1
|
Liu P, Chen Z, Huang J, Wang X, Chen Y, He X, Lu J, Cuifen Zhang, Xian Xiao, Ke Q, Liu Y, Zhu H, Pi Y, Sun Q, Yao Z, Kong X, Pan H. Wutou decoction: A latest review on molecular mechanisms, clinical studies, quality control, pharmacokinetic studies, pharmacological effects, toxicity, and target prediction. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119307. [PMID: 39743182 DOI: 10.1016/j.jep.2024.119307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/21/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese Medicine (TCM) has great potential and advantages in the treatment of rheumatoid arthritis (RA). Wutou decoction (WTD) was first recorded as a pill in the TCM classical book Synopsis of Prescriptions of the Golden Chamber written by Zhang Zhongjing in the Eastern Han Dynasty (25-220 CE). It has significant therapeutic effects in delaying and reversing RA while improving patients' clinical symptoms, making it the best example of TCM treatment for RA. AIM OF THE REVIEW This article reviews the clinical research, molecular mechanisms, pharmacological effects, synergistic reduction and enhancement, quality control, pharmacokinetics, chemical composition, toxicity, and core targets of WTD and its components in the treatment of RA in recent years, in order to provide a reference for future research. MATERIALS AND METHODS Use multiple internationally recognized databases (including PubMed Embase, Springer, Web of science, SciVerse ScienceDirect, Clinical Trails, CNKI and Wanfang) conducted a comprehensive literature search on keywords such as WTD, rheumatoid arthritis, TCM, clinical research, molecular biology, pharmacokinetics, etc. Use molecular docking technology to perform molecular docking on the screened core targets and active ingredients. Use databases such as TCMSP, PubMed, NCBI Gene, GenCards to screen the active ingredients and core targets for WTD treatment of RA. Use software such as AutodockTools 1.5.6 for format conversion and determination of docking pockets. RESULTS WTD is widely used in the clinical treatment of RA. In randomized controlled trials and clinical cohort studies, WTD can significantly reduce the pathological degree of RA patients, effectively reduce their visual analog scale (VAS), C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR) levels, and has a high clinical cure efficiency. In terms of molecular mechanisms, WTD can alleviate RA by regulating cell apoptosis, inhibiting the formation of vascular opacities, regulating M1 and M2 macrophages and T lymphocytes, reducing inflammatory factors, and regulating antioxidant and protein modifications. Based on the theory of "Jun Chen Zuo Shi" in traditional Chinese medicine, we have summarized the core principles of traditional Chinese medicine compatibility in WTD and its unique role in reducing toxicity and improving efficacy. Subsequently, the testing system for WTD quality control was summarized, and the accuracy and efficiency of quality control for each active ingredient under each system were analyzed. The pharmacokinetic results showed that WTD exhibits differences in the absorption and tissue distribution of its active ingredients in pathological conditions compared to healthy conditions, and has a better ability to reduce toxicity compared to a single herb. Finally, the core effective chemical components and targets of WTD for treating RA were screened and validated by molecular docking. CONCLUSION WTD is a safe and effective drug for treating RA, with high clinical and evidence-based value in the treatment of RA. However, there are also some issues that need to be addressed, and future work should focus on strengthening quality control, elucidating pharmacological and pharmacokinetic processes, and reconfirming clinical safety.
Collapse
Affiliation(s)
- Peiyu Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome /The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province, 510405, China
| | - Zhengmin Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome /The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province, 510405, China
| | - Jiayi Huang
- State Key Laboratory of Traditional Chinese Medicine Syndrome /The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province, 510405, China
| | - Xuezhen Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuqing Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome /The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province, 510405, China
| | - Xizi He
- State Key Laboratory of Traditional Chinese Medicine Syndrome /The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province, 510405, China
| | - Jiayan Lu
- State Key Laboratory of Traditional Chinese Medicine Syndrome /The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province, 510405, China
| | - Cuifen Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome /The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province, 510405, China
| | - Xian Xiao
- State Key Laboratory of Traditional Chinese Medicine Syndrome /The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province, 510405, China
| | - Qingming Ke
- State Key Laboratory of Traditional Chinese Medicine Syndrome /The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province, 510405, China
| | - Yishen Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome /The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province, 510405, China
| | - Haiqiong Zhu
- State Key Laboratory of Traditional Chinese Medicine Syndrome /The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province, 510405, China
| | - Yani Pi
- State Key Laboratory of Traditional Chinese Medicine Syndrome /The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province, 510405, China
| | - Qidi Sun
- State Key Laboratory of Traditional Chinese Medicine Syndrome /The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province, 510405, China
| | - Zhenming Yao
- Cisen Pharmaceutical Co., LTD, Shandong, 272073, China
| | - Xiao Kong
- Jihe Street Hospital in Sishui County, Shandong, 273200, China
| | - Hudan Pan
- State Key Laboratory of Traditional Chinese Medicine Syndrome /The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Province, 510405, China.
