1
|
Kim H, Moon S, Kim M, Oh H, Park J, Kim S, Yoo T, Kim JY, Kim Y, Kim YM, Choi YK. Upregulation of astrocytic mitochondrial functions via Korean red ginseng-induced CREB-BK α-HIF-1 α axis through L-type Ca 2+ channel subunits α1C and β4. J Cereb Blood Flow Metab 2025:271678X251332760. [PMID: 40314209 PMCID: PMC12048403 DOI: 10.1177/0271678x251332760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/28/2025] [Accepted: 03/20/2025] [Indexed: 05/03/2025]
Abstract
Korean red ginseng extract (KRGE) enhances astrocytic functions through hypoxia-inducible factor-1α (HIF-1α). Astrocytic Ca2+ influx through L-type Ca2+ channels (LTCCs) facilitates neurovascular communication, while the large-conductance Ca2+- and voltage-activated K+ (BK) channel mediates K+ efflux for vasodilation. However, the role of LTCC subunits in KRGE-mediated BKα and HIF-1α expression in astrocytes remains unclear. This study aimed to investigate the effects of KRGE on LTCC subunits, cytosolic Ca2+ influx, and BKα and HIF-1α induction in human astrocytes. The levels of BKα, LTCCs, and HIF-1α were analyzed in KRGE-treated mouse brain tissue using immunohistochemistry. Human astrocytes treated with an LTCC agonist exhibited increased BKα and HIF-1α protein levels. Similarly, KRGE increased the levels of LTCC subunits α1 C and β4, cytosolic Ca2+ influx, BKα, and HIF-1α. Moreover, knockdown of either α1 C or β4 attenuated KRGE-induced increases in Ca2+ influx and HIF-1α levels. Notably, their combined knockdown synergistically reduced KRGE-induced increases in BKα levels, mitochondrial mass, ATP production, and O2 consumption. The corpus callosum astrocytes of KRGE-treated mice exhibited increased levels of α1 C and β4, BKα, HIF-1α, and cAMP-response element binding protein (CREB). Collectively, these findings suggest that KRGE induced astrocytic BKα and HIF-1α expression via LTCC-mediated Ca2+ influx and subsequent CREB activation.
Collapse
Affiliation(s)
- Hyungsu Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Sunhong Moon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Minsu Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Hyungkeun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Jinhong Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Suji Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Taehyung Yoo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Ji-Yoon Kim
- Department of Anesthesiology and Pain Medicine, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Yonghee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Yoon Kyung Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Yaghoobi A, Rezaee M, Hedayati N, Keshavarzmotamed A, Khalilzad MA, Russel R, Asemi Z, Rajabi Moghadam H, Mafi A. Insight into the cardioprotective effects of melatonin: shining a spotlight on intercellular Sirt signaling communication. Mol Cell Biochem 2025; 480:799-823. [PMID: 38980593 DOI: 10.1007/s11010-024-05002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/25/2024] [Indexed: 07/10/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death and illness worldwide. While there have been advancements in the treatment of CVDs using medication and medical procedures, these conventional methods have limited effectiveness in halting the progression of heart diseases to complete heart failure. However, in recent years, the hormone melatonin has shown promise as a protective agent for the heart. Melatonin, which is secreted by the pineal gland and regulates our sleep-wake cycle, plays a role in various biological processes including oxidative stress, mitochondrial function, and cell death. The Sirtuin (Sirt) family of proteins has gained attention for their involvement in many cellular functions related to heart health. It has been well established that melatonin activates the Sirt signaling pathways, leading to several beneficial effects on the heart. These include preserving mitochondrial function, reducing oxidative stress, decreasing inflammation, preventing cell death, and regulating autophagy in cardiac cells. Therefore, melatonin could play crucial roles in ameliorating various cardiovascular pathologies, such as sepsis, drug toxicity-induced myocardial injury, myocardial ischemia-reperfusion injury, hypertension, heart failure, and diabetic cardiomyopathy. These effects may be partly attributed to the modulation of different Sirt family members by melatonin. This review summarizes the existing body of literature highlighting the cardioprotective effects of melatonin, specifically the ones including modulation of Sirt signaling pathways. Also, we discuss the potential use of melatonin-Sirt interactions as a forthcoming therapeutic target for managing and preventing CVDs.
Collapse
Affiliation(s)
- Alireza Yaghoobi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malihe Rezaee
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | | | | | - Reitel Russel
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hasan Rajabi Moghadam
- Department of Cardiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
3
|
Deng L, Ran H, Yang D, Wang Z, Zhao P, Huang H, Wu Y, Zhang P. TOM40 as a prognostic oncogene for oral squamous cell carcinoma prognosis. BMC Cancer 2025; 25:92. [PMID: 39815211 PMCID: PMC11737269 DOI: 10.1186/s12885-024-13417-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/31/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND To investigate the role of the translocase of the outer mitochondrial membrane 40 (TOM40) in oral squamous cell carcinoma (OSCC) with the aim of identifying new biomarkers or potential therapeutic targets. METHODS TOM40 expression level in OSCC was evaluated using datasets downloaded from The Cancer Genome Atlas (TCGA), as well as clinical data. The correlation between TOM40 expression level and the clinicopathological parameters and survival were analyzed in TCGA. The signaling pathways associated with TOM40 were identified through gene set enrichment analysis. A network of genes co-expressed with TOM40 was constructed and functionally annotated by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The immune infiltration pattern in OSCC was analyzed in the TCGA-OSCC cohort using the CIBERSORT algorithm. Clinically significant factors of OSCC were screened through the expression levels of TOM40 and a clinically relevant nomogram was constructed. The TCGA-OSCC cohort was divided into the TOM40high and TOM40low groups and the correlation between TOM40 expression level and the sensitivity to frequently used chemotherapeutic drugs was evaluated. CCK-8 and colony formation assays were applied to determine the cell growth. RESULTS TOM40 was highly expressed in OSCC tissues and correlated negatively with the overall survival (P < 0.05). Patients with high TOM40 expression level showed worse prognosis. Furthermore, GO and KEGG enrichment analyses of the differentially expressed genes related to TOM40 showed that these genes are mainly associated with immunity and tumorigenesis. Immunological infiltration analysis has found that the expression levels of TOM40 are correlated with the proportions of several immune cells. Moreover, we found that TOM40 knockdown inhibited cell growth in OSCC cell lines. CONCLUSIONS Our results uncovered that TOM40 is a reliable prognostic marker and therapeutic target in OSCC.
