1
|
Foy BD, Dupont C, Walker PV, Denman K, Engisch KL, Rich MM. Mechanisms underlying the distinct K+ dependencies of periodic paralysis. J Gen Physiol 2025; 157:e202413610. [PMID: 39903205 PMCID: PMC11792889 DOI: 10.1085/jgp.202413610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 11/01/2024] [Accepted: 01/16/2025] [Indexed: 02/06/2025] Open
Abstract
Patients with periodic paralysis have attacks of weakness precipitated by depolarization of muscle. Each form of periodic paralysis is associated with unique changes in serum K+ during attacks of weakness. In hypokalemic periodic paralysis (hypoKPP), the mutation-induced gating pore current causes weakness associated with low serum K+. In hyperkalemic periodic paralysis (hyperKPP), mutations increase a non-inactivating Na+ current (Na persistent or NaP), which causes weakness associated with elevation of extracellular K+. In Andersen-Tawil syndrome, mutations causing loss of Kir channel function cause weakness associated with either low or high K+. We developed a computer model to address two questions: (1) What mechanisms are responsible for the distinct K+ dependencies of muscle depolarization-induced weakness in the three forms of periodic paralysis? (2) Why does extracellular K+ become elevated during attacks of weakness in hyperKPP, reduced in hypoKPP, and both elevated and reduced in Andersen-Tawil syndrome? We experimentally tested the model assumptions about resting potential in normal K+ solution in hyperKPP and hypoKPP. Recreating the distinct K+ dependence of all three forms of periodic paralysis required including the K+ and voltage dependence of current through Kir channels, the extracellular K+ and intracellular Na+ dependence of the Na/K ATPase activity, and the distinct voltage dependencies of the gating pore current and NaP. A key factor determining whether muscle would depolarize was the direction of small net K+ and net Na+ fluxes, which altered ion concentrations over hours. Our findings may aid in development of novel therapy for diseases with dysregulation of muscle excitability.
Collapse
Affiliation(s)
- Brent D. Foy
- Department of Physics, Wright State University, Dayton, OH, USA
| | - Chris Dupont
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA
| | - Phillip V. Walker
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA
| | - Kirsten Denman
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA
| | - Kathrin L. Engisch
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA
| | - Mark M. Rich
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA
| |
Collapse
|
2
|
Aljameeli AM, Alsuwayt B, Bharati D, Gohri V, Mohite P, Singh S, Chidrawar V. Chloride channels and mast cell function: pioneering new frontiers in IBD therapy. Mol Cell Biochem 2025:10.1007/s11010-025-05243-w. [PMID: 40038149 DOI: 10.1007/s11010-025-05243-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/22/2025] [Indexed: 03/06/2025]
Abstract
Emerging evidence indicates that chloride channels (ClCs) significantly affect the pathogenesis of inflammatory bowel disease (IBD) through their regulatory roles in mast cell function and epithelial integrity. IBD, encompassing conditions such as Crohn's disease and ulcerative colitis, involves chronic inflammation of the gastrointestinal tract, where channels influence immune responses, fluid balance, and cellular signalling pathways essential for maintaining mucosal homeostasis. This review examines the specific roles of ClC in mast cells, focussing on the regulation of mast cell activation, degranulation, cytokine release, and immune cell recruitment in inflamed tissues. Key channels, including Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and ClC-2, are discussed in detail because of their involvement in maintaining intestinal epithelial barrier function, a critical factor disrupted in IBD. For example, CFTR facilitates chloride ion transport across epithelial cells, which is essential for mucosal hydration and maintenance of the intestinal barrier. Reduced CFTR function can compromise this barrier, permitting microbial antigens to penetrate the underlying tissues and triggering excessive immune responses. ClC-2, another chloride channel expressed in mast cells and epithelial cells, supports tight junction integrity, contributes to barrier function, and reduces intestinal permeability. Dysregulation of these channels is linked to altered mast cell activity and excessive release of pro-inflammatory mediators, exacerbating IBD symptoms, such as diarrhoea, abdominal pain, and tissue damage. Here, we review recent pharmacological strategies targeting ClC, including CFTR potentiators and ClC-2 activators, which show the potential to mitigate inflammatory responses. Additionally, experimental approaches for selective modulation of chloride channels in mast cells have been explored. Although targeting ClC offers promising therapeutic avenues, challenges remain in achieving specificity and minimizing side effects. This review highlights the therapeutic potential of Cl channel modulation in mast cells as a novel approach for IBD treatment, aiming to reduce inflammation and restore intestinal homeostasis in affected patients.
Collapse
Affiliation(s)
- Ahmed M Aljameeli
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al-Batin, Hafr Albatin, Saudi Arabia
| | - Bader Alsuwayt
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al-Batin, Hafr Albatin, Saudi Arabia
| | - Deepak Bharati
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, 401 404, India
| | - Vaishnavi Gohri
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, 401 404, India
| | - Popat Mohite
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, 401 404, India.
| | - Sudarshan Singh
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Vijay Chidrawar
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Deemed-to-University, Green Industrial Park, TSIIC, Polepally, Jadcherla, Hyderabad, Telangana, 509301, India.
| |
Collapse
|
3
|
Saltarella I, laghetti P, Dell’Atti S, Altamura C, Desaphy JF. Pharmacological therapy of non-dystrophic myotonias. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2025; 44:23-27. [PMID: 40183437 PMCID: PMC11978426 DOI: 10.36185/2532-1900-1026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 02/24/2025] [Indexed: 04/05/2025]
Abstract
Objectives Non-dystrophic myotonias (NDM) are rare diseases due to mutations in the voltage-gated sodium (Nav1.4) and chloride (ClC-1) channels expressed in skeletal muscle fibers. We provide an up-to-date review of pharmacological treatments available for NDM patients and experimental studies aimed at identifying alternative treatments and at better understanding the mechanisms of actions. Methods Literature research was performed using PubMed and ClinicalTrial.gov. Results Today, the sodium channel blocker mexiletine is the drug of choice for treatment of NDM. Alternative drugs include other sodium channel blockers and the carbonic anhydrase inhibitor acetazolamide. Preclinical studies suggest that activators of ClC-1 channels or voltage-gated potassium channels may have antimyotonic potential. Conclusions An increasing number of antimyotonic drugs would help to design a precision therapy to address personalized treatment of myotonic individuals.
Collapse
Affiliation(s)
| | | | | | | | - Jean-François Desaphy
- Section of Pharmacology, Department of Precision and Regenerative Medicine and Ionian Area, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
4
|
Mir R, Altemani FH, Algehainy NA, Alanazi MA, Elfaki I, Alsayed BA, Mir MM, Mustafa SK, Moawadh MS, Tayeb FJ, Alfaifi J, Alatawi SM, Alhiwety MS, Ullah MF. Identification of Novel Genomic Variants in COVID-19 Patients Using Whole-Exome Sequencing: Exploring the Plausible Targets of Functional Genomics. Biochem Genet 2024:10.1007/s10528-024-10970-8. [PMID: 39557769 DOI: 10.1007/s10528-024-10970-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 11/02/2024] [Indexed: 11/20/2024]
Abstract
Covid-19 caused by SARS-CoV-2 virus has emerged as an immense burden and an unparalleled global health challenge in recorded human history. The clinical characteristics and risk factors of COVID-19 exhibit considerable variability, leading to a spectrum of clinical severity. Moreover, the likelihood of exposure to the virus may differ based on comorbidity status as comorbid illnesses have mechanisms that can considerably increase mortality by reducing the body's ability to withstand injury. The mammalian target of rapamycin (mTOR) pathway is essential for orchestrating innate immune cell defense, including cytokine production and is dysregulated in severe Coronavirus Disease 2019 (COVID-19) individuals. Through genome-wide, association studies, numerous genetic variants in the human host have been identified that have a significant impact on the immune response to SARS-CoV-2. To identify potentially significant genetic variants in Covid-19 patients that could affect the risk, severity, and clinical outcome of the infection, this study has used whole-exome sequencing (WES) on the 16 COVID-19 patients with varying comorbidities and severity of the disease including fatal outcomes. Among them, 8 patients made a full recovery and were discharged, while 8 patients unfortunately did not survive due to the severity of the illness and majority of them were males. The study identified 10,204 variants in the patients. From 1120 variants, which were chosen for novel variant analysis using mutation, function prediction tools to identify deleterious variants that could affect normal gene function, 116 variants of 57 genes were found to be deleterious. These variants were further classified as likely pathogenic and variants of uncertain significance. The data showed that among the likely pathogenic variants five genes were identified in connection to immune response whereas two were related to respiratory system. The common variants associated with the covid-19 phenotype showed the top 10 significant genes identified in this study such as ERCC2, FBXO5, HTR3D, FAIM, DNAH17, MTOR, IGHMBP2, ZNF530, QSER1, and FOXRED2 with variant rs1057079 of the MTOR gene representing the highest odds ratio (1.7, p = 8.7e-04). The mammalian target of rapamycin (mTOR) pathway variant rs1057079 was reported with high odds ratio, may orchestrate innate immune cell defense, including cytokine production, and is dysregulated. This study concluded that the mTOR signaling gene variant (rs1057079) is associated with different degrees of covid-19 severity and is essential for orchestrating innate immune cell defense including cytokine production. Inhibiting mTOR and its corresponding deleterious immune responses with medicinal approaches may provide a novel avenue for treating severe COVID-19 illness. Besides the PPI network exhibited a significantly high local clustering coefficient of 0.424 (p = 0.000536), suggesting the presence of tightly knit functional modules. These findings enhance our comprehension of the intricate interactions between genetic factors and COVID-19 disease.