| |
Collapse
|
2
|
Huang P, Yang F, Dong R, Wen L, Zang Q, Song D, Guo J, Wang Y, Zhang R, Ren Z, Qin J, Teng J, Miao W. Cerebrospinal fluid and serum cytokine profiles in severe viral encephalitis with implications for refractory status epilepticus: a retrospective observational study. Front Immunol 2025; 16:1528763. [PMID: 39995678 PMCID: PMC11847810 DOI: 10.3389/fimmu.2025.1528763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Background To identify new intervention targets, we explored the correlation between cytokines and the development of refractory status epilepticus (RSE) in patients with severe viral encephalitis (SVE). Methods We examined the characteristics of 14 cytokines in the cerebrospinal fluid (CSF) and serum, analyzing their correlation with acute symptomatic seizures and prognosis. Furthermore, we conducted a dynamic analysis of differences and correlations in the expression of cytokines among patients with SVE without seizures, those with controlled seizures, and those with RSE. Results We included 161 patients with SVE; the incidence of seizures was 55.2%, and the mortality rate was 5.5%. Notably, 18.9% of these patients developed RSE, with a mortality rate of 20%. During the early stage of SVE, CSF interleukin (IL)-6 and IL-8 levels were significantly higher, declining over time and affecting the prognosis. CSF IL-6 and IL-8 levels were significantly elevated in the RSE group compared to patients without seizures and with controlled seizures, decreasing gradually and independently of serum cytokine levels. CSF IL-8 and age were independent risk factors for RSE, with clinical utility. Conclusions Patients with SVE exhibit intrathecal cytokine storms, primarily characterized by elevated levels of IL-6 and IL-8, which influence prognosis. The strong and persistent hyperinflammation underscored by CSF IL-6 and IL-8 is associated with the occurrence and development of RSE; thus, CSF IL-8 and age are independent risk factors for SVE with RSE, indicating potential anti-inflammatory intervention targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Wang Miao
- Neurological Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Park M, Kim YS, Song H. Macrophages: a double-edged sword in female reproduction and disorders. Exp Mol Med 2025; 57:285-297. [PMID: 39894821 PMCID: PMC11873061 DOI: 10.1038/s12276-025-01392-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/31/2024] [Accepted: 11/12/2024] [Indexed: 02/04/2025] Open
Abstract
Reproduction consists of sequential inflammation-like events, primarily within the endometrium, from ovulation to embryo implantation, decidualization and delivery. During the reproductive cycle, the endometrium repeatedly undergoes cyclic periods of proliferation, differentiation, tissue breakdown and repair without scarring. Owing to their phagocytic activity, macrophages, key players in innate immunity, are thought to play crucial roles in the endometrium. Endometrial macrophages actively participate in various stages of reproductive tissue remodeling, particularly during decidualization and pregnancy establishment. Traditionally considered simple bystanders that clear debris to prevent autoimmune responses in tissue homeostasis, macrophages are now recognized as main actors with broad functional plasticity that allows them to fine tune the balance between pro- and anti-inflammatory responses during tissue inflammation, remodeling and repair. Homeostatic balance is determined by the sum of various mediators produced by two distinctly polarized macrophage subpopulations. The biased polarization of tissue-resident macrophages may contribute to the pathogenesis of various diseases, such as inflammation and cancer. Thus, understanding how macrophages contribute to endometrial homeostasis is crucial for deciphering the underlying mechanisms of various reproductive disorders. Nanomedicines using extracellular vesicles, nanoparticles and noncoding RNAs have recently been applied to modulate macrophage polarization and alleviate disease phenotypes. Despite these advances, the functions of endometrial macrophages under physiological and pathophysiological conditions remain poorly understood, which complicates the development of targeted therapies. Here we update the current understanding of the homeostatic function of macrophages and the putative contribution of endometrial macrophage dysfunction to reproductive disorders in women, along with innovative molecular therapeutics to resolve this issue.