Collapse
Affiliation(s)
- Lifei Deng
- Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, 330029, China
| | - Hong Ran
- Department of Otolaryngology-Head & Neck Surgery, Head and Neck Surgical Center, West China Hospital, Sichuan University, Chengdu, 610044, China
- Department of Otorhinolaryngology, Shenzhen Key Laboratory of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital, Shenzhen Institute of Otorhinolaryngology, No. 3004 Longgang Avenue, Shenzhen, Guangdong, China
| | - Dunhui Yang
- Department of Otorhinolaryngology, Shenzhen Key Laboratory of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital, Shenzhen Institute of Otorhinolaryngology, No. 3004 Longgang Avenue, Shenzhen, Guangdong, China
- Department of Graduate and Scientific Research, Zunyi Medical University, Zunyi, 563000, China
| | - Zhen Wang
- Department of Otorhinolaryngology, Shenzhen Key Laboratory of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital, Shenzhen Institute of Otorhinolaryngology, No. 3004 Longgang Avenue, Shenzhen, Guangdong, China
| | - Peng Zhao
- Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, 330029, China
| | - Hengjie Huang
- School of Computer Science and Engineering, Yulin Normal University, No. 1303 Jiaoyu East Road, Yulin, 537000, Guangxi, China.
| | - Yongjin Wu
- Department of Otorhinolaryngology, Shenzhen Key Laboratory of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital, Shenzhen Institute of Otorhinolaryngology, No. 3004 Longgang Avenue, Shenzhen, Guangdong, China.
| | - Peng Zhang
- Department of Otorhinolaryngology, Shenzhen Key Laboratory of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital, Shenzhen Institute of Otorhinolaryngology, No. 3004 Longgang Avenue, Shenzhen, Guangdong, China.
| |
Collapse
|
4
|
Wang G, Liu D, Leng J, Jin D, Wang Q, Wang H, Bu Y, Wang F, Hui Y. TMCO1 regulates energy metabolism and mitochondrial function of hepatocellular carcinoma cells through TOMM20, affecting the growth of subcutaneous graft tumors and infiltration of CAFs. Biochem Cell Biol 2025; 103:1-15. [PMID: 39566034 DOI: 10.1139/bcb-2024-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024] Open
Abstract
This study mainly shows the role of endoplasmic reticulum transmembrane and coiled coil domains 1 (TMCO1) in the regulatory mechanism of hepatocellular carcinoma (HCC). Invasion and migration capacity were detected by Transwell and wound healing after TMCO1 and TOMM20 overexpression and knockdown, and mitochondrial function was detected through reactive oxygen species (ROS), mitochondrial permeability transition pore (mPTP), mitochondrial membrane potential (MMP), and ATP production. A model of subcutaneous tumor formation in nude mice was established to detect the effect of TMCO1 on tumor formation. The results showed that overexpression of TMCO1 significantly promoted HCC cell metastasis, promoted cell proliferation and ATP production, inhibited cell apoptosis, mPTP opening and ROS production, mediated the increase of MMP level and cytoskeletal remodeling. However, knocking down TMCO1 can have the opposite effect. More importantly, knocking down TOMM20 can block the regulation effect of TMCO1, and TOMM20 overexpression can alleviate the inhibitory effect of knocking down TMCO1 on the development of liver cancer cells. In animal models, knockdown of TMCO1 expression significantly inhibited the growth of subcutaneous implant tumors. This suggests that TMCO1 may be a potential and valuable therapeutic target for liver cancer.
Collapse
Affiliation(s)
- Genwang Wang
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Di Liu
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Junzhi Leng
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Dong Jin
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Qi Wang
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Hao Wang
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Yang Bu
- Department of Hepatobiliary Surgery, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750002, Ningxia, China
| | - Feng Wang
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Yongfeng Hui
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| |
Collapse
|
5
|
Morla-Barcelo PM, Melguizo-Salom L, Roca P, Nadal-Serrano M, Sastre-Serra J, Torrens-Mas M. Obesity-Related Inflammation Reduces Treatment Sensitivity and Promotes Aggressiveness in Luminal Breast Cancer Modulating Oxidative Stress and Mitochondria. Biomedicines 2024; 12:2813. [PMID: 39767718 PMCID: PMC11673959 DOI: 10.3390/biomedicines12122813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Obesity, characterized by the secretion of several pro-inflammatory cytokines and hormones, significantly increases the risk of developing breast cancer and is associated with poorer outcomes. Mitochondrial and antioxidant status are crucial in both tumor progression and treatment response. METHODS This study investigates the impact of an ELIT cocktail (17β-estradiol, leptin, IL-6, and TNFα), which simulates the obesity-related inflammation condition in postmenopausal women, using a 3D culture model. We examined the effects of ELIT exposure on mammosphere formation, oxidative stress and mitochondrial markers, and treatment sensitivity in luminal (T47D, MCF7) and triple-negative (MDA-MB-231) breast cancer cell lines. After that, 3D-derived cells were re-cultured under adherent conditions focusing on the mechanisms leading to dissemination and drug sensitivity. RESULTS Our results indicated that ELIT condition significantly increased mammosphere formation in luminal breast cancer cell lines (from 3.26% to 6.38% in T47D cell line and 0.68% to 2.32% in MCF7 cell line) but not in the triple-negative MDA-MB-231 cell line. Further analyses revealed a significant decrease in mitochondrial and antioxidant-related markers, particularly in the T47D cell line, where higher levels of ESR2, three-fold increased by ELIT exposure, may play a critical role. Importantly, 3D-derived T47D cells exposed to ELIT showed reduced sensitivity to tamoxifen and paclitaxel, avoiding a 34.2% and 75.1% reduction in viability, respectively. Finally, through in silico studies, we identified specific biomarkers, including TOMM20, NFE2L2, CAT, and ESR2, correlated with poor prognosis in luminal breast cancer. CONCLUSIONS Taken together, our findings suggest that antioxidant and mitochondrial markers are key factors that reduce treatment sensitivity in obesity-related luminal breast cancer. The identified biomarkers may serve as valuable tools for the prognosis and development of more effective therapies in these patients.
