1
|
Zhao H, Chen Z, Kang X, Yang B, Luo P, Li H, He Q. The frontline of alternatives to animal testing: novel in vitro skin model application in drug development and evaluation. Toxicol Sci 2023; 196:152-169. [PMID: 37702017 DOI: 10.1093/toxsci/kfad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
The FDA Modernization Act 2.0 has brought nonclinical drug evaluation into a new era. In vitro models are widely used and play an important role in modern drug development and evaluation, including early candidate drug screening and preclinical drug efficacy and toxicity assessment. Driven by regulatory steering and facilitated by well-defined physiology, novel in vitro skin models are emerging rapidly, becoming the most advanced area in alternative testing research. The revolutionary technologies bring us many in vitro skin models, either laboratory-developed or commercially available, which were all built to emulate the structure of the natural skin to recapitulate the skin's physiological function and particular skin pathology. During the model development, how to achieve balance among complexity, accessibility, capability, and cost-effectiveness remains the core challenge for researchers. This review attempts to introduce the existing in vitro skin models, align them on different dimensions, such as structural complexity, functional maturity, and screening throughput, and provide an update on their current application in various scenarios within the scope of chemical testing and drug development, including testing in genotoxicity, phototoxicity, skin sensitization, corrosion/irritation. Overall, the review will summarize a general strategy for in vitro skin model to enhance future model invention, application, and translation in drug development and evaluation.
Collapse
Affiliation(s)
- He Zhao
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhaozeng Chen
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Xingchen Kang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Hui Li
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| |
Collapse
|
2
|
Bardi G, Boselli L, Pompa PP. Anti-inflammatory potential of platinum nanozymes: mechanisms and perspectives. NANOSCALE 2023; 15:14284-14300. [PMID: 37584343 DOI: 10.1039/d3nr03016d] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Inflammation is a complex process of the body in response to pathogen infections or dysregulated metabolism, involving the recruitment and activation of immune system components. Repeated dangerous stimuli or uncontrolled immune effector mechanisms can result in tissue injury. Reactive Oxygen Species (ROS) play key roles in physiological cell signaling as well as in the destruction of internalized pathogens. However, aberrant ROS production and release have deleterious effects on the surrounding environment, making ROS regulation a priority to reduce inflammation. Most of the current anti-inflammatory therapies rely on drugs that impair the release of pro-inflammatory mediators. Nevertheless, increasing the enzymatic activity to reduce ROS levels could be an alternative or complementary therapeutic approach to decrease inflammation. Nanozymes are nanomaterials with high catalytic activity that mimic natural enzymes, allowing biochemical reactions to take place. Such functional particles typically show different and regenerable oxidation states or catalytically reactive surfaces offering long-term activity and stability. In this scenario, platinum-based nanozymes (PtNZs) exhibit broad and efficient catalytic functionalities and can reduce inflammation mainly through ROS scavenging, e.g. by catalase and superoxide dismutase reactions. Dose-dependent biocompatibility and immune compatibility of PtNZs have been shown in different cells and tissues, both in vitro and in vivo. Size/shape/surface engineering of the nanozymes could also potentiate their efficacy to act at different sites and/or steps of the inflammation process, such as cytokine removal or specific targeting of activated leukocytes. In the present review, we analyze key inflammation triggering processes and the effects of platinum nanozymes under exemplificative inflammatory conditions. We further discuss potential platinum nanozyme design and improvements to modulate and expand their anti-inflammatory action.
Collapse
Affiliation(s)
- Giuseppe Bardi
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| | - Luca Boselli
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
3
|
Misetic H, Keddar MR, Jeannon JP, Ciccarelli FD. Mechanistic insights into the interactions between cancer drivers and the tumour immune microenvironment. Genome Med 2023; 15:40. [PMID: 37277866 DOI: 10.1186/s13073-023-01197-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/25/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND The crosstalk between cancer and the tumour immune microenvironment (TIME) has attracted significant interest in the latest years because of its impact on cancer evolution and response to treatment. Despite this, cancer-specific tumour-TIME interactions and their mechanistic insights are still poorly understood. METHODS Here, we compute the significant interactions occurring between cancer-specific genetic drivers and five anti- and pro-tumour TIME features in 32 cancer types using Lasso regularised ordinal regression. Focusing on head and neck squamous cancer (HNSC), we rebuild the functional networks linking specific TIME driver alterations to the TIME state they associate with. RESULTS The 477 TIME drivers that we identify are multifunctional genes whose alterations are selected early in cancer evolution and recur across and within cancer types. Tumour suppressors and oncogenes have an opposite effect on the TIME and the overall anti-tumour TIME driver burden is predictive of response to immunotherapy. TIME driver alterations predict the immune profiles of HNSC molecular subtypes, and perturbations in keratinization, apoptosis and interferon signalling underpin specific driver-TIME interactions. CONCLUSIONS Overall, our study delivers a comprehensive resource of TIME drivers, gives mechanistic insights into their immune-regulatory role, and provides an additional framework for patient prioritisation to immunotherapy. The full list of TIME drivers and associated properties are available at http://www.network-cancer-genes.org .
Collapse
Affiliation(s)
- Hrvoje Misetic
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
- School of Cancer and Pharmaceutical Sciences, King's College London, London, SE11UL, UK
| | - Mohamed Reda Keddar
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
- School of Cancer and Pharmaceutical Sciences, King's College London, London, SE11UL, UK
| | - Jean-Pierre Jeannon
- Department of Head & Neck Surgery, Great Maze Pond, Guy's Hospital, London, SE1 9RT, UK
| | - Francesca D Ciccarelli
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
- School of Cancer and Pharmaceutical Sciences, King's College London, London, SE11UL, UK.
| |
Collapse
|
4
|
Frings VG, Jopp L, Srivastava M, Presser D, Goebeler M, Schmidt M. Stress signaling and STAT1 activation characterize the keratinocytic gene expression pattern in Hidradenitis suppurativa. J Eur Acad Dermatol Venereol 2022; 36:2488-2498. [PMID: 35881108 DOI: 10.1111/jdv.18465] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 07/11/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND The pathogenetic factors generating the innate immune signal necessary for T cell activation, initiation and chronification of Hidradenitis suppurativa (HS, also known as Acne inversa) are still poorly understood. Emerging evidence suggests that a defective keratinocyte function critically contributes to HS disease development and progression. OBJECTIVES To elucidate the role of keratinocytes in HS lesion formation, we compared the transcriptomes of lesional and perilesional epidermis isolated from HS patients by RNA sequencing (RNA Seq). METHODS Pairwise-matched lesional and perilesional HS skin samples of five different donors were obtained and epidermal keratinocytes freshly isolated and processed for RNA extraction and RNA seq. Lesionally regulated genes were analyzed by large scale promotor analysis and functional annotation clustering to identify epidermally overrepresented transcription factor binding sites and functionally related gene groups. Results were experimentally validated with independent epidermal isolates of patient-matched lesional and perilesional HS skin employing qRT-PCR, cell culture, immunoblot, and immunostaining. RESULTS We show that HS is characterized by a strong epidermal stress state evident by a significant overrepresentation of an AP-1-driven gene signature and a substantial activation of the stress-activated cJun N-terminal kinase (JNK) pathway in lesional epidermis. Additionally, our data reveal a strong induction of STAT1 activation in lesional HS epidermis that likely results from IFNγ production and triggered expression of key inflammatory genes coordinating innate immune activation and the adaptive T cell response in HS. CONCLUSIONS Our data implicate a key role of stress signaling and JAK/STAT1 activation in disease progression of HS and suggest interference with JAK/STAT1 signaling as a potentially promising therapeutic approach for HS.
Collapse
Affiliation(s)
- V G Frings
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Germany
| | - L Jopp
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Germany
| | - M Srivastava
- Core Unit Systemmedizin (SysMed), Medical Faculty, University of Würzburg, Würzburg, Germany
| | - D Presser
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Germany
| | - M Goebeler
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Germany
| | - M Schmidt
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Germany
| |
Collapse
|
5
|
Gallegos-Alcalá P, Jiménez M, Cervantes-García D, Salinas E. The Keratinocyte as a Crucial Cell in the Predisposition, Onset, Progression, Therapy and Study of the Atopic Dermatitis. Int J Mol Sci 2021; 22:ijms221910661. [PMID: 34639001 PMCID: PMC8509070 DOI: 10.3390/ijms221910661] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022] Open
Abstract
The keratinocyte (KC) is the main functional and structural component of the epidermis, the most external layer of the skin that is highly specialized in defense against external agents, prevention of leakage of body fluids and retention of internal water within the cells. Altered epidermal barrier and aberrant KC differentiation are involved in the pathophysiology of several skin diseases, such as atopic dermatitis (AD). AD is a chronic inflammatory disease characterized by cutaneous and systemic immune dysregulation and skin microbiota dysbiosis. Nevertheless, the pathological mechanisms of this complex disease remain largely unknown. In this review, we summarize current knowledge about the participation of the KC in different aspects of the AD. We provide an overview of the genetic predisposing and environmental factors, inflammatory molecules and signaling pathways of the KC that participate in the physiopathology of the AD. We also analyze the link among the KC, the microbiota and the inflammatory response underlying acute and chronic skin AD lesions.
Collapse
Affiliation(s)
- Pamela Gallegos-Alcalá
- Department of Microbiology, Center of Basic Science, Autonomous University of Aguascalientes, Aguascalientes 20100, Mexico; (P.G.-A.); (M.J.); (D.C.-G.)
| | - Mariela Jiménez
- Department of Microbiology, Center of Basic Science, Autonomous University of Aguascalientes, Aguascalientes 20100, Mexico; (P.G.-A.); (M.J.); (D.C.-G.)
| | - Daniel Cervantes-García
- Department of Microbiology, Center of Basic Science, Autonomous University of Aguascalientes, Aguascalientes 20100, Mexico; (P.G.-A.); (M.J.); (D.C.-G.)
- National Council of Science and Technology, Ciudad de México 03940, Mexico
| | - Eva Salinas
- Department of Microbiology, Center of Basic Science, Autonomous University of Aguascalientes, Aguascalientes 20100, Mexico; (P.G.-A.); (M.J.); (D.C.-G.)
- Correspondence: ; Tel.: +52-449-9108424
| |
Collapse
|