Collapse
Affiliation(s)
- Mira Park
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, Korea
| | - Yeon Sun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, Korea
| | - Haengseok Song
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, Korea.
- Division of Life Science, CHA University, Pocheon, Korea.
- Department of Life Science, Graduate School, CHA University, Pocheon, Korea.
- CHA Advanced Research Institute, Seongnam, Korea.
- KW-Bio Co., Chuncheon, Korea.
| |
Collapse
|
4
|
Taylor PC, Downie B, Han L, Hawtin R, Hertz A, Moots RJ, Takeuchi T. Patients with High Baseline Neutrophil-to-Lymphocyte Ratio Exhibit Better Response to Filgotinib as Treatment for Rheumatoid Arthritis. Rheumatol Ther 2024; 11:1383-1392. [PMID: 38985247 PMCID: PMC11422297 DOI: 10.1007/s40744-024-00695-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/18/2024] [Indexed: 07/11/2024] Open
Abstract
INTRODUCTION High baseline neutrophil-to-lymphocyte ratio (NLR) in rheumatoid arthritis (RA) has been associated with positive responses to biologic tumor necrosis factor inhibition and negative responses to conventional synthetic disease-modifying antirheumatic drug (csDMARD) triple therapy. Datasets from three randomized clinical trials in patients with RA were used to test the hypothesis that baseline NLR is associated with improved clinical response to filgotinib in methotrexate (MTX)-naïve or MTX-experienced RA populations. METHODS Patients from FINCH 1 (inadequate response to MTX, MTX-IR; NCT02889796), FINCH 2 (inadequate response to biologic DMARDs; NCT02873936), and FINCH 3 (MTX-naïve; NCT02886728) were classified as baseline NLR-High or baseline NLR-Low based on a previously published cut point of 2.7. In total, 3365 patients were included across the three studies. Differences in clinical outcomes and patient-reported outcomes (PROs) were determined using linear-regression models. RESULTS Control-arm patients (placebo + MTX/placebo + csDMARD) classified as NLR-High exhibited worse continuous clinical and PRO responses at week 12 across clinical trials compared to NLR-Low patients. In contrast, NLR-High patients who received FIL 200 mg + MTX/csDMARD exhibited consistently better responses after 12 weeks compared to NLR-Low patients across clinical trials, clinical endpoints, and PROs. These trends were most prominent among the MTX-IR population. CONCLUSION The 2.7 baseline NLR cut point could be used to enrich for patients most likely to benefit from the addition of filgotinib to background MTX/csDMARD. Use of baseline NLR as part of therapeutic decision-making would not require additional diagnostics and could contribute to improved outcomes for patients with RA. TRIAL REGISTRATION Clinicaltrials.gov: NCT02889796; NCT02873936; NCT02886728.
Collapse
Affiliation(s)
- Peter C Taylor
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK.