Collapse
Affiliation(s)
- Pere Miquel Morla-Barcelo
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma, Islas Baleares, Spain; (P.M.M.-B.); (L.M.-S.); (P.R.); (M.N.-S.); (M.T.-M.)
- Institut d’Investigació Sanitària de les Illes Balears (IdISBa), 07120 Palma, Islas Baleares, Spain
| | - Lucas Melguizo-Salom
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma, Islas Baleares, Spain; (P.M.M.-B.); (L.M.-S.); (P.R.); (M.N.-S.); (M.T.-M.)
- Institut d’Investigació Sanitària de les Illes Balears (IdISBa), 07120 Palma, Islas Baleares, Spain
| | - Pilar Roca
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma, Islas Baleares, Spain; (P.M.M.-B.); (L.M.-S.); (P.R.); (M.N.-S.); (M.T.-M.)
- Institut d’Investigació Sanitària de les Illes Balears (IdISBa), 07120 Palma, Islas Baleares, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mercedes Nadal-Serrano
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma, Islas Baleares, Spain; (P.M.M.-B.); (L.M.-S.); (P.R.); (M.N.-S.); (M.T.-M.)
- Institut d’Investigació Sanitària de les Illes Balears (IdISBa), 07120 Palma, Islas Baleares, Spain
| | - Jorge Sastre-Serra
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma, Islas Baleares, Spain; (P.M.M.-B.); (L.M.-S.); (P.R.); (M.N.-S.); (M.T.-M.)
- Institut d’Investigació Sanitària de les Illes Balears (IdISBa), 07120 Palma, Islas Baleares, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Margalida Torrens-Mas
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma, Islas Baleares, Spain; (P.M.M.-B.); (L.M.-S.); (P.R.); (M.N.-S.); (M.T.-M.)
- Institut d’Investigació Sanitària de les Illes Balears (IdISBa), 07120 Palma, Islas Baleares, Spain
| |
Collapse
|
6
|
Su J, Tian X, Wang Z, Yang J, Sun S, Sui SF. Structure of the intact Tom20 receptor in the human translocase of the outer membrane complex. PNAS NEXUS 2024; 3:pgae269. [PMID: 39071881 PMCID: PMC11273160 DOI: 10.1093/pnasnexus/pgae269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
The translocase of the outer membrane (TOM) complex serves as the main gate for preproteins entering mitochondria and thus plays a pivotal role in sustaining mitochondrial stability. Precursor proteins, featuring amino-terminal targeting signals (presequences) or internal targeting signals, are recognized by the TOM complex receptors Tom20, Tom22, and Tom70, and then translocated into mitochondria through Tom40. By using chemical cross-linking to stabilize Tom20 in the TOM complex, this study unveils the structure of the human TOM holo complex, encompassing the intact Tom20 component, at a resolution of approximately 6 Å by cryo-electron microscopy. Our structure shows the TOM holo complex containing only one Tom20 subunit, which is located right at the center of the complex and stabilized by extensive interactions with Tom22, Tom40, and Tom6. Based on the structure, we proposed a possible translocation mode of TOM complex, by which different receptors could work simultaneously to ensure that the preproteins recognized by them are all efficiently translocated into the mitochondria.
Collapse
Affiliation(s)
- Jiayue Su
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xuyang Tian
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ziyi Wang
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiawen Yang
- School of Life Sciences, Cryo-EM Center, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- School of Life Sciences, Cryo-EM Center, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| |
Collapse
|
7
|
Di Stolfo G, Mastroianno S, Soldato N, Massaro RS, De Luca G, Seripa D, Urbano M, Gravina C, Greco A, Siena P, Ciccone MM, Guaricci AI, Forleo C, Carella M, Potenza DR. The Role of TOMM40 in Cardiovascular Mortality and Conduction Disorders: An Observational Study. J Clin Med 2024; 13:3177. [PMID: 38892888 PMCID: PMC11172937 DOI: 10.3390/jcm13113177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Aims: TOMM40 single nucleotide polymorphism (SNP) rs2075650 consists of allelic variation c.275-31A > G and it has been linked to Alzheimer disease, apolipoprotein and cholesterol levels and other risk factors. However, data on its role in cardiovascular disorders are lacking. The first aim of the study is to evaluate mortality according to TOMM40 genotype in a cohort of selected patients affected by advanced atherosclerosis. Second aim was to investigate the relationship between Xg and AA alleles and the presence of conduction disorders and implantation of defibrillator (ICD) or pacemaker (PM) in our cohort. Materials and Methods: We enrolled 276 patients (mean age 70.16 ± 7.96 years) affected by hemodynamic significant carotid stenosis and/or ischemia of the lower limbs of II or III stadium Fontaine. We divided the population into two groups according to the genotype (Xg and AA carriers). We evaluated several electrocardiographic and echocardiographic parameters, including heart rate, rhythm, presence of right and left bundle branch block (LBBB and RBBB), PR interval, QRS duration and morphology, QTc interval, and left ventricular ejection fraction (LVEF). We clinically followed these patients for 82.53 ± 30.02 months and we evaluated the incidence of cardiovascular events, number of deaths and PM/ICD implantations. Results: We did not find a difference in total mortality between Xg and AA carriers (16.3 % vs. 19.4%; p = 0.62). However, we found a higher mortality for fatal cardiovascular events in Xg carriers (8.2% vs. 4.4%; HR = 4.53, 95% CI 1.179-17.367; p = 0.04) with respect to AA carriers. We noted a higher percentage of LBBB in Xg carriers (10.2% vs. 3.1%, p = 0.027), which was statistically significant. Presence of right bundle branch block (RBBB) was also higher in Xg (10.2% vs. 4.4%, p = 0.10), but without reaching statistically significant difference compared to AA patients. We did not observe significant differences in heart rate, presence of sinus rhythm, number of device implantations, PR and QTc intervals, QRS duration and LVEF between the two groups. At the time of enrolment, we observed a tendency for device implant in Xg carriers at a younger age compared to AA carriers (58.50 ± 0.71 y vs. 72.14 ± 11.11 y, p = 0.10). During the follow-up, we noted no statistical difference for new device implantations in Xg respect to AA carriers (8.2% vs. 3.5%; HR = 2.384, 95% CI 0.718-7.922; p = 0.156). The tendency to implant Xg at a younger age compared to AA patients was confirmed during follow-up, but without reaching a significant difference(69.50 ± 2.89 y vs. 75.63 ± 8.35 y, p = 0.074). Finally, we pointed out that Xg carriers underwent device implantation 7.27 ± 4.43 years before AA (65.83 ± 6.11 years vs. 73.10 ± 10.39 years) and that difference reached a statistically significant difference (p = 0.049) when we considered all patients, from enrollment to follow-up. Conclusions: In our study we observed that TOMM40 Xg patients affected by advanced atherosclerosis have a higher incidence of developing fatal cardiovascular events, higher incidence of LBBB and an earlier age of PM or ICD implantations, as compared to AA carriers. Further studies will be needed to evaluate the genomic contribution of TOMM40 SNPs to cardiovascular deaths and cardiac conduction diseases.