Collapse
Affiliation(s)
- Rashid Mir
- Department of Medical Laboratory Technology Faculty of Applied Medical Sciences, Prince Fahad Bin Sultan Chair for Biomedical Research, University of Tabuk, 71491, Tabuk, Saudi Arabia.
| | - Faisal H Altemani
- Department of Medical Laboratory Technology Faculty of Applied Medical Sciences, Prince Fahad Bin Sultan Chair for Biomedical Research, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Naseh A Algehainy
- Department of Medical Laboratory Technology Faculty of Applied Medical Sciences, Prince Fahad Bin Sultan Chair for Biomedical Research, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Mohammad A Alanazi
- Department of Medical Laboratory Technology Faculty of Applied Medical Sciences, Prince Fahad Bin Sultan Chair for Biomedical Research, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Badr A Alsayed
- Department of Internal Medicine, Faculty of Medicine, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Mohammad Muzaffar Mir
- Department of Clinical Biochemistry, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Syed Khalid Mustafa
- Department of Chemistry, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Mamdoh S Moawadh
- Department of Medical Laboratory Technology Faculty of Applied Medical Sciences, Prince Fahad Bin Sultan Chair for Biomedical Research, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Faris J Tayeb
- Department of Medical Laboratory Technology Faculty of Applied Medical Sciences, Prince Fahad Bin Sultan Chair for Biomedical Research, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Sael M Alatawi
- Department of Medical Laboratory Technology Faculty of Applied Medical Sciences, Prince Fahad Bin Sultan Chair for Biomedical Research, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | | | - Mohammad Fahad Ullah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, King Faisel Road, 7149, Tabuk, Saudi Arabia.
| |
Collapse
|
5
|
Dupont C, Blake B, Voss AA, Rich MM. BK channels promote action potential repolarization in skeletal muscle but contribute little to myotonia. Pflugers Arch 2024; 476:1693-1702. [PMID: 39150500 PMCID: PMC11461784 DOI: 10.1007/s00424-024-03005-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Patients with myotonia congenita suffer from slowed relaxation of muscle (myotonia), due to hyperexcitability caused by loss-of-function mutations in the ClC-1 chloride channel. A recent study suggested that block of large-conductance voltage- and Ca2+- activated K+ channels (BK) may be effective as therapy. The mechanism underlying efficacy was suggested to be lessening of the depolarizing effect of build-up of K+ in t-tubules of muscle during repetitive firing. BK channels are widely expressed in the nervous system and have been shown to play a central role in regulation of excitability, but their contribution to muscle excitability has not been determined. We performed intracellular recordings as well as force measurements in both wild type and BK-/- mouse extensor digitorum longus muscles. Action potential width was increased in BK-/- muscle due to slowing of repolarization, consistent with the possibility K+ build-up in t-tubules is lessened by block of BK channels in myotonic muscle. However, there was no difference in the severity of myotonia triggered by block of muscle Cl- channels with 9-anthracenecarboxylic acid (9AC) in wild type and BK-/- muscle fibers. Further study revealed no difference in the interspike membrane potential during repetitive firing suggesting there was no reduction in K+ build-up in t-tubules of BK-/- muscle. Force recordings following block of muscle Cl- channels demonstrated little reduction in myotonia in BK-/- muscle. In contrast, the current standard of care, mexiletine, significantly reduced myotonia. Our data suggest BK channels regulate muscle excitability, but are not an attractive target for therapy of myotonia.
Collapse
Affiliation(s)
- Chris Dupont
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, 45435, USA
| | - Brianna Blake
- Department of Biological Sciences, Wright State University, Dayton, OH, 45435, USA
| | - Andrew A Voss
- Department of Biological Sciences, Wright State University, Dayton, OH, 45435, USA
| | - Mark M Rich
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, 45435, USA.
| |
Collapse
|
6
|
Myers JH, Denman K, Dupont C, Foy BD, Rich MM. Reduced K + build-up in t-tubules contributes to resistance of the diaphragm to myotonia. J Physiol 2024; 602:6171-6188. [PMID: 39392724 PMCID: PMC11576233 DOI: 10.1113/jp286636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/10/2024] [Indexed: 10/13/2024] Open
Abstract
Patients with myotonia congenita suffer from slowed muscle relaxation caused by hyperexcitability. The diaphragm is only mildly affected in myotonia congenita; discovery of the mechanism underlying its resistance to myotonia could identify novel therapeutic targets. Intracellular recordings from two mouse models of myotonia congenita revealed the diaphragm had less myotonia than either the extensor digitorum longus (EDL) or the soleus muscles. A mechanism contributing to resistance of the diaphragm to myotonia was reduced depolarization of the interspike membrane potential during repetitive firing of action potentials, a process driven by build-up of K+ in small invaginations of muscle membrane known as t-tubules. We explored differences between diaphragm and EDL that might underlie reduction of K+ build-up in diaphragm t-tubules. Smaller size of diaphragm fibres, which promotes diffusion of K+ out of t-tubules, was identified as a contributor. Intracellular recording revealed slower repolarization of action potentials in diaphragm suggesting reduced Kv conductance. Higher resting membrane conductance was identified suggesting increased Kir conductance. Computer simulation found that a reduction of Kv conductance had little effect on K+ build-up whereas increased Kir conductance lessened build-up, although the effect was modest. Our data and computer simulation suggest opening of K+ channels during action potentials has little effect on K+ build-up whereas opening of K+ channels during the interspike interval slightly lessens K+ build-up. We conclude that activation of K+ channels may lessen myotonia by opposing depolarization to action potential threshold without worsening K+ build-up in t-tubules. KEY POINTS: In mouse models of the muscle disease myotonia congenita, the diaphragm has much less myotonia (muscle stiffness) than the extensor digitorum longus or soleus muscles. Identifying why the diaphragm is resistant to myotonia may help in developing novel therapy. We found the reason the diaphragm has less myotonia is that it is less prone to depolarization caused by K+ build-up in t-tubules during repetitive firing of action potentials. Smaller fibre size contributes to resistance to K+ build-up with differences in K+ currents playing little role. Our data suggest drugs that open K+ channels may be effective in treating myotonia as they may lessen excitability without worsening K+ build-up in t-tubules.