| | - Bryan Downie
- Gilead Sciences, Inc., Foster City, CA, 94404, USA
| | - Ling Han
- Gilead Sciences, Inc., Foster City, CA, 94404, USA
| | | | - Angie Hertz
- Gilead Sciences, Inc., Foster City, CA, 94404, USA
| | - Robert J Moots
- Department of Rheumatology, Aintree University Hospital, Liverpool, L9 7AL, UK
- Faculty of Health, Social Care and Medicine, Edge Hill University, Ormskirk, L39 4QP, UK
| | | |
Collapse
|
5
|
Wang DD, Song MK, Yin Q, Chen WG, Olatunji OJ, Yang K, Zuo J. Qing-Luo-Yin Eased Adjuvant-Induced Arthritis by Inhibiting SIRT1-Controlled Visfatin Production in White Adipose Tissues. J Inflamm Res 2024; 17:6691-6706. [PMID: 39345898 PMCID: PMC11438449 DOI: 10.2147/jir.s474329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Background Nicotinamide adenine dinucleotide (NAD)-dependent deacetylase SIRT1 regulates both metabolism and immune functions. This study investigated if SIRT1 inhibitory property of herbal formula Qing-Luo-Yin (QLY) contributed to its anti-rheumatic effects. Methods Adjuvant-induced arthritis (AIA) rats were treated by QLY and nicotinamide mononucleotide (NMN, a biosynthesis precursor of NAD) for 38 days. After sacrifice, blood, paws, liver and white adipose tissues (WAT) were collected. Pre-adipocytes were cultured by the rats' serum. The medium was used for monocytes culture. Some pre-adipocytes were treated by QLY-derived SIRT1 inhibitors. SIRT1 was silenced or overexpressed beforehand. The samples were subjected to kits-based quantification, polymerase-chain reaction, western-blot, immunofluorescence, and histology experiments. Results AIA rats experienced significant fat loss in liver and WAT. Expression of many SIRT1-related signals like PPARγ, PGC-1α, HSL, ATGL and CPT-1A were altered. QLY attenuated all these abnormalities and joint injuries. By pan-acetylation up-regulation, visfatin was obviously reduced in QLY-treated AIA rats' blood (from 191.8 to 127.0 pg/mL). NMN sustained SIRT1 activation by replenishing NAD, and weakened these effects. QLY-containing serum and the related compounds showed similar impacts on pre-adipocytes, resembling the changes in QLY-treated AIA rats' WAT. These treatments suppressed AIA serum-induced visfatin secretion (from 49.3 to 36.1 and 30.7 pg/mL). This effect was impaired by SIRT1 overexpression. The medium from the compounds-treated pre-adipocytes impaired NF-κB activation in AIA serum-cultured monocytes. Conclusion Besides fat depletion, SIRT1 up-regulation in rheumatic subjects' WAT promotes visfatin production, and exacerbates inflammation. SIRT1 inhibition in WAT is an anti-rheumatic way of QLY independent of immune regulation.
Collapse
Affiliation(s)
- Dan-Dan Wang
- Xin’an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, People’s Republic of China
- Department of Pharmacy, the Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Meng-Ke Song
- Xin’an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, People’s Republic of China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Qin Yin
- Xin’an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, People’s Republic of China
- Department of Pharmacy, the Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Wen-Gang Chen
- Department of Pharmacy, the Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | | | - Kui Yang
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Jian Zuo
- Xin’an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, People’s Republic of China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241000, People’s Republic of China
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, 241000, People’s Republic of China
| |
Collapse
|
6
|
Yan Q, Song C, Liu H, Li Y, Ma J, Zhao Y, Song Z, Chen Y, Zhu R, Zhang Z. Adipose-derived stem cell exosomes loaded with icariin attenuated M1 polarization of macrophages via inhibiting the TLR4/Myd88/NF-κB signaling pathway. Int Immunopharmacol 2024; 137:112448. [PMID: 38870883 DOI: 10.1016/j.intimp.2024.112448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Abnormal macrophage polarization is one of the common pathological bases of various inflammatory diseases. The current research focus involves targeting macrophages to remodel their phenotype as a treatment approach for inflammatory diseases. Notably, exosomes can be delivered to specific types of cells or tissues or inflammatory area to realize targeted drug delivery. Although icariin (ICA) exhibits regulatory potential in macrophage polarization, the practical application of ICA is impeded by its water insolubility, poor permeability, and low bioavailability. Exploiting the inherent advantages of exosomes as natural drug carriers, we introduce a novel drug delivery system-adipose-derived stem cells-exosomes (ADSCs-EXO)-ICA. High-performance liquid chromatography analysis confirmed a loading rate of 92.7 ± 0.01 % for ADSCs-EXO-ICA, indicating the successful incorporation of ICA. As demonstrated by cell counting kit-8 assays, ADSCs-EXO exerted a significantly higher promotion effect on macrophage proliferation. The subsequent experimental results revealed the superior anti-inflammatory effect of ADSCs-EXO-ICA compared to individual treatments with EXO or ICA in the lipopolysaccharide + interferon-gamma-induced M1 inflammation model. Additionally, results from enzyme-linked immunosorbent assay, quantitative polymerase chain reaction, and western blot analyses revealed that ADSCs-EXO-ICA effectively inhibited macrophage polarization toward the M1-type and concurrently promoted polarization toward the M2-type. The underlying mechanism involved the modulation of macrophage polarization through inhibition of the Toll-like receptor 4/myeloid differentiation factor 88/nuclear transcription factor-kappa B signaling pathway, thereby mitigating inflammation. These findings underscore the potential therapeutic value of ADSCs-EXO-ICA as a novel intervention for inflammatory diseases.