Collapse
Affiliation(s)
- Giuseppe Di Stolfo
- Cardiovascular Department, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy; (S.M.); (R.S.M.); (G.D.L.); (D.R.P.)
| | - Sandra Mastroianno
- Cardiovascular Department, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy; (S.M.); (R.S.M.); (G.D.L.); (D.R.P.)
| | - Nicolò Soldato
- University Cardiology Unit, Department of Interdisciplinary Medicine, Policlinic University Hospital, 70124 Bari, BA, Italy; (N.S.); (P.S.); (M.M.C.); (A.I.G.); (C.F.)
| | - Raimondo Salvatore Massaro
- Cardiovascular Department, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy; (S.M.); (R.S.M.); (G.D.L.); (D.R.P.)
| | - Giovanni De Luca
- Cardiovascular Department, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy; (S.M.); (R.S.M.); (G.D.L.); (D.R.P.)
| | - Davide Seripa
- Complex Structure of Geriatrics, Medical Sciences Department, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy; (D.S.); (M.U.); (C.G.); (A.G.)
| | - Maria Urbano
- Complex Structure of Geriatrics, Medical Sciences Department, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy; (D.S.); (M.U.); (C.G.); (A.G.)
| | - Carolina Gravina
- Complex Structure of Geriatrics, Medical Sciences Department, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy; (D.S.); (M.U.); (C.G.); (A.G.)
| | - Antonio Greco
- Complex Structure of Geriatrics, Medical Sciences Department, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy; (D.S.); (M.U.); (C.G.); (A.G.)
| | - Paola Siena
- University Cardiology Unit, Department of Interdisciplinary Medicine, Policlinic University Hospital, 70124 Bari, BA, Italy; (N.S.); (P.S.); (M.M.C.); (A.I.G.); (C.F.)
| | - Marco Matteo Ciccone
- University Cardiology Unit, Department of Interdisciplinary Medicine, Policlinic University Hospital, 70124 Bari, BA, Italy; (N.S.); (P.S.); (M.M.C.); (A.I.G.); (C.F.)
| | - Andrea Igoren Guaricci
- University Cardiology Unit, Department of Interdisciplinary Medicine, Policlinic University Hospital, 70124 Bari, BA, Italy; (N.S.); (P.S.); (M.M.C.); (A.I.G.); (C.F.)
| | - Cinzia Forleo
- University Cardiology Unit, Department of Interdisciplinary Medicine, Policlinic University Hospital, 70124 Bari, BA, Italy; (N.S.); (P.S.); (M.M.C.); (A.I.G.); (C.F.)
| | - Massimo Carella
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy;
| | - Domenico Rosario Potenza
- Cardiovascular Department, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy; (S.M.); (R.S.M.); (G.D.L.); (D.R.P.)
| |
Collapse
|
8
|
Reed AL, Mitchell W, Alexandrescu AT, Alder NN. Interactions of amyloidogenic proteins with mitochondrial protein import machinery in aging-related neurodegenerative diseases. Front Physiol 2023; 14:1263420. [PMID: 38028797 PMCID: PMC10652799 DOI: 10.3389/fphys.2023.1263420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Most mitochondrial proteins are targeted to the organelle by N-terminal mitochondrial targeting sequences (MTSs, or "presequences") that are recognized by the import machinery and subsequently cleaved to yield the mature protein. MTSs do not have conserved amino acid compositions, but share common physicochemical properties, including the ability to form amphipathic α-helical structures enriched with basic and hydrophobic residues on alternating faces. The lack of strict sequence conservation implies that some polypeptides can be mistargeted to mitochondria, especially under cellular stress. The pathogenic accumulation of proteins within mitochondria is implicated in many aging-related neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's diseases. Mechanistically, these diseases may originate in part from mitochondrial interactions with amyloid-β precursor protein (APP) or its cleavage product amyloid-β (Aβ), α-synuclein (α-syn), and mutant forms of huntingtin (mHtt), respectively, that are mediated in part through their associations with the mitochondrial protein import machinery. Emerging evidence suggests that these amyloidogenic proteins may present cryptic targeting signals that act as MTS mimetics and can be recognized by mitochondrial import receptors and transported into different mitochondrial compartments. Accumulation of these mistargeted proteins could overwhelm the import machinery and its associated quality control mechanisms, thereby contributing to neurological disease progression. Alternatively, the uptake of amyloidogenic proteins into mitochondria may be part of a protein quality control mechanism for clearance of cytotoxic proteins. Here we review the pathomechanisms of these diseases as they relate to mitochondrial protein import and effects on mitochondrial function, what features of APP/Aβ, α-syn and mHtt make them suitable substrates for the import machinery, and how this information can be leveraged for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Ashley L. Reed
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Wayne Mitchell
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Andrei T. Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Nathan N. Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
9
|
Yang NV, Rogers S, Guerra R, Pagliarini DJ, Theusch E, Krauss RM. TOMM40 and TOMM22 of the Translocase Outer Mitochondrial Membrane Complex rescue statin-impaired mitochondrial dynamics, morphology, and mitophagy in skeletal myotubes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.24.546411. [PMID: 37425714 PMCID: PMC10327005 DOI: 10.1101/2023.06.24.546411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Background Statins are the drugs most commonly used for lowering plasma low-density lipoprotein (LDL) cholesterol levels and reducing cardiovascular disease risk. Although generally well tolerated, statins can induce myopathy, a major cause of non-adherence to treatment. Impaired mitochondrial function has been implicated as a cause of statin-induced myopathy, but the underlying mechanism remains unclear. We have shown that simvastatin downregulates transcription of TOMM40 and TOMM22 , genes that encode major subunits of the translocase of outer mitochondrial membrane (TOM) complex which is responsible for importing nuclear-encoded proteins and maintaining mitochondrial function. We therefore investigated the role of TOMM40 and TOMM22 in mediating statin effects on mitochondrial function, dynamics, and mitophagy. Methods Cellular and biochemical assays and transmission electron microscopy were used to investigate effects of simvastatin and TOMM40 and TOMM22 expression on measures of mitochondrial function and dynamics in C2C12 and primary human skeletal cell myotubes. Results Knockdown of TOMM40 and TOMM22 in skeletal cell myotubes impaired mitochondrial oxidative function, increased production of mitochondrial superoxide, reduced mitochondrial cholesterol and CoQ levels, disrupted mitochondrial dynamics and morphology, and increased mitophagy, with similar effects resulting from simvastatin treatment. Overexpression of TOMM40 and TOMM22 in simvastatin-treated muscle cells rescued statin effects on mitochondrial dynamics, but not on mitochondrial function or cholesterol and CoQ levels. Moreover, overexpression of these genes resulted in an increase in number and density of cellular mitochondria. Conclusion These results confirm that TOMM40 and TOMM22 are central in regulating mitochondrial homeostasis and demonstrate that downregulation of these genes by statin treatment mediates disruption of mitochondrial dynamics, morphology, and mitophagy, effects that may contribute to statin-induced myopathy. GRAPHICAL ABSTRACT
Collapse
|
10
|
Ran H, Zhang J, Zeng X, Wang Z, Liu P, Kang C, Qiu S, Zeng X, Zhang P. TOM40 regulates the progression of nasopharyngeal carcinoma through ROS-mediated AKT/mTOR and p53 signaling. Discov Oncol 2023; 14:109. [PMID: 37351718 DOI: 10.1007/s12672-023-00721-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a prevalent cancer in Southern China, North Africa, and Southeast Asia. The translocase of the outer membrane (TOM) 40 is a transporter of mitochondrial proteins, and is involved in ovarian cancer cell growth. However, its role in the progression of NPC is still unclear. We found that TOM40 levels were upregulated in NPC tissues and multiple NPC cell lines. In addition, high TOM40 expression in the tumor tissues was associated with poor overall survival and disease specific survival. TOM40 knockdown in the NPC cell lines inhibited their proliferation in vitro and in vivo. Furthermore, TOM40 silencing also increased intracellular production of reactive oxygen species (ROS) and decreased mitochondrial membrane potential (MMP). Mechanistically, the anti-tumor effects of TOM40 silencing were dependent on the inhibition of AKT/mTOR signaling and activation of p53 signaling. To summarize, TOM40 mediates NPC progression through ROS-mediated AKT/mTOR and p53 signaling. Our findings highlight the potential of TOM40 as a therapeutic target for NPC.
Collapse
Affiliation(s)
- Hong Ran
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, China
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, No. 3004 Longgang Avenue, Shenzhen, Guangdong, China
| | - Jin Zhang
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, China
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, No. 3004 Longgang Avenue, Shenzhen, Guangdong, China
- Department of Otorhinolaryngology, The Second People's Hospital of Yibin, Yibin, Sichuan, China
| | - Xiaoxia Zeng
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, No. 3004 Longgang Avenue, Shenzhen, Guangdong, China
| | - Zhen Wang
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, No. 3004 Longgang Avenue, Shenzhen, Guangdong, China
| | - Peng Liu
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, China
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, No. 3004 Longgang Avenue, Shenzhen, Guangdong, China
| | - Chenglin Kang
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, China
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, No. 3004 Longgang Avenue, Shenzhen, Guangdong, China
| | - Shuqi Qiu
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, China.
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, No. 3004 Longgang Avenue, Shenzhen, Guangdong, China.
| | - Xianhai Zeng
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, China.
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, No. 3004 Longgang Avenue, Shenzhen, Guangdong, China.
| | - Peng Zhang
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, China.
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, No. 3004 Longgang Avenue, Shenzhen, Guangdong, China.
| |
Collapse
|
11
|
Kim H, Moon S, Lee D, Park J, Kim CH, Kim YM, Choi YK. Korean Red Ginseng-Induced SIRT3 Promotes the Tom22-HIF-1α Circuit in Normoxic Astrocytes. Cells 2023; 12:1512. [PMID: 37296633 PMCID: PMC10252242 DOI: 10.3390/cells12111512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Astrocytes play a key role in brain functioning by providing energy to neurons. Increased astrocytic mitochondrial functions by Korean red ginseng extract (KRGE) have been investigated in previous studies. KRGE administration induces hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) in astrocytes in the adult mouse brain cortex. VEGF expression can be controlled by transcription factors, such as the HIF-1α and estrogen-related receptor α (ERRα). However, the expression of ERRα is unchanged by KRGE in astrocytes of the mouse brain cortex. Instead, sirtuin 3 (SIRT3) expression is induced by KRGE in astrocytes. SIRT3 is a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase that resides in the mitochondria and maintains mitochondrial homeostasis. Mitochondrial maintenance requires oxygen, and active mitochondria enhance oxygen consumption, resulting in hypoxia. The effects of SIRT3 on HIF-1α-mediated mitochondria functions induced by KRGE are not well established. We aimed to investigate the relationship between SIRT3 and HIF-1α in KRGE-treated normoxic astrocyte cells. Without changing the expression of the ERRα, small interfering ribonucleic acid targeted for SIRT3 in astrocytes substantially lowers the amount of KRGE-induced HIF-1α proteins. Reduced proline hydroxylase 2 (PHD2) expression restores HIF-1α protein levels in SIRT3-depleted astrocytes in normoxic cells treated with KRGE. The translocation of outer mitochondrial membranes 22 (Tom22) and Tom20 is controlled by the SIRT3-HIF-1α axis, which is activated by KRGE. KRGE-induced Tom22 increased oxygen consumption and mitochondrial membrane potential, as well as HIF-1α stability through PHD2. Taken together, in normoxic astrocytes, KRGE-induced SIRT3 activated the Tom22-HIF-1α circuit by increasing oxygen consumption in an ERRα-independent manner.
Collapse
Affiliation(s)
- Hyungsu Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.K.); (S.M.); (D.L.); (J.P.)
| | - Sunhong Moon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.K.); (S.M.); (D.L.); (J.P.)
| | - Dohyung Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.K.); (S.M.); (D.L.); (J.P.)
| | - Jinhong Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.K.); (S.M.); (D.L.); (J.P.)
- Department of Otorhinolaryngology-Head and Neck Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Republic of Korea;
| | - Chang-Hee Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Republic of Korea;
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Yoon Kyung Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.K.); (S.M.); (D.L.); (J.P.)
| |
Collapse
|
12
|
Cheng Y, Liu J, Fan H, Liu K, Zou H, You Z. Integrative analyses of a mitophagy-related gene signature for predicting prognosis in patients with uveal melanoma. Front Genet 2022; 13:1050341. [PMID: 36544483 PMCID: PMC9760814 DOI: 10.3389/fgene.2022.1050341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
We aimed to create a mitophagy-related risk model via data mining of gene expression profiles to predict prognosis in uveal melanoma (UM) and develop a novel method for improving the prediction of clinical outcomes. Together with clinical information, RNA-seq and microarray data were gathered from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. ConsensusClusterPlus was used to detect mitophagy-related subgroups. The genes involved with mitophagy, and the UM prognosis were discovered using univariate Cox regression analysis. In an outside population, a mitophagy risk sign was constructed and verified using least absolute shrinkage and selection operator (LASSO) regression. Data from both survival studies and receiver operating characteristic (ROC) curve analyses were used to evaluate model performance, a bootstrap method was used test the model. Functional enrichment and immune infiltration were examined. A risk model was developed using six mitophagy-related genes (ATG12, CSNK2B, MTERF3, TOMM5, TOMM40, and TOMM70), and patients with UM were divided into low- and high-risk subgroups. Patients in the high-risk group had a lower chance of living longer than those in the low-risk group (p < 0.001). The ROC test indicated the accuracy of the signature. Moreover, prognostic nomograms and calibration plots, which included mitophagy signals, were produced with high predictive performance, and the risk model was strongly associated with the control of immune infiltration. Furthermore, functional enrichment analysis demonstrated that several mitophagy subtypes may be implicated in cancer, mitochondrial metabolism, and immunological control signaling pathways. The mitophagy-related risk model we developed may be used to anticipate the clinical outcomes of UM and highlight the involvement of mitophagy-related genes as prospective therapeutic options in UM. Furthermore, our study emphasizes the essential role of mitophagy in UM.
Collapse
|
13
|
Choi YK. An Altered Neurovascular System in Aging-Related Eye Diseases. Int J Mol Sci 2022; 23:ijms232214104. [PMID: 36430581 PMCID: PMC9694120 DOI: 10.3390/ijms232214104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/13/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
The eye has a complex and metabolically active neurovascular system. Repeated light injuries induce aging and trigger age-dependent eye diseases. Damage to blood vessels is related to the disruption of the blood-retinal barrier (BRB), altered cellular communication, disrupted mitochondrial functions, and exacerbated aggregated protein accumulation. Vascular complications, such as insufficient blood supply and BRB disruption, have been suggested to play a role in glaucoma, age-related macular degeneration (AMD), and Alzheimer's disease (AD), resulting in neuronal cell death. Neuronal loss can induce vision loss. In this review, we discuss the importance of the neurovascular system in the eye, especially in aging-related diseases such as glaucoma, AMD, and AD. Beneficial molecular pathways to prevent or slow down retinal pathologic processes will also be discussed.
Collapse
Affiliation(s)
- Yoon Kyung Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
14
|
Jin P, Jiang J, Zhou L, Huang Z, Qin S, Chen H, Peng L, Zhang Z, Li B, Luo M, Zhang T, Ming H, Ding N, Li L, Xie N, Gao W, Zhang W, Nice EC, Wei Y, Huang C. Disrupting metformin adaptation of liver cancer cells by targeting the TOMM34/ATP5B axis. EMBO Mol Med 2022; 14:e16082. [PMID: 36321555 PMCID: PMC9728056 DOI: 10.15252/emmm.202216082] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 09/23/2022] [Accepted: 10/12/2022] [Indexed: 12/12/2022] Open
Abstract
Metformin, a well-known antidiabetic drug, has been repurposed for cancer treatment; however, recently observed drug resistance and tumor metastasis have questioned its further application. Here, we found that long-term metformin exposure led to metabolic adaptation of hepatocellular carcinoma (HCC) cells, which was characterized by an obvious epithelial-mesenchymal transition (EMT) phenotype and compensatory elevation of oxidative phosphorylation (OXPHOS). TOMM34, a translocase of the outer mitochondrial membrane, was upregulated to promote tumor metastasis in response to metformin-induced metabolic stress. Mechanistically, TOMM34 interacted with ATP5B to preserve F1 FO -ATPase activity, which conferred mitochondrial OXPHOS and ATP production. This metabolic preference for OXPHOS suggested a large requirement of energy supply by cancer cells to survive and spread in response to therapeutic stress. Notably, disturbing the interaction between TOMM34 and ATP5B using Gboxin, a specific OXPHOS inhibitor, increased sensitivity to metformin and suppressed tumor progression both in vitro and in vivo. Overall, this study demonstrates a molecular link of the TOMM34/ATP5B-ATP synthesis axis during metformin adaptation and provides promising therapeutic targets for metformin sensitization in cancer treatment.
Collapse
Affiliation(s)
- Ping Jin
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic MedicineSichuan UniversityChengduChina
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic MedicineSichuan UniversityChengduChina
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic MedicineSichuan UniversityChengduChina
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic MedicineSichuan UniversityChengduChina
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic MedicineSichuan UniversityChengduChina
| | - Hai‐Ning Chen
- Colorectal Cancer Center, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Liyuan Peng
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic MedicineSichuan UniversityChengduChina
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic MedicineSichuan UniversityChengduChina
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic MedicineSichuan UniversityChengduChina
| | - Maochao Luo
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic MedicineSichuan UniversityChengduChina
| | - Tingting Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic MedicineSichuan UniversityChengduChina
| | - Hui Ming
- West China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Ning Ding
- School of Basic Medical SciencesChengdu University of Traditional Chinese MedicineChengduChina
| | - Lei Li
- School of Basic Medical SciencesChengdu University of Traditional Chinese MedicineChengduChina
| | - Na Xie
- West China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Wei Gao
- Clinical Genetics LaboratoryAffiliated Hospital & Clinical Medical College of Chengdu UniversityChengduChina
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Edouard C Nice
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVicAustralia
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic MedicineSichuan UniversityChengduChina
| |
Collapse
|
15
|
Karbowski M, Oshima Y, Verhoeven N. Mitochondrial proteotoxicity: implications and ubiquitin-dependent quality control mechanisms. Cell Mol Life Sci 2022; 79:574. [PMID: 36308570 PMCID: PMC11803029 DOI: 10.1007/s00018-022-04604-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/04/2022] [Accepted: 10/17/2022] [Indexed: 11/27/2022]
Abstract
Through their role in energy generation and regulation of several vital pathways, including apoptosis and inflammation, mitochondria are critical for the life of eukaryotic organisms. Mitochondrial dysfunction is a major problem implicated in the etiology of many pathologies, including neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), diabetes, cardiovascular diseases, and many others. Proteotoxic stress, here defined as a reduction in bioenergetic activity induced by the accumulation of aberrant proteins in the mitochondria, is likely to be implicated in disease-linked mitochondrial and cellular decline. Various quality control pathways, such as mitochondrial unfolded protein response (mtUPR), the ubiquitin (Ub)-dependent degradation of aberrant mitochondrial proteins, and mitochondria-specific autophagy (mitophagy), respond to proteotoxic stress and eliminate defective proteins or dysfunctional mitochondria. This work provides a concise review of mechanisms by which disease-linked aberrant proteins affect mitochondrial function and an overview of mitochondrial quality control pathways that counteract mitochondrial proteotoxicity. We focus on mitochondrial quality control mechanisms relying on the Ub-mediated protein degradation, such as mitochondria-specific autophagy and the mitochondrial arm of the Ub proteasome system (UPS). We highlight the importance of a widening perspective of how these pathways protect mitochondria from proteotoxic stress to better understand mitochondrial proteotoxicity in overlapping pathophysiological pathways. Implications of these mechanisms in disease development are also briefly summarized.
Collapse
Affiliation(s)
- Mariusz Karbowski
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, 111 S. Penn St., Suite 104, Baltimore, MD, 21201, USA.
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA.
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Yumiko Oshima
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, 111 S. Penn St., Suite 104, Baltimore, MD, 21201, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nicolas Verhoeven
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, 111 S. Penn St., Suite 104, Baltimore, MD, 21201, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Moon S, Kim CH, Park J, Kim M, Jeon HS, Kim YM, Choi YK. Induction of BVR-A Expression by Korean Red Ginseng in Murine Hippocampal Astrocytes: Role of Bilirubin in Mitochondrial Function via the LKB1–SIRT1–ERRα Axis. Antioxidants (Basel) 2022; 11:antiox11091742. [PMID: 36139815 PMCID: PMC9496118 DOI: 10.3390/antiox11091742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 12/03/2022] Open
Abstract
The beneficial effects of Korean red ginseng extract (KRGE) on the central nervous system (CNS) have been reported. Among the CNS cells, astrocytes possess robust antioxidative properties and regenerative potential. Under physiological conditions, biliverdin reductase A (BVR-A) converts biliverdin (a heme oxygenase metabolite) into bilirubin, a major natural and potent antioxidant. We found that KRGE enhanced BVR-A in astrocytes in the fimbria region of the adult mouse hippocampus under physiological conditions. KRGE-induced BVR-A expression and subsequent bilirubin production were required for changes in mitochondrial membrane potential, mitochondrial mass, and oxidative phosphorylation through liver kinase B1 (LKB1), estrogen-related receptor α (ERRα), and sirtuin (SIRT1 and SIRT5) in astrocytes. However, BVR-A did not affect the KRGE-induced expression of AMP-activated protein kinase α (AMPKα). The KRGE-stimulated BVR-A–LKB1–SIRT1–ERRα pathway regulates the levels of mitochondria-localized proteins such as SIRT5, translocase of the outer mitochondrial membrane 20 (Tom20), Tom22, cytochrome c (Cyt c), and superoxide dismutase 2 (SOD2). Increased Tom20 expression in astrocytes of the hippocampal fimbria region was observed in KRGE-treated mice. KRGE-induced expression of Cyt c and SOD2 was associated with the Tom20/Tom22 complex. Taken together, KRGE-induced bilirubin production is required for enhanced astrocytic mitochondrial function in an LKB1-dependent and AMPKα-independent manner under physiological conditions.
Collapse
Affiliation(s)
- Sunhong Moon
- Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Chang-Hee Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Korea
| | - Jinhong Park
- Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Korea
| | - Minsu Kim
- Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Hui Su Jeon
- Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Yoon Kyung Choi
- Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
- Correspondence: ; Tel.: +82-2-450-0558
| |
Collapse
|
17
|
Structural basis of Tom20 and Tom22 cytosolic domains as the human TOM complex receptors. Proc Natl Acad Sci U S A 2022; 119:e2200158119. [PMID: 35733257 PMCID: PMC9245660 DOI: 10.1073/pnas.2200158119] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial preproteins synthesized in cytosol are imported into mitochondria by a multisubunit translocase of the outer membrane (TOM) complex. Functioned as the receptor, the TOM complex components, Tom 20, Tom22, and Tom70, recognize the presequence and further guide the protein translocation. Their deficiency has been linked with neurodegenerative diseases and cardiac pathology. Although several structures of the TOM complex have been reported by cryoelectron microscopy (cryo-EM), how Tom22 and Tom20 function as TOM receptors remains elusive. Here we determined the structure of TOM core complex at 2.53 Å and captured the structure of the TOM complex containing Tom22 and Tom20 cytosolic domains at 3.74 Å. Structural analysis indicates that Tom20 and Tom22 share a similar three-helix bundle structural feature in the cytosolic domain. Further structure-guided biochemical analysis reveals that the Tom22 cytosolic domain is responsible for binding to the presequence, and the helix H1 is critical for this binding. Altogether, our results provide insights into the functional mechanism of the TOM complex recognizing and transferring preproteins across the mitochondrial membrane.
Collapse
|
18
|
Haslem L, Hays JM, Hays FA. p66Shc in Cardiovascular Pathology. Cells 2022; 11:cells11111855. [PMID: 35681549 PMCID: PMC9180016 DOI: 10.3390/cells11111855] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/06/2023] Open
Abstract
p66Shc is a widely expressed protein that governs a variety of cardiovascular pathologies by generating, and exacerbating, pro-apoptotic ROS signals. Here, we review p66Shc’s connections to reactive oxygen species, expression, localization, and discuss p66Shc signaling and mitochondrial functions. Emphasis is placed on recent p66Shc mitochondrial function discoveries including structure/function relationships, ROS identity and regulation, mechanistic insights, and how p66Shc-cyt c interactions can influence p66Shc mitochondrial function. Based on recent findings, a new p66Shc mitochondrial function model is also put forth wherein p66Shc acts as a rheostat that can promote or antagonize apoptosis. A discussion of how the revised p66Shc model fits previous findings in p66Shc-mediated cardiovascular pathology follows.
Collapse
Affiliation(s)
- Landon Haslem
- Biochemistry and Molecular Biology Department, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.H.); (J.M.H.)
| | - Jennifer M. Hays
- Biochemistry and Molecular Biology Department, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.H.); (J.M.H.)
| | - Franklin A. Hays
- Biochemistry and Molecular Biology Department, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.H.); (J.M.H.)
- Stephenson Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Correspondence:
| |
Collapse
|
19
|
Ferreira JCB. Mitochondrial Dysfunction in Degenerative Diseases. Cells 2022; 11:cells11091546. [PMID: 35563852 PMCID: PMC9103981 DOI: 10.3390/cells11091546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
|
20
|
Sayyed UMH, Mahalakshmi R. Mitochondrial protein translocation machinery: From TOM structural biogenesis to functional regulation. J Biol Chem 2022; 298:101870. [PMID: 35346689 PMCID: PMC9052162 DOI: 10.1016/j.jbc.2022.101870] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 01/15/2023] Open
Abstract
The human mitochondrial outer membrane is biophysically unique as it is the only membrane possessing transmembrane β-barrel proteins (mitochondrial outer membrane proteins, mOMPs) in the cell. The most vital of the three mOMPs is the core protein of the translocase of the outer mitochondrial membrane (TOM) complex. Identified first as MOM38 in Neurospora in 1990, the structure of Tom40, the core 19-stranded β-barrel translocation channel, was solved in 2017, after nearly three decades. Remarkably, the past four years have witnessed an exponential increase in structural and functional studies of yeast and human TOM complexes. In addition to being conserved across all eukaryotes, the TOM complex is the sole ATP-independent import machinery for nearly all of the ∼1000 to 1500 known mitochondrial proteins. Recent cryo-EM structures have provided detailed insight into both possible assembly mechanisms of the TOM core complex and organizational dynamics of the import machinery and now reveal novel regulatory interplay with other mOMPs. Functional characterization of the TOM complex using biochemical and structural approaches has also revealed mechanisms for substrate recognition and at least five defined import pathways for precursor proteins. In this review, we discuss the discovery, recently solved structures, molecular function, and regulation of the TOM complex and its constituents, along with the implications these advances have for alleviating human diseases.
Collapse
Affiliation(s)
- Ulfat Mohd Hanif Sayyed
- Molecular Biophysics Laboratory, Indian Institute of Science Education and Research, Bhopal, India
| | | |
Collapse
|
21
|
Van Royen T, Rossey I, Sedeyn K, Schepens B, Saelens X. How RSV Proteins Join Forces to Overcome the Host Innate Immune Response. Viruses 2022; 14:v14020419. [PMID: 35216012 PMCID: PMC8874859 DOI: 10.3390/v14020419] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/10/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of severe acute lower respiratory tract infections in infants worldwide. Although several pattern recognition receptors (PRRs) can sense RSV-derived pathogen-associated molecular patterns (PAMPs), infection with RSV is typically associated with low to undetectable levels of type I interferons (IFNs). Multiple RSV proteins can hinder the host’s innate immune response. The main players are NS1 and NS2 which suppress type I IFN production and signalling in multiple ways. The recruitment of innate immune cells and the production of several cytokines are reduced by RSV G. Next, RSV N can sequester immunostimulatory proteins to inclusion bodies (IBs). N might also facilitate the assembly of a multiprotein complex that is responsible for the negative regulation of innate immune pathways. Furthermore, RSV M modulates the host’s innate immune response. The nuclear accumulation of RSV M has been linked to an impaired host gene transcription, in particular for nuclear-encoded mitochondrial proteins. In addition, RSV M might also directly target mitochondrial proteins which results in a reduced mitochondrion-mediated innate immune recognition of RSV. Lastly, RSV SH might prolong the viral replication in infected cells and influence cytokine production.
Collapse
Affiliation(s)
- Tessa Van Royen
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; (T.V.R.); (I.R.); (K.S.); (B.S.)
- Department for Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Iebe Rossey
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; (T.V.R.); (I.R.); (K.S.); (B.S.)
- Department for Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Koen Sedeyn
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; (T.V.R.); (I.R.); (K.S.); (B.S.)
- Department for Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Bert Schepens
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; (T.V.R.); (I.R.); (K.S.); (B.S.)
- Department for Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; (T.V.R.); (I.R.); (K.S.); (B.S.)
- Department for Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
- Correspondence:
| |
Collapse
|