatović
- Department of Natural-Mathematical Sciences, State University of Novi Pazar, Vuka Karadžića bb, Novi Pazar 36300, Serbia.
| | - Biljana Šmit
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, Kragujevac 34000, Serbia
| | - Emina M Mrkalić
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, Kragujevac 34000, Serbia
| | - Sanja Lj Matić
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, Kragujevac 34000, Serbia
| | - Ratomir M Jelić
- Faculty of Medical Sciences, Department of Pharmacy, University of Kragujevac, Svetozara Markovića 69, Kragujevac 34000, Serbia
| | - Marina Ćendić Serafinović
- Faculty of Science, Department of Chemistry, University of Kragujevac, Radoja Domanovića 12, Kragujevac 34000, Serbia
| | - Nevenka Gligorijević
- Institute for Oncology and Radiology of Serbia, Pasterova 14, Belgrade 11000, Serbia
| | - Milena Čavić
- Institute for Oncology and Radiology of Serbia, Pasterova 14, Belgrade 11000, Serbia
| | - Sandra Aranđelović
- Institute for Oncology and Radiology of Serbia, Pasterova 14, Belgrade 11000, Serbia
| | - Sanja Grgurić-Šipka
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade 11000, Serbia.
| |
Collapse
|
8
|
Li Y, Azmi AS, Mohammad RM. Deregulated transcription factors and poor clinical outcomes in cancer patients. Semin Cancer Biol 2022; 86:122-134. [PMID: 35940398 DOI: 10.1016/j.semcancer.2022.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/22/2022] [Accepted: 08/04/2022] [Indexed: 01/27/2023]
Abstract
Transcription factors are a group of proteins, which possess DNA-binding domains, bind to DNA strands of promoters or enhancers, and initiate transcription of genes with cooperation of RNA polymerase and other co-factors. They play crucial roles in regulating transcription during embryogenesis and development. Their physiological status in different cell types is also important to maintain cellular homeostasis. Therefore, any deregulation of transcription factors will lead to the development of cancer cells and tumor progression. Based on their functions in cancer cells, transcription factors could be either oncogenic or tumor suppressive. Furthermore, transcription factors have been shown to modulate cancer stem cells, epithelial-mesenchymal transition (EMT) and drug response; therefore, measuring deregulated transcription factors is hypothesized to predict treatment outcomes of patients with cancers and targeting deregulated transcription factors could be an encouraging strategy for cancer therapy. Here, we summarize the current knowledge of major deregulated transcription factors and their effects on causing poor clinical outcome of patients with cancer. The information presented here will help to predict the prognosis and drug response and to design novel drugs and therapeutic strategies for the treatment of cancers by targeting deregulated transcription factors.
Collapse
Affiliation(s)
- Yiwei Li
- Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Asfar S Azmi
- Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ramzi M Mohammad
- Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|