Collapse
Affiliation(s)
- Qiqi Yan
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Changheng Song
- Guang'anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China.
| | - Haixia Liu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yubo Li
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiayi Ma
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yukun Zhao
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiqian Song
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanjing Chen
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruyuan Zhu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Zhiguo Zhang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
7
|
Kiełbowski K, Plewa P, Bratborska AW, Bakinowska E, Pawlik A. JAK Inhibitors in Rheumatoid Arthritis: Immunomodulatory Properties and Clinical Efficacy. Int J Mol Sci 2024; 25:8327. [PMID: 39125897 PMCID: PMC11311960 DOI: 10.3390/ijms25158327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Rheumatoid arthritis (RA) is a highly prevalent autoimmune disorder. The pathogenesis of the disease is complex and involves various cellular populations, including fibroblast-like synoviocytes, macrophages, and T cells, among others. Identification of signalling pathways and molecules that actively contribute to the development of the disease is crucial to understanding the mechanisms involved in the chronic inflammatory environment present in affected joints. Recent studies have demonstrated that the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway regulates the behaviour of immune cells and contributes to the progression of RA. Several JAK inhibitors, such as tofacitinib, baricitinib, upadacitinib, and filgocitinib, have been developed, and their efficacy and safety in patients with RA have been comprehensively investigated in a number of clinical trials. Consequently, JAK inhibitors have been approved and registered as a treatment for patients with RA. In this review, we discuss the involvement of JAK/STAT signalling in the pathogenesis of RA and summarise the potential beneficial effects of JAK inhibitors in cells implicated in the pathogenesis of the disease. Moreover, we present the most important phase 3 clinical trials that evaluated the use of these agents in patients.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.)
| | - Paulina Plewa
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland;
| | | | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.)
| |
Collapse
|
8
|
Dwivedi SD, Bhoi A, Pradhan M, Sahu KK, Singh D, Singh MR. Role and uptake of metal-based nanoconstructs as targeted therapeutic carriers for rheumatoid arthritis. 3 Biotech 2024; 14:142. [PMID: 38693915 PMCID: PMC11058151 DOI: 10.1007/s13205-024-03990-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
Rheumatoid Arthritis (RA) is a chronic autoimmune systemic inflammatory disease that affects the joints and other vital organs and diminishes the quality of life. The current developments and innovative treatment options have significantly slowed disease progression and improved their quality of life. Medicaments can be delivered to the inflamed synovium via nanoparticle systems, minimizing systemic and undesirable side effects. Numerous nanoparticles such as polymeric, liposomal, and metallic nanoparticles reported are impending as a good carrier with therapeutic properties. Other issues to be considered along are nontoxicity, nanosize, charge, optical property, and ease of high surface functionalization that make them suitable carriers for drug delivery. Metallic nanoparticles (MNPs) (such as silver, gold, zinc, iron, titanium oxide, and selenium) not only act as good carrier with desired optical property, and high surface modification ability but also have their own therapeutical potential such as anti-oxidant, anti-inflammatory, and anti-arthritic properties, making them one of the most promising options for RA treatment. Regardless, cellular uptake of MNPs is one of the most significant criterions for targeting the medication. This paper discusses the numerous interactions of nanoparticles with cells, as well as cellular uptake of NPs. This review provides the mechanistic overview on MNPs involved in RA therapies and regulation anti-arthritis response such as ability to reduce oxidative stress, suppressing the release of proinflammatory cytokines and expression of LPS induced COX-2, and modulation of MAPK and PI3K pathways in Kuppfer cells and hepatic stellate cells. Despite of that MNPs have also ability to regulates enzymes like glutathione peroxidases (GPxs), thioredoxin reductases (TrxRs) and act as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Shradha Devi Dwivedi
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010 India
| | - Anita Bhoi
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, C.G 492010 India
| | - Madhulika Pradhan
- Gracious College of Pharmacy, Abhanpur Raipur, Chhattisgarh 493661 India
| | - Keshav Kant Sahu
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, C.G 492010 India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010 India
| | - Manju Rawat Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010 India
| |
Collapse
|
9
|
Hu X, Zhang Z, Long L, Gu M, Chen W, Pan B, Wu X, Wang C, Li C, Zheng L, Sheng P. Deconvolution of synovial myeloid cell subsets across pathotypes and role of COL3A1+ macrophages in rheumatoid arthritis remission. Front Immunol 2024; 15:1307748. [PMID: 38601143 PMCID: PMC11005452 DOI: 10.3389/fimmu.2024.1307748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/08/2024] [Indexed: 04/12/2024] Open
Abstract
Background Monocyte/macrophage (Mo/Mp) is a critical cell population involved in immune modulation of rheumatoid synovitis (RA) across different pathotypes. This study aims to investigate the contribution of Mo/Mp clusters to RA activity, and the biological function of particular subtypes in RA remission. Methods We integrated single-cell RNA sequencing datasets from 4 published and 1 in-house studies using Liger selected by comparison. We estimated the abundance of Mo/Mp subtypes in bulk RNA-seq data from the 81 patients of the Pathobiology of Early Arthritis Cohort (PEAC) using deconvolution analysis. Correlations between Mo/Mp subtypes and RA clinical metrics were assessed. A particular cell type was identified using multicolor immunofluorescence and flow cytometry in vivo and successfully induced from a cell line in vitro. Potential immune modulation function of it was performed using immunohistochemical staining, adhesion assay, and RT-qPCR. Results We identified 8 Mo/Mp clusters. As a particular subtype among them, COL3A1+ Mp (CD68+, COL3A1+, ACTA2-) enriched in myeloid pathotype and negatively correlated with RA severity metrics in all pathotypes. Flow cytometry and multicolor immunofluorescence evidenced the enrichment and M2-like phenotype of COL3A1+ Mp in the myeloid pathotype. Further assays suggested that COL3A1+ Mp potentially attenuates RA severity via expressing anti-inflammatory cytokines, enhancing Mp adhesion, and forming a physical barrier at the synovial lining. Conclusion This study reported unexplored associations between different pathologies and myeloid cell subtypes. We also identified a fibroblast-and-M2-like cluster named COL3A1+ Mp, which potentially contributes to synovial immune homeostasis. Targeting the development of COL3A1+ Mp may hold promise for inducing RA remission.
Collapse
Affiliation(s)
- Xuantao Hu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ziji Zhang
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lingli Long
- Research Center of Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Minghu Gu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weishen Chen
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Baiqi Pan
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyu Wu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chao Wang
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chengxin Li
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Linli Zheng
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Puyi Sheng
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Yuan R, Li J. Role of macrophages and their exosomes in orthopedic diseases. PeerJ 2024; 12:e17146. [PMID: 38560468 PMCID: PMC10979751 DOI: 10.7717/peerj.17146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
Exosomes are vesicles with a lipid bilayer structure that carry various active substances, such as proteins, DNA, non-coding RNA, and nucleic acids; these participate in the immune response, tissue formation, and cell communication. Owing to their low immunogenicity, exosomes play a key role in regulating the skeletal immune environment. Macrophages are important immune cells that swallow various cellular and tissue fragments. M1-like and M2-like macrophages differentiate to play pro-inflammatory, anti-inflammatory, and repair roles following stimulation. In recent years, the increase in the population base and the aging of the population have led to a gradual rise in orthopedic diseases, placing a heavy burden on the social medical system and making it urgent to find effective solutions. Macrophages and their exosomes have been demonstrated to be closely associated with the pathogenesis and prognosis of orthopedic diseases. An in-depth understanding of their mechanisms of action and the interaction between them will be helpful for the future clinical treatment of orthopedic diseases. This review focuses on the mechanisms of action, diagnosis, and treatment of orthopedic diseases involving macrophages and their exosomes, including fracture healing, diabetic bone damage, osteosarcoma, and rheumatoid arthritis. In addition, we discuss the prospects and major challenges faced by macrophages and their exosomes in clinical practice.
Collapse
Affiliation(s)
- Riming Yuan
- Shengjing Hospital, China Medical University, Shenyang, China
| | - Jianjun Li
- Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
11
|
Deng T, Xu J, Wang Q, Wang X, Jiao Y, Cao X, Geng Q, Zhang M, Zhao L, Xiao C. Immunomodulatory effects of curcumin on macrophage polarization in rheumatoid arthritis. Front Pharmacol 2024; 15:1369337. [PMID: 38487171 PMCID: PMC10938599 DOI: 10.3389/fphar.2024.1369337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by synovial inflammation, cartilage destruction, pannus formation and bone erosion. Various immune cells, including macrophages, are involved in RA pathogenesis. The heterogeneity and plasticity of macrophages render them pivotal regulators of both the induction and resolution of the inflammatory response. Predominantly, two different phenotypes of macrophages have been identified: classically activated M1 macrophages exacerbate inflammation via the production of cytokines, chemokines and other inflammatory mediators, while alternatively activated M2 macrophages inhibit inflammation and facilitate tissue repair. An imbalance in the M1/M2 macrophage ratio is critical during the initiation and progression of RA. Macrophage polarization is modulated by various transcription factors, epigenetic elements and metabolic reprogramming. Curcumin, an active component of turmeric, exhibits potent immunomodulatory effects and is administered in the treatment of multiple autoimmune diseases, including RA. The regulation of macrophage polarization and subsequent cytokine production as well as macrophage migration is involved in the mechanisms underlying the therapeutic effect of curcumin on RA. In this review, we summarize the underlying mechanisms by which curcumin modulates macrophage function and polarization in the context of RA to provide evidence for the clinical application of curcumin in RA treatment.
Collapse
Affiliation(s)
- Tingting Deng
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jiahe Xu
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Qiong Wang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Xing Wang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Yi Jiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoxue Cao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Qishun Geng
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Mengxiao Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Lu Zhao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
12
|
Iwasaki T, Watanabe R, Ito H, Fujii T, Ohmura K, Yoshitomi H, Murata K, Murakami K, Onishi A, Tanaka M, Matsuda S, Matsuda F, Morinobu A, Hashimoto M. Monocyte-derived transcriptomes explain the ineffectiveness of abatacept in rheumatoid arthritis. Arthritis Res Ther 2024; 26:1. [PMID: 38167328 PMCID: PMC10759752 DOI: 10.1186/s13075-023-03236-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The biological mechanisms underlying the differential response to abatacept in patients with rheumatoid arthritis (RA) are unknown. Here, we aimed to identify cellular, transcriptomic, and proteomic features that predict resistance to abatacept in patients with RA. METHODS Blood samples were collected from 22 RA patients treated with abatacept at baseline and after 3 months of treatment. Response to treatment was defined by the European League Against Rheumatism (EULAR) response criteria at 3 months, and seven patients were classified as responders and the others as non-responders. We quantified gene expression levels by RNA sequencing, 67 plasma protein levels, and the expression of surface molecules (CD3, 19, and 56) by flow cytometry. In addition, three gene expression data sets, comprising a total of 27 responders and 50 non-responders, were used to replicate the results. RESULTS Among the clinical characteristics, the number of monocytes was significantly higher in the non-responders before treatment. Cell type enrichment analysis showed that differentially expressed genes (DEGs) between responders and non-responders were enriched in monocytes. Gene set enrichment analysis, together with single-cell analysis and deconvolution analysis, identified that Toll-like receptor 5 (TLR5) and interleukin-17 receptor A (IL17RA) pathway in monocytes was upregulated in non-responders. Hepatocyte growth factor (HGF) correlated with this signature showed higher concentrations in non-responders before treatment. The DEGs in the replication set were also enriched for the genes expressed in monocytes, not for the TLR5 and IL17RA pathway but for the oxidative phosphorylation (OXPHOS) pathway. CONCLUSIONS Monocyte-derived transcriptomic features before treatment underlie the differences in abatacept efficacy in patients with RA. The pathway activated in monocytes was the TLR5 and IL17RA-HGF signature in the current study, while it was the OXPHOS pathway in the replication set. Elevated levels of HGF before treatment may serve as a potential biomarker for predicting poor responses to abatacept. These findings provide insights into the biological mechanisms of abatacept resistance, contributing valuable evidence for stratifying patients with RA.
Collapse
Grants
- Nagahama City, Shiga, Japan, Toyooka City, Hyogo, Japan, and five pharmaceutical companies (Mitsubishi Tanabe Pharma Co., Chugai Pharmaceutical Co. Ltd, UCB Japan Co. Ltd, AYUMI Pharmaceutical Co., and Asahi Kasei Pharma Corp.).
Collapse
Affiliation(s)
- Takeshi Iwasaki
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryu Watanabe
- Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan.
| | - Hiromu Ito
- Department of Orthopaedic Surgery, Kurashiki Central Hospital, Okayama, Japan
| | - Takayuki Fujii
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koichiro Ohmura
- Department of Rheumatology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Hiroyuki Yoshitomi
- Department of Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koichi Murata
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kosaku Murakami
- Division of Clinical Immunology and Cancer Immunotherapy, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Onishi
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masao Tanaka
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akio Morinobu
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Motomu Hashimoto
- Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
13
|
Zhang C, Ma P, Qin A, Wang L, Dai K, Liu Y, Zhao J, Lu Z. Current Immunotherapy Strategies for Rheumatoid Arthritis: The Immunoengineering and Delivery Systems. RESEARCH (WASHINGTON, D.C.) 2023; 6:0220. [PMID: 39902178 PMCID: PMC11789687 DOI: 10.34133/research.0220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/16/2023] [Indexed: 02/05/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease accompanied by persistent multiarticular synovitis and cartilage degradation. The present clinical treatments are limited to disease-modifying anti-rheumatic drugs (DMARDs) and aims to relieve pain and control the inflammation of RA. Despite considerable advances in the research of RA, the employment of current clinical procedure is enormous, hindered by systemic side effect, frequent administration, tolerance from long-lasting administration, and high costs. Emerging immunoengineering-based strategies, such as multiple immune-active nanotechnologies via mechanism-based immunology approaches, have been developed to improve specific targeting and to reduce adverse reactions for RA treatments. Here, we review recent studies in immunoengineering for the treatment of RA. The prospect of future immunoengineering treatment for RA has also been discussed.
Collapse
Affiliation(s)
- Chenyu Zhang
- School of Medicine, Shanghai University, Shanghai, China
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai, China
| | - An Qin
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai, China
| | - Liao Wang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kerong Dai
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Liu
- School of Medicine, Shanghai University, Shanghai, China
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai, China
| | - Zuyan Lu
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Wroński J, Ciechomska M, Kuca-Warnawin E. Impact of methotrexate treatment on vaccines immunogenicity in adult rheumatological patients - Lessons learned from the COVID-19 pandemic. Biomed Pharmacother 2023; 165:115254. [PMID: 37542854 DOI: 10.1016/j.biopha.2023.115254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023] Open
Abstract
Despite the development of new biological and synthetic targeted therapies, methotrexate remains one of the most commonly used immunomodulatory drugs in rheumatology. However, its effect on the immunogenicity of vaccines has been studied only to a limited extent until recently, resulting in the lack of clear guidelines on the use of methotrexate during vaccination. Significant progress was made during the COVID-19 pandemic due to the dynamic development of research on vaccines, including patients with autoimmune inflammatory rheumatic diseases. In the following literature review, we present a summary of what we know so far on the impact of methotrexate on post-vaccination response in adult rheumatology patients, taking into account the lessons learned from the COVID-19 pandemic. Studies on the effect of methotrexate on the immunogenicity of influenza, pneumococcal, herpes zoster, tetanus/diphtheria/pertussis, hepatitis A, yellow fever, and COVID-19 vaccines are described