Collapse
Affiliation(s)
- Jessica H Myers
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio, USA
| | - Kirsten Denman
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio, USA
| | - Chris Dupont
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio, USA
| | - Brent D Foy
- Department of Physics, Wright State University, Dayton, Ohio, USA
| | - Mark M Rich
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio, USA
| |
Collapse
|
7
|
Canfora I, Altamura C, Desaphy JF, Boccanegra B, Vailati S, Caccia C, Melloni E, Padoani G, De Luca A, Pierno S. Preclinical study of the antimyotonic efficacy of safinamide in the myotonic mouse model. Neurotherapeutics 2024; 21:e00455. [PMID: 39322473 PMCID: PMC11586006 DOI: 10.1016/j.neurot.2024.e00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024] Open
Abstract
Mexiletine is the first choice drug in the treatment of non-dystrophic myotonias. However, 30% of patients experience little benefit from mexiletine due to poor tolerability, contraindications and limited efficacy likely based on pharmacogenetic profile. Safinamide inhibits neuronal voltage-gated sodium and calcium channels and shows anticonvulsant activity, in addition to a reversible monoamine oxidase-B inhibition. We evaluated the preclinical effects of safinamide in an animal model of Myotonia Congenita, the ADR (arrested development of righting response) mouse. In vitro studies were performed using the two intracellular microelectrodes technique in current clamp mode. We analyzed sarcolemma excitability in skeletal muscle fibers isolated from male and female ADR (adr/adr) and from Wild-Type (wt/wt) mice, before and after the application of safinamide and the reference compound mexiletine. In ADR mice, the maximum number of action potentials (N-spikes) elicited by a fixed current is higher with respect to that of WT mice. Myotonic muscles show an involuntary firing of action potential called after-discharges. A more potent activity of safinamide compared to mexiletine has been demonstrated in reducing N-spikes and the after-discharges in myotonic muscle fibers. The time of righting reflex (TRR) before and after administration of safinamide and mexiletine was evaluated in vivo in ADR mice. Safinamide was able to reduce the TRR in ADR mice to a greater extent than mexiletine. In conclusion, safinamide counteracted the abnormal muscle hyperexcitability in myotonic mice both in vitro and in vivo suggesting it as an effective drug to be indicated in Myotonia Congenita.
Collapse
Affiliation(s)
- Ileana Canfora
- Department of Pharmacy & Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Concetta Altamura
- Department of Precision and Regenerative Medicine and Ionian Area, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Jean-Francois Desaphy
- Department of Precision and Regenerative Medicine and Ionian Area, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Brigida Boccanegra
- Department of Pharmacy & Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Silvia Vailati
- Global Medical Office and R&D, Zambon S.p.A., Bresso, MI, Italy
| | - Carla Caccia
- Global Medical Office and R&D, Zambon S.p.A., Bresso, MI, Italy
| | - Elsa Melloni
- Global Medical Office and R&D, Zambon S.p.A., Bresso, MI, Italy
| | - Gloria Padoani
- Global Medical Office and R&D, Zambon S.p.A., Bresso, MI, Italy
| | - Annamaria De Luca
- Department of Pharmacy & Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Sabata Pierno
- Department of Pharmacy & Drug Sciences, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
8
|
Zou X, Zhang Z, Lu H, Zhao W, Pan L, Chen Y. Functional effects of drugs and toxins interacting with Na V1.4. Front Pharmacol 2024; 15:1378315. [PMID: 38725668 PMCID: PMC11079311 DOI: 10.3389/fphar.2024.1378315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
NaV1.4 is a voltage-gated sodium channel subtype that is predominantly expressed in skeletal muscle cells. It is essential for producing action potentials and stimulating muscle contraction, and mutations in NaV1.4 can cause various muscle disorders. The discovery of the cryo-EM structure of NaV1.4 in complex with β1 has opened new possibilities for designing drugs and toxins that target NaV1.4. In this review, we summarize the current understanding of channelopathies, the binding sites and functions of chemicals including medicine and toxins that interact with NaV1.4. These substances could be considered novel candidate compounds or tools to develop more potent and selective drugs targeting NaV1.4. Therefore, studying NaV1.4 pharmacology is both theoretically and practically meaningful.
Collapse
Affiliation(s)
- Xinyi Zou
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Zixuan Zhang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Hui Lu
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Wei Zhao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Lanying Pan
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yuan Chen
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
9
|
Zhao X, Ning H, Liu L, Zhu C, Zhang Y, Sun G, Ren H, Kong X. Genetic analysis of 37 cases with primary periodic paralysis in Chinese patients. Orphanet J Rare Dis 2024; 19:160. [PMID: 38609989 PMCID: PMC11015673 DOI: 10.1186/s13023-024-03170-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Primary periodic paralysis (PPP) is an inherited disorders of ion channel dysfunction characterized by recurrent episodes of flaccid muscle weakness, which can classified as hypokalemic (HypoPP), normokalemic (NormoPP), or hyperkalemic (HyperPP) according to the potassium level during the paralytic attacks. However, PPP is charactered by remarkable clinical and genetic heterogeneity, and the diagnosis of suspected patients is based on the characteristic clinical presentation then confirmed by genetic testing. At present, there are only limited cohort studies on PPP in the Chinese population. RESULTS We included 37 patients with a clinical diagnosis of PPP. Eleven (29.7%) patients were tested using a specific gene panel and 26 (70.3%) by the whole-exome sequencing (WES). Twenty-two cases had a genetic variant identified, representing a diagnostic rate of 59.5% (22/37). All the identified mutations were either in the SCN4A or the CACNA1S gene. The overall detection rate was comparable between the panel (54.5%: 6/11) and WES (61.5%: 16/26). The remaining patients unresolved through panel sequencing were further analyzed by WES, without the detection of any mutation. The novel atypical splicing variant c.2020-5G > A affects the normal splicing of the SCN4A mRNA, which was confirmed by minigene splicing assay. Among 21 patients with HypoPP, 15 patients were classified as HypoPP-2 with SCN4A variants, and 6 HypoPP-1 patients had CACNA1S variants. CONCLUSIONS Our results suggest that SCN4A alleles are the main cause in our cohort, with the remainder caused by CACNA1S alleles, which are the predominant cause in Europe and the United States. Additionally, this study identified 3 novel SCN4A and 2 novel CACNA1S variants, broadening the mutation spectrum of genes associated with PPP.
Collapse
Affiliation(s)
- Xuechao Zhao
- The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, 450052, Zhengzhou, Henan, China
| | - Haofeng Ning
- Obstetrics and Gynaecology, The Seventh Affiliated Hospital, Sun Yat-Sen University, No 628 Zhenyuan Road Guangming District, 518107, Shenzhen, PR China
| | - Lina Liu
- The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, 450052, Zhengzhou, Henan, China
| | - Chaofeng Zhu
- The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, 450052, Zhengzhou, Henan, China
| | - Yinghui Zhang
- The Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, 450052, Zhengzhou, Henan, China
| | - Guifang Sun
- The Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, 450052, Zhengzhou, Henan, China
| | - Huanan Ren
- The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, 450052, Zhengzhou, Henan, China
| | - Xiangdong Kong
- The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
10
|
Vinci M, Vitello GA, Greco D, Treccarichi S, Ragalmuto A, Musumeci A, Fallea A, Federico C, Calì F, Saccone S, Elia M. Next Generation Sequencing and Electromyography Reveal the Involvement of the P2RX6 Gene in Myopathy. Curr Issues Mol Biol 2024; 46:1150-1163. [PMID: 38392191 PMCID: PMC10887510 DOI: 10.3390/cimb46020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Ion channelopathies result from impaired ion channel protein function, due to mutations affecting ion transport across cell membranes. Over 40 diseases, including neuropathy, pain, migraine, epilepsy, and ataxia, are associated with ion channelopathies, impacting electrically excitable tissues and significantly affecting skeletal muscle. Gene mutations affecting transmembrane ionic flow are strongly linked to skeletal muscle disorders, particularly myopathies, disrupting muscle excitability and contraction. Electromyography (EMG) analysis performed on a patient who complained of weakness and fatigue revealed the presence of primary muscular damage, suggesting an early-stage myopathy. Whole exome sequencing (WES) did not detect potentially causative variants in known myopathy-associated genes but revealed a novel homozygous deletion of the P2RX6 gene likely disrupting protein function. The P2RX6 gene, predominantly expressed in skeletal muscle, is an ATP-gated ion channel receptor belonging to the purinergic receptors (P2RX) family. In addition, STRING pathways suggested a correlation with more proteins having a plausible role in myopathy. No previous studies have reported the implication of this gene in myopathy. Further studies are needed on patients with a defective ion channel pathway, and the use of in vitro functional assays in suppressing P2RX6 gene expression will be required to validate its functional role.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Concetta Federico
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy
| | | | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy
| | | |
Collapse
|
11
|
Campanale C, Laghetti P, Saltarella I, Altamura C, Canioni E, Iosa E, Maggi L, Brugnoni R, Tacconi P, Desaphy JF. A c.1775C > T Point Mutation of Sodium Channel Alfa Subunit Gene (SCN4A) in a Three-Generation Sardinian Family with Sodium Channel Myotonia. J Neuromuscul Dis 2024; 11:725-734. [PMID: 38427496 DOI: 10.3233/jnd-230134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Background The nondystrophic myotonias are rare muscle hyperexcitability disorders caused by gain-of-function mutations in the SCN4A gene or loss-of-function mutations in the CLCN1 gene. Clinically, they are characterized by myotonia, defined as delayed muscle relaxation after voluntary contraction, which leads to symptoms of muscle stiffness, pain, fatigue, and weakness. Diagnosis is based on history and examination findings, the presence of electrical myotonia on electromyography, and genetic confirmation. Methods Next-generation sequencing including the CLCN1 and SCN4A genes was performed in patients with clinical neuromuscular disorders. Electromyography, Short Exercise Test, in vivo and in vitro electrophysiology, site-directed mutagenesis and heterologous expression were collected. Results A heterozygous point mutation (c.1775C > T, p.Thr592Ile) of muscle voltage-gated sodium channel α subunit gene (SCN4A) has been identified in five female patients over three generations, in a family with non-dystrophic myotonia. The muscle stiffness and myotonia involve mainly the face and hands, but also affect walking and running, appearing early after birth and presenting a clear cold sensitivity. Very hot temperatures, menstruation and pregnancy also exacerbate the symptoms; muscle pain and a warm-up phenomenon are variable features. Neither paralytic attacks nor post-exercise weakness has been reported. Muscle hypertrophy with cramp-like pain and increased stiffness developed during pregnancy. The symptoms were controlled with both mexiletine and acetazolamide. The Short Exercise Test after muscle cooling revealed two different patterns, with moderate absolute changes of compound muscle action potential amplitude. Conclusions The p.Thr592Ile mutation in the SCN4A gene identified in this Sardinian family was responsible of clinical phenotype of myotonia.
Collapse
Affiliation(s)
- Carmen Campanale
- Department of Precision and Regenerative Medicine, Section of Pharmacology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Paola Laghetti
- Department of Precision and Regenerative Medicine, Section of Pharmacology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Ilaria Saltarella
- Department of Precision and Regenerative Medicine, Section of Pharmacology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Concetta Altamura
- Department of Precision and Regenerative Medicine, Section of Pharmacology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Eleonora Canioni
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Emanuele Iosa
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Lorenzo Maggi
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Raffaella Brugnoni
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paolo Tacconi
- Centro Regionale per la Sclerosi Multipla, Ospedale Binaghi, Cagliari, Italy
| | - Jean-François Desaphy
- Department of Precision and Regenerative Medicine, Section of Pharmacology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
12
|
Guo R, Pang J, Zhao J, Xiao X, Li J, Li J, Wang W, Zhou S, Zhao Y, Zhang Z, Chen H, Yuan T, Wu S, Liu Z. Unveiling the neuroprotective potential of dietary polysaccharides: a systematic review. Front Nutr 2023; 10:1299117. [PMID: 38075226 PMCID: PMC10702503 DOI: 10.3389/fnut.2023.1299117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/02/2023] [Indexed: 04/05/2024] Open
Abstract
Central nervous system (CNS) disorders present a growing and costly global health challenge, accounting for over 11% of the diseases burden in high-income countries. Despite current treatments, patients often experience persistent symptoms that significantly affect their quality of life. Dietary polysaccharides have garnered attention for their potential as interventions for CNS disorders due to their diverse mechanisms of action, including antioxidant, anti-inflammatory, and neuroprotective effects. Through an analysis of research articles published between January 5, 2013 and August 30, 2023, encompassing the intervention effects of dietary polysaccharides on Alzheimer's disease, Parkinson's disease, depression, anxiety disorders, autism spectrum disorder, epilepsy, and stroke, we have conducted a comprehensive review with the aim of elucidating the role and mechanisms of dietary polysaccharides in various CNS diseases, spanning neurodegenerative, psychiatric, neurodevelopmental disorders, and neurological dysfunctions. At least four categories of mechanistic bases are included in the dietary polysaccharides' intervention against CNS disease, which involves oxidative stress reduction, neuronal production, metabolic regulation, and gut barrier integrity. Notably, the ability of dietary polysaccharides to resist oxidation and modulate gut microbiota not only helps to curb the development of these diseases at an early stage, but also holds promise for the development of novel therapeutic agents for CNS diseases. In conclusion, this comprehensive review strives to advance therapeutic strategies for CNS disorders by elucidating the potential of dietary polysaccharides and advocating interdisciplinary collaboration to propel further research in this realm.
Collapse
Affiliation(s)
- Rui Guo
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, China
| | - Jingxi Pang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Junhe Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiao Xiao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Jing Li
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Jingmeng Li
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenxiu Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuang Zhou
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Zilong Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongwang Chen
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Tian Yuan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, China
| | - Shan Wu
- National Center of Technology Innovation for Dairy, Hohhot, Inner Mongolia, China
- Research and Development Center, Xi'an Yinqiao Dairy Technology Co., Ltd., Xi'an, Shaanxi, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, China
| |
Collapse
|
13
|
Dogra D, Meza-Santoscoy PL, Gavrilovici C, Rehak R, de la Hoz CLR, Ibhazehiebo K, Rho JM, Kurrasch DM. kcna1a mutant zebrafish model episodic ataxia type 1 (EA1) with epilepsy and show response to first-line therapy carbamazepine. Epilepsia 2023; 64:2186-2199. [PMID: 37209379 DOI: 10.1111/epi.17659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 05/22/2023]
Abstract
OBJECTIVE KCNA1 mutations are associated with a rare neurological movement disorder known as episodic ataxia type 1 (EA1), and epilepsy is a common comorbidity. Current medications provide only partial relief for ataxia and/or seizures, making new drugs needed. Here, we characterized zebrafish kcna1a-/- as a model of EA1 with epilepsy and compared the efficacy of the first-line therapy carbamazepine in kcna1a-/- zebrafish to Kcna1-/- rodents. METHODS CRISPR/Cas9 mutagenesis was used to introduce a mutation in the sixth transmembrane segment of the zebrafish Kcna1 protein. Behavioral and electrophysiological assays were performed on kcna1a-/- larvae to assess ataxia- and epilepsy-related phenotypes. Real-time quantitative polymerase chain reaction (qPCR) was conducted to measure mRNA levels of brain hyperexcitability markers in kcna1a-/- larvae, followed by bioenergetics profiling to evaluate metabolic function. Drug efficacies were tested using behavioral and electrophysiological assessments, as well as seizure frequency in kcna1a-/- zebrafish and Kcna1-/- mice, respectively. RESULTS Zebrafish kcna1a-/- larvae showed uncoordinated movements and locomotor deficits, along with scoliosis and increased mortality. The mutants also exhibited impaired startle responses when exposed to light-dark flashes and acoustic stimulation as well as hyperexcitability as measured by extracellular field recordings and upregulated fosab transcripts. Neural vglut2a and gad1b transcript levels were disrupted in kcna1a-/- larvae, indicative of a neuronal excitatory/inhibitory imbalance, as well as a significant reduction in cellular respiration in kcna1a-/- , consistent with dysregulation of neurometabolism. Notably, carbamazepine suppressed the impaired startle response and brain hyperexcitability in kcna1a-/- zebrafish but had no effect on the seizure frequency in Kcna1-/- mice, suggesting that this EA1 zebrafish model might better translate to humans than rodents. SIGNIFICANCE We conclude that zebrafish kcna1a-/- show ataxia and epilepsy-related phenotypes and are responsive to carbamazepine treatment, consistent with EA1 patients. These findings suggest that kcna1-/- zebrafish are a useful model for drug screening as well as studying the underlying disease biology.
Collapse
Affiliation(s)
- Deepika Dogra
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Paola L Meza-Santoscoy
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Cezar Gavrilovici
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Pediatrics, Clinical Neurosciences, Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Departments of Neurosciences, Pediatrics, and Pharmacology, Rady Children's Hospital San Diego, University of California San Diego, San Diego, California, USA
| | - Renata Rehak
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Cristiane L R de la Hoz
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Kingsley Ibhazehiebo
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jong M Rho
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Pediatrics, Clinical Neurosciences, Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Departments of Neurosciences, Pediatrics, and Pharmacology, Rady Children's Hospital San Diego, University of California San Diego, San Diego, California, USA
| | - Deborah M Kurrasch
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
14
|
Farinato A, Cavalluzzi MM, Altamura C, Campanale C, Laghetti P, Saltarella I, Delre P, Barbault A, Tarantino N, Milani G, Rotondo NP, Di Cesare Mannelli L, Ghelardini C, Pierno S, Mangiatordi GF, Lentini G, Desaphy JF. Development of Riluzole Analogs with Improved Use-Dependent Inhibition of Skeletal Muscle Sodium Channels. ACS Med Chem Lett 2023; 14:999-1008. [PMID: 37465302 PMCID: PMC10350938 DOI: 10.1021/acsmedchemlett.3c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Abstract
Several commercially available and newly synthesized riluzole analogs were evaluated in vitro as voltage-gated skeletal muscle sodium-channel blockers. Data obtained from the patch-clamp technique demonstrated that potency is well correlated with lipophilicity and the introduction of a protonatable amino function in the benzothiazole 2-position enhances the use-dependent behavior. The most interesting compound, the 2-piperazine analog of riluzole (14), although slightly less potent than the parent compound in the patch-clamp assay as well as in an in vitro model of myotonia, showed greater use-dependent Nav1.4 blocking activity. Docking studies allowed the identification of the key interactions that 14 makes with the amino acids of the local anesthetic binding site within the pore of the channel. The reported results pave the way for the identification of novel compounds useful in the treatment of cell excitability disorders.
Collapse
Affiliation(s)
- Alessandro Farinato
- Section
of Pharmacology, Department of Pharmacy − Drug Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Maria Maddalena Cavalluzzi
- Section
of Medicinal Chemistry, Department of Pharmacy − Drug Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Concetta Altamura
- Section
of Pharmacology, Department of Precision and Regenerative Medicine,
School of Medicine, University of Bari Aldo
Moro, 70124 Bari, Italy
| | - Carmen Campanale
- Section
of Pharmacology, Department of Precision and Regenerative Medicine,
School of Medicine, University of Bari Aldo
Moro, 70124 Bari, Italy
| | - Paola Laghetti
- Section
of Pharmacology, Department of Precision and Regenerative Medicine,
School of Medicine, University of Bari Aldo
Moro, 70124 Bari, Italy
| | - Ilaria Saltarella
- Section
of Pharmacology, Department of Precision and Regenerative Medicine,
School of Medicine, University of Bari Aldo
Moro, 70124 Bari, Italy
| | - Pietro Delre
- CNR
− Institute of Crystallography, via Amendola 122/o, 70126 Bari, Italy
| | - Arthur Barbault
- CNR
− Institute of Crystallography, via Amendola 122/o, 70126 Bari, Italy
| | - Nancy Tarantino
- Section
of Pharmacology, Department of Pharmacy − Drug Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Gualtiero Milani
- Section
of Medicinal Chemistry, Department of Pharmacy − Drug Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Natalie Paola Rotondo
- Section
of Medicinal Chemistry, Department of Pharmacy − Drug Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Lorenzo Di Cesare Mannelli
- Department
NEUROFARBA - Pharmaceutical and Nutraceutical Section, University of Firenze, 50139 Florence, Italy
| | - Carla Ghelardini
- Department
NEUROFARBA - Pharmaceutical and Nutraceutical Section, University of Firenze, 50139 Florence, Italy
| | - Sabata Pierno
- Section
of Pharmacology, Department of Pharmacy − Drug Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| | | | - Giovanni Lentini
- Section
of Medicinal Chemistry, Department of Pharmacy − Drug Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Jean-François Desaphy
- Section
of Pharmacology, Department of Precision and Regenerative Medicine,
School of Medicine, University of Bari Aldo
Moro, 70124 Bari, Italy
| |
Collapse
|
15
|
Dowling P, Swandulla D, Ohlendieck K. Biochemical and proteomic insights into sarcoplasmic reticulum Ca 2+-ATPase complexes in skeletal muscles. Expert Rev Proteomics 2023; 20:125-142. [PMID: 37668143 DOI: 10.1080/14789450.2023.2255743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/07/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION Skeletal muscles contain large numbers of high-molecular-mass protein complexes in elaborate membrane systems. Integral membrane proteins are involved in diverse cellular functions including the regulation of ion handling, membrane homeostasis, energy metabolism and force transmission. AREAS COVERED The proteomic profiling of membrane proteins and large protein assemblies in skeletal muscles are outlined in this article. This includes a critical overview of the main biochemical separation techniques and the mass spectrometric approaches taken to study membrane proteins. As an illustrative example of an analytically challenging large protein complex, the proteomic detection and characterization of the Ca2+-ATPase of the sarcoplasmic reticulum is discussed. The biological role of this large protein complex during normal muscle functioning, in the context of fiber type diversity and in relation to mechanisms of physiological adaptations and pathophysiological abnormalities is evaluated from a proteomics perspective. EXPERT OPINION Mass spectrometry-based muscle proteomics has decisively advanced the field of basic and applied myology. Although it is technically challenging to study membrane proteins, innovations in protein separation methodology in combination with sensitive mass spectrometry and improved systems bioinformatics has allowed the detailed proteomic detection and characterization of skeletal muscle membrane protein complexes, such as Ca2+-pump proteins of the sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth Kildare, Ireland
| |
Collapse
|
16
|
Vacchiano V, Brugnoni R, Campanale C, Imbrici P, Dinoi G, Canioni E, Laghetti P, Saltarella I, Altamura C, Maggi L, Liguori R, Donadio V, Desaphy JF. Coexistence of SCN4A and CLCN1 mutations in a family with atypical myotonic features: A clinical and functional study. Exp Neurol 2023; 362:114342. [PMID: 36720299 DOI: 10.1016/j.expneurol.2023.114342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/12/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
Non-dystrophic myotonias include several entities with possible clinical overlap, i.e. myotonia congenita caused by CLCN1 gene mutations, as well as paramyotonia congenita and sodium channel myotonia caused by SCN4A gene mutations. Herein, we describe the clinical features of five relatives affected by clinical and neurophysiological myotonia, with an aspecific and mixed phenotype. Next-generation sequencing identified the novel p.K1302R variant in SCN4A and the p.H838P variant in CLCN1. Segregation of the two mutations with the disease was confirmed by genotyping affected and non-affected family members. Patch-clamp experiments showed that sodium currents generated by p.K1302R and WT hNav1.4 were very similar. Mutant channel showed a small negative shift (5 mV) in the voltage-dependence of activation, which increased the likelihood of the channel to open at more negative voltages. The p.H838P mutation caused a reduction in chloride current density and a small voltage-dependence shift towards less negative potentials, in agreement with its position into the CBS2 domain of the C-terminus. Our results demonstrated that the mild functional alterations induced by p.K1302R and p.H838P in combination may be responsible for the mixed myotonic phenotypes. The K1302R mutant was sensitive to mexiletine and lamotrigine, suggesting that both drugs might be useful for the K1302R carriers.
Collapse
Affiliation(s)
- Veria Vacchiano
- IRCSS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.
| | - Raffaella Brugnoni
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Italy
| | - Carmen Campanale
- Dept. of Precision and Regenerative Medicine, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Paola Imbrici
- Dept. of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Giorgia Dinoi
- Dept. of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Eleonora Canioni
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Italy
| | - Paola Laghetti
- Dept. of Precision and Regenerative Medicine, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Ilaria Saltarella
- Dept. of Precision and Regenerative Medicine, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Concetta Altamura
- Dept. of Precision and Regenerative Medicine, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Lorenzo Maggi
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Italy
| | - Rocco Liguori
- IRCSS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Vincenzo Donadio
- IRCSS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Jean-François Desaphy
- Dept. of Precision and Regenerative Medicine, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
17
|
Lester EB, Larsen MJ, Laulund LW, Illum N, Dunkhase-Heinl U, Schrøder HD, Fagerberg CR. Ryanodine receptor 1 related myasthenia like myopathy responsive to pyridostigmine. Eur J Med Genet 2023; 66:104706. [PMID: 36669590 DOI: 10.1016/j.ejmg.2023.104706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 10/06/2022] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Disease causing variants in the Ryanodine receptor 1 (RYR1) gene are a common cause for congenital myopathy and for malignant hyperthermia susceptibility. We report a 17 year old boy with congenital muscle weakness progressing to a myasthenia like myopathy with muscle weakness, fatigability, ptosis, and ophthalmoplegia. Muscle biopsy showed predominance and atrophy of type 1 fibers. Whole-exome trio sequencing revealed three variants in the RYR1-gene in the patient: c.6721C > T,p.(Arg2241*) and c.2122G > A,p.(Asp708Asn) in cis position, and the c.325C > T,p.(Arg109Trp) variant in trans. Treatment with pyridostigmine improved symptoms. This case supports that a myasthenia like phenotype is part of the phenotypic spectrum of RYR1 related disorders, and that treatment with pyridostigmine can be beneficial for patients with this phenotype.
Collapse
Affiliation(s)
- Emilie Boye Lester
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Martin Jakob Larsen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | | - Niels Illum
- H. C. Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | | | | | | |
Collapse
|
18
|
Altamura C, Saltarella I, Campanale C, Laghetti P, Desaphy JF. Drug repurposing in skeletal muscle ion channelopathies. Curr Opin Pharmacol 2023; 68:102329. [PMID: 36512979 DOI: 10.1016/j.coph.2022.102329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 12/14/2022]
Abstract
Skeletal muscle ion channelopathies are rare genetic diseases mainly characterized by myotonia (muscle stiffness) or periodic paralysis (muscle weakness). Here, we reviewed the available therapeutic options in non-dystrophic myotonias (NDM) and periodic paralyses (PP), which consists essentially in drug repositioning to address stiffness or weakness attacks. Empirical use followed by successful randomized clinical trials eventually led to the orphan drug designation and marketing authorization granting of mexiletine for NDM and dichlorphenamide for PP. Yet, these treatments neither consider the genetic cause of the diseases nor address the individual variability in drug response. Thus, ongoing research aims at the identification of repurposed drugs alternative to mexiletine and dichlorphenamide to allow personalization of treatment. This review highlights how drug repurposing may represent an efficient strategy in rare diseases, allowing reduction of drug development time and costs in a context in which the return on investment may be particularly challenging.
Collapse
Affiliation(s)
- Concetta Altamura
- Section of Pharmacology, Department of Precision and Regenerative Medicine, School of Medicine, University of Bari Aldo Moro, Piazza Giulo Cesare, 70124, Bari, Italy
| | - Ilaria Saltarella
- Section of Pharmacology, Department of Precision and Regenerative Medicine, School of Medicine, University of Bari Aldo Moro, Piazza Giulo Cesare, 70124, Bari, Italy
| | - Carmen Campanale
- Section of Pharmacology, Department of Precision and Regenerative Medicine, School of Medicine, University of Bari Aldo Moro, Piazza Giulo Cesare, 70124, Bari, Italy
| | - Paola Laghetti
- Section of Pharmacology, Department of Precision and Regenerative Medicine, School of Medicine, University of Bari Aldo Moro, Piazza Giulo Cesare, 70124, Bari, Italy
| | - Jean-François Desaphy
- Section of Pharmacology, Department of Precision and Regenerative Medicine, School of Medicine, University of Bari Aldo Moro, Piazza Giulo Cesare, 70124, Bari, Italy.
| |
Collapse
|
19
|
He S, Lim GE. The Application of High-Throughput Approaches in Identifying Novel Therapeutic Targets and Agents to Treat Diabetes. Adv Biol (Weinh) 2023; 7:e2200151. [PMID: 36398493 DOI: 10.1002/adbi.202200151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/04/2022] [Indexed: 11/19/2022]
Abstract
During the past decades, unprecedented progress in technologies has revolutionized traditional research methodologies. Among these, advances in high-throughput drug screening approaches have permitted the rapid identification of potential therapeutic agents from drug libraries that contain thousands or millions of molecules. Moreover, high-throughput-based therapeutic target discovery strategies can comprehensively interrogate relationships between biomolecules (e.g., gene, RNA, and protein) and diseases and significantly increase the authors' knowledge of disease mechanisms. Diabetes is a chronic disease primarily characterized by the incapacity of the body to maintain normoglycemia. The prevalence of diabetes in modern society has become a severe public health issue that threatens the well-being of millions of patients. Although a number of pharmacological treatments are available, there is no permanent cure for diabetes, and discovering novel therapeutic targets and agents continues to be an urgent need. The present review discusses the technical details of high-throughput screening approaches in drug discovery, followed by introducing the applications of such approaches to diabetes research. This review aims to provide an example of the applicability of high-throughput technologies in facilitating different aspects of disease research.
Collapse
Affiliation(s)
- Siyi He
- Department of Medicine, Université de Montréal, Pavillon Roger-Gaudry, 2900 Edouard Montpetit Blvd, Montreal, Québec, H3T 1J4, Canada.,Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue St Denis, Montreal, Québec, H2X 0A9, Canada
| | - Gareth E Lim
- Department of Medicine, Université de Montréal, Pavillon Roger-Gaudry, 2900 Edouard Montpetit Blvd, Montreal, Québec, H3T 1J4, Canada.,Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue St Denis, Montreal, Québec, H2X 0A9, Canada
| |
Collapse
|
20
|
Zhang Z, Xiao B. Case report: SCN4A p.R1135H gene variant in combination with thyrotoxicosis causing hypokalemic periodic paralysis. Front Neurol 2023; 13:1078784. [PMID: 36733446 PMCID: PMC9886676 DOI: 10.3389/fneur.2022.1078784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Hypokalemic periodic paralysis (HPP) is a heterogeneous group of diseases characterized by intermittent episodes of delayed paralysis of skeletal muscle with episodes of hypokalemia, caused by variants in CACNA1S or SCN4A genes, or secondary to thyrotoxicosis, Sjogren syndrome, primary aldosteronism, etc. HPP may be the only presentation in Andersen-Tawil syndrome in which the majority of cases are caused by pathogenic variants in the KCNJ2 gene. We present a case of a 29-year-old male with hypokalemic periodic paralysis. The patient began to experience recurrent weakness of the extremities at the age of 26, which was effectively treated with potassium supplementation. He had recently developed dry mouth, palpitations, weight loss, and even dyspnea, with a serum potassium level as low as 1.59 mmol/L. The results of auxiliary examinations showed Graves' disease, and genetic testing indicated a missense variant, NM_000334.4 (SCN4A):c.3404G>A (p.R1135H). He did not experience periodic paralysis during follow-up after lifestyle guidance and treatment of thyrotoxicosis with radioactive iodine. It is a rare case of SCN4A p.R1135H gene variant combined with hyperthyroidism resulting in HPP with respiratory muscle paralysis to raise awareness of the disease and avoid misdiagnosis and missed diagnosis.
Collapse
|
21
|
De Bellis M, Boccanegra B, Cerchiara AG, Imbrici P, De Luca A. Blockers of Skeletal Muscle Na v1.4 Channels: From Therapy of Myotonic Syndrome to Molecular Determinants of Pharmacological Action and Back. Int J Mol Sci 2023; 24:ijms24010857. [PMID: 36614292 PMCID: PMC9821513 DOI: 10.3390/ijms24010857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
The voltage-gated sodium channels represent an important target for drug discovery since a large number of physiological processes are regulated by these channels. In several excitability disorders, including epilepsy, cardiac arrhythmias, chronic pain, and non-dystrophic myotonia, blockers of voltage-gated sodium channels are clinically used. Myotonia is a skeletal muscle condition characterized by the over-excitability of the sarcolemma, resulting in delayed relaxation after contraction and muscle stiffness. The therapeutic management of this disorder relies on mexiletine and other sodium channel blockers, which are not selective for the Nav1.4 skeletal muscle sodium channel isoform. Hence, the importance of deepening the knowledge of molecular requirements for developing more potent and use-dependent drugs acting on Nav1.4. Here, we review the available treatment options for non-dystrophic myotonia and the structure-activity relationship studies performed in our laboratory with a focus on new compounds with potential antimyotonic activity.
Collapse
|
22
|
Rossi D, Catallo MR, Pierantozzi E, Sorrentino V. Mutations in proteins involved in E-C coupling and SOCE and congenital myopathies. J Gen Physiol 2022; 154:e202213115. [PMID: 35980353 PMCID: PMC9391951 DOI: 10.1085/jgp.202213115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
In skeletal muscle, Ca2+ necessary for muscle contraction is stored and released from the sarcoplasmic reticulum (SR), a specialized form of endoplasmic reticulum through the mechanism known as excitation-contraction (E-C) coupling. Following activation of skeletal muscle contraction by the E-C coupling mechanism, replenishment of intracellular stores requires reuptake of cytosolic Ca2+ into the SR by the activity of SR Ca2+-ATPases, but also Ca2+ entry from the extracellular space, through a mechanism called store-operated calcium entry (SOCE). The fine orchestration of these processes requires several proteins, including Ca2+ channels, Ca2+ sensors, and Ca2+ buffers, as well as the active involvement of mitochondria. Mutations in genes coding for proteins participating in E-C coupling and SOCE are causative of several myopathies characterized by a wide spectrum of clinical phenotypes, a variety of histological features, and alterations in intracellular Ca2+ balance. This review summarizes current knowledge on these myopathies and discusses available knowledge on the pathogenic mechanisms of disease.
Collapse
Affiliation(s)
- Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| | - Maria Rosaria Catallo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| |
Collapse
|
23
|
Altamura C, Conte E, Campanale C, Laghetti P, Saltarella I, Camerino GM, Imbrici P, Desaphy JF. Chaperone activity of niflumic acid on ClC-1 chloride channel mutants causing myotonia congenita. Front Pharmacol 2022; 13:958196. [PMID: 36034862 PMCID: PMC9403836 DOI: 10.3389/fphar.2022.958196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/08/2022] [Indexed: 11/14/2022] Open
Abstract
Myotonia congenita (MC) is an inherited rare disease characterized by impaired muscle relaxation after contraction, resulting in muscle stiffness. It is caused by loss-of-function mutations in the skeletal muscle chloride channel ClC-1, important for the stabilization of resting membrane potential and for the repolarization phase of action potentials. Thanks to in vitro functional studies, the molecular mechanisms by which ClC-1 mutations alter chloride ion influx into the cell have been in part clarified, classifying them in “gating-defective” or “expression-defective” mutations. To date, the treatment of MC is only palliative because no direct ClC-1 activator is available. An ideal drug should be one which is able to correct biophysical defects of ClC-1 in the case of gating-defective mutations or a drug capable to recover ClC-1 protein expression on the plasma membrane for trafficking-defective ones. In this study, we tested the ability of niflumic acid (NFA), a commercial nonsteroidal anti-inflammatory drug, to act as a pharmacological chaperone on trafficking-defective MC mutants (A531V, V947E). Wild-type (WT) or MC mutant ClC-1 channels were expressed in HEK293 cells and whole-cell chloride currents were recorded with the patch-clamp technique before and after NFA incubation. Membrane biotinylation assays and western blot were performed to support electrophysiological results. A531V and V947E mutations caused a decrease in chloride current density due to a reduction of ClC-1 total protein level and channel expression on the plasma membrane. The treatment of A531V and V947E-transfected cells with 50 µM NFA restored chloride currents, reaching levels similar to those of WT. Furthermore, no significant difference was observed in voltage dependence, suggesting that NFA increased protein membrane expression without altering the function of ClC-1. Indeed, biochemical experiments confirmed that V947E total protein expression and its plasma membrane distribution were recovered after NFA incubation, reaching protein levels similar to WT. Thus, the use of NFA as a pharmacological chaperone in trafficking defective ClC-1 channel mutations could represent a good strategy in the treatment of MC. Because of the favorable safety profile of this drug, our study may easily open the way for confirmatory human pilot studies aimed at verifying the antimyotonic activity of NFA in selected patients carrying specific ClC-1 channel mutations.
Collapse
Affiliation(s)
- Concetta Altamura
- Dept. of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
- *Correspondence: Concetta Altamura,
| | - Elena Conte
- Dept. of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Carmen Campanale
- Dept. of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Paola Laghetti
- Dept. of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Ilaria Saltarella
- Dept. of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | | | - Paola Imbrici
- Dept. of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Jean-François Desaphy
- Dept. of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
24
|
Kinetic Alterations in Resurgent Sodium Currents of Mutant Nav1.4 Channel in Two Patients Affected by Paramyotonia Congenita. BIOLOGY 2022; 11:biology11040613. [PMID: 35453812 PMCID: PMC9031228 DOI: 10.3390/biology11040613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Paramyotonia congenita (PMC) is a rare muscle disorder that causes myotonia and weakness of facial and limb muscles. The electromyography in PMC shows continual spontaneous, high-frequency spike potentials in skeletal muscles. Genetic mutations in the Nav1.4 channel that cause hyperexcitability of muscle fibers are responsible for PMC. However, the genotype–phenotype relationship is highly diversified, and the molecular pathology remains unclear. Here, we investigated the electrophysiology in the Nav1.4 channel with mutations, p.V781I and p.A1737T, which were found in two Taiwanese patients. We identified the distinct changes in gating mechanisms altered by mutations which may underlie the clinical phenotype. Abstract Paramyotonia congenita (PMC) is a rare skeletal muscle disorder characterized by muscle stiffness upon repetitive exercise and cold exposure. PMC was reported to be caused by dominant mutations in the SCN4A gene encoding the α subunit of the Nav1.4 channel. Recently, we identified two missense mutations of the SCN4A gene, p.V781I and p.A1737T, in two PMC families. To evaluate the changes in electrophysiological properties caused by the mutations, both mutant and wild-type (WT) SCN4A genes were expressed in CHO-K1 and HEK-293T cells. Then, whole-cell patch-clamp recording was employed to study the altered gating of mutant channels. The activation curve of transient current showed a hyperpolarizing shift in both mutant Nav1.4 channels as compared to the WT channel, whereas there was a depolarizing shift in the fast inactivation curve. These changes confer to an increase in window current in the mutant channels. Further investigations demonstrated that the mutated channel proteins generate significantly larger resurgent currents as compared to the WT channel and take longer to attain the peak of resurgent current than the WT channel. In conclusion, the current study demonstrates that p.V781I and p.A1737T mutations in the Nav1.4 channel increase both the sustained and the resurgent Na+ current, leading to membrane hyperexcitability with a lower firing threshold, which may influence the clinical phenotype.
Collapse
|
25
|
Altamura C, Conte D, Carratù MR, Desaphy JF. Target mutation-driven drug discovery. Curr Med Chem 2022; 29:5156-5158. [PMID: 35440295 DOI: 10.2174/1389450123666220418111200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/10/2022] [Accepted: 02/09/2022] [Indexed: 11/22/2022]
Affiliation(s)
- Concetta Altamura
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, I-70124 Italy
| | | | - Maria Rosaria Carratù
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, I-70124 Italy
| | - Jean-François Desaphy
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, I-70124 Italy
| |
Collapse
|
26
|
Kim S, Mun S, Shin W, Han K, Kim MY. Identification of Potentially Pathogenic Variants Associated with Recurrence in Medication-Related Osteonecrosis of the Jaw (MRONJ) Patients Using Whole-Exome Sequencing. J Clin Med 2022; 11:jcm11082145. [PMID: 35456240 PMCID: PMC9030961 DOI: 10.3390/jcm11082145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Bisphosphonates are antiresorptive and antiangiogenic drugs that prevent and treat bone loss and mineralization in women with postmenopausal osteoporosis and cancer patients. Medication-related osteonecrosis of the jaw (MRONJ) is commonly caused by tooth extraction and dental trauma. Although genetic and pathological studies about MRONJ have been conducted, the pathogenesis of MRONJ still remains unclear. Methods: We aimed to identify genetic variants associated with MRONJ, using whole-exome sequencing (WES). Ten MRONJ patients prescribed bisphosphonates were recruited for WES, and jawbone tissue and blood samples were collected from the patients. Results: The analysis of the WES data found a total of 1866 SNP and 40 InDel variants which are specific to MRONJ. The functional classification assay using Gene Ontology and pathway analysis discovered that genes bearing the MRONJ variants are significantly enriched for keratinization and calcium ion transport. Some of the variants are potential pathogenic variants (24 missense mutations and seven frameshift mutations) with MAF < 0.01. Conclusions: The variants are located in eight different genes (KRT18, MUC5AC, NBPF9, PABPC3, MST1L, ASPN, ATN1, and SLAIN1). Nine deleterious SNPs significantly associated with MRONJ were found in the KRT18 and PABPC3 genes. It suggests that KRT18 and PABPC3 could be MRONJ-related key genes.
Collapse
Affiliation(s)
- Songmi Kim
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan 31116, Korea (S.M.)
- Department of Microbiology, Dankook University, Cheonan 31116, Korea
| | - Seyoung Mun
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan 31116, Korea (S.M.)
- Department of Microbiology, Dankook University, Cheonan 31116, Korea
| | - Wonseok Shin
- NGS Clinical Laboratory, Dankook University Hospital, Cheonan 31116, Korea;
| | - Kyudong Han
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan 31116, Korea (S.M.)
- Department of Microbiology, Dankook University, Cheonan 31116, Korea
- Correspondence: (K.H.); (M.-Y.K.); Tel.: +82-41-550-1240 (K.H.); +82-41-550-1912 (M.-Y.K.)
| | - Moon-Young Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Dankook University, Cheonan 31116, Korea
- Correspondence: (K.H.); (M.-Y.K.); Tel.: +82-41-550-1240 (K.H.); +82-41-550-1912 (M.-Y.K.)
| |
Collapse
|
27
|
Wnek GE, Costa ACS, Kozawa SK. Bio-Mimicking, Electrical Excitability Phenomena Associated With Synthetic Macromolecular Systems: A Brief Review With Connections to the Cytoskeleton and Membraneless Organelles. Front Mol Neurosci 2022; 15:830892. [PMID: 35321030 PMCID: PMC8937024 DOI: 10.3389/fnmol.2022.830892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Electrical excitability of cells, tissues and organs is a fundamental phenomenon in biology and physiology. Signatures of excitability include transient currents resulting from a constant or varying voltage gradient across compartments. Interestingly, such signatures can be observed with non-biologically-derived, macromolecular systems. Initial key literature, dating to roughly the late 1960’s into the early 1990’s, is reviewed here. We suggest that excitability in response to electrical stimulation is a material phenomenon that is exploited by living organisms, but that is not exclusive to living systems. Furthermore, given the ubiquity of biological hydrogels, we also speculate that excitability in protocells of primordial organisms might have shared some of the same molecular mechanisms seen in non-biological macromolecular systems, and that vestigial traces of such mechanisms may still play important roles in modern organisms’ biological hydrogels. Finally, we also speculate that bio-mimicking excitability of synthetic macromolecular systems might have practical biomedical applications.
Collapse
Affiliation(s)
- Gary E. Wnek
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, United States
- *Correspondence: Gary E. Wnek,
| | - Alberto C. S. Costa
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, United States
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, United States
- Alberto C. S. Costa,
| | - Susan K. Kozawa
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
28
|
Nicole S, Lory P. New Challenges Resulting From the Loss of Function of Na v1.4 in Neuromuscular Diseases. Front Pharmacol 2021; 12:751095. [PMID: 34671263 PMCID: PMC8521073 DOI: 10.3389/fphar.2021.751095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
The voltage-gated sodium channel Nav1.4 is a major actor in the excitability of skeletal myofibers, driving the muscle force in response to nerve stimulation. Supporting further this key role, mutations in SCN4A, the gene encoding the pore-forming α subunit of Nav1.4, are responsible for a clinical spectrum of human diseases ranging from muscle stiffness (sodium channel myotonia, SCM) to muscle weakness. For years, only dominantly-inherited diseases resulting from Nav1.4 gain of function (GoF) were known, i.e., non-dystrophic myotonia (delayed muscle relaxation due to myofiber hyperexcitability), paramyotonia congenita and hyperkalemic or hypokalemic periodic paralyses (episodic flaccid muscle weakness due to transient myofiber hypoexcitability). These last 5 years, SCN4A mutations inducing Nav1.4 loss of function (LoF) were identified as the cause of dominantly and recessively-inherited disorders with muscle weakness: periodic paralyses with hypokalemic attacks, congenital myasthenic syndromes and congenital myopathies. We propose to name this clinical spectrum sodium channel weakness (SCW) as the mirror of SCM. Nav1.4 LoF as a cause of permanent muscle weakness was quite unexpected as the Na+ current density in the sarcolemma is large, securing the ability to generate and propagate muscle action potentials. The properties of SCN4A LoF mutations are well documented at the channel level in cellular electrophysiological studies However, much less is known about the functional consequences of Nav1.4 LoF in skeletal myofibers with no available pertinent cell or animal models. Regarding the therapeutic issues for Nav1.4 channelopathies, former efforts were aimed at developing subtype-selective Nav channel antagonists to block myofiber hyperexcitability. Non-selective, Nav channel blockers are clinically efficient in SCM and paramyotonia congenita, whereas patient education and carbonic anhydrase inhibitors are helpful to prevent attacks in periodic paralyses. Developing therapeutic tools able to counteract Nav1.4 LoF in skeletal muscles is then a new challenge in the field of Nav channelopathies. Here, we review the current knowledge regarding Nav1.4 LoF and discuss the possible therapeutic strategies to be developed in order to improve muscle force in SCW.
Collapse
Affiliation(s)
- Sophie Nicole
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics (ICST), Montpellier, France
| | - Philippe Lory
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics (ICST), Montpellier, France
| |
Collapse
|
29
|
Mutations associated with hypokalemic periodic paralysis: from hotspot regions to complete analysis of CACNA1S and SCN4A genes. Neurogenetics 2021; 23:19-25. [PMID: 34608571 DOI: 10.1007/s10048-021-00673-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/26/2021] [Indexed: 01/10/2023]
Abstract
Familial periodic paralyses (PPs) are inherited disorders of skeletal muscle characterized by recurrent episodes of flaccid muscle weakness. PPs are classified as hypokalemic (HypoPP), normokalemic (NormoPP), or hyperkalemic (HyperPP) according to the potassium level during the paralytic attacks. HypoPP is an autosomal dominant disease caused by mutations in the CACNA1S gene, encoding for Cav1.1 channel (HypoPP-1), or SCN4A gene, encoding for Nav1.4 channel (HypoPP-2). In the present study, we included 60 patients with a clinical diagnosis of HypoPP. Fifty-one (85%) patients were tested using the direct sequencing (Sanger method) of all reported HypoPP mutations in CACNA1S and SCN4A genes; the remaining 9 (15%) patients were analyzed through a next-generation sequencing (NGS) panel, including the whole CACNA1S and SCN4A genes, plus other genes rarely associated to PPs. Fifty patients resulted mutated: 38 (76%) cases showed p.R528H and p.R1239G/H CACNA1S mutations and 12 (24%) displayed p.R669H, p.R672C/H, p.R1132G/Q, and p.R1135H SCN4A mutations. Forty-one mutated cases were identified among the 51 patients managed with Sanger sequencing, while all the 9 cases directly analyzed with the NGS panel showed mutations in the hotspot regions of SCN4A and CACNA1S. Ten out of the 51 patients unresolved through the Sanger sequencing were further analyzed with the NGS panel, without the detection of any mutation. Hence, our data suggest that in HypoPP patients, the extension of genetic analysis from the hotspot regions using the Sanger method to the NGS sequencing of the entire CACNA1S and SCN4A genes does not lead to the identification of new pathological mutations.
Collapse
|
30
|
Yim J, Kim KB, Kim M, Lee GD, Kim M. Andersen-Tawil Syndrome With Novel Mutation in KCNJ2: Case Report. Front Pediatr 2021; 9:790075. [PMID: 35174115 PMCID: PMC8842678 DOI: 10.3389/fped.2021.790075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
Andersen-Tawil syndrome (ATS) is a rare autosomal dominant disorder characterized by a classic symptom triad: periodic paralysis, ventricular arrhythmias associated with prolonged QT interval, and dysmorphic skeletal and facial features. Pathogenic variants of the inwardly rectifying potassium channel subfamily J member 2 (KCNJ2) gene have been linked to the ATS. Herein, we report a novel KCNJ2 causative variant in a proband and her father showing different ATS-associated symptoms. A 15-year-old girl was referred because of episodic weakness and periodic paralysis in both legs for 2-3 months. The symptoms occurred either when she was tired or after strenuous exercise. These attacks made walking or climbing stairs difficult and lasted from one to several days. She had a short stature (142 cm, <3rd percentile) and weighed 40 kg. The proband also showed orbital hypertelorism, dental crowding, mandibular hypoplasia, fifth-digit clinodactyly, and small hands. Scoliosis in the thoracolumbar region was detected by chest X-ray. Since she was 7 years old, she had been treated for arrhythmia-associated long QT interval and underwent periodic echocardiography. Brain MRI revealed cerebrovascular abnormalities indicating absence or hypoplasia of bilateral internal carotid arteries, and compensation of other collateral vessels was observed. There were no specific findings related to intellectual development. The proband's father also had a history of periodic paralysis similar to the proband. He did not show any cardiac symptoms. Interestingly, he was diagnosed with hyperthyroidism during an evaluation for paralytic symptoms. Clinical exome sequencing revealed a novel heterozygous missense variant: Chr17(GRCh37):g.68171593A>T, NM_000891.2:c.413A>T, p.(Glu138Val) in KCNJ2 in the proband and the proband's father.
Collapse
Affiliation(s)
- Jisook Yim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Kyoung Bo Kim
- Department of Laboratory Medicine, Keimyung University School of Medicine, Daegu, South Korea
| | - Minsun Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Gun Dong Lee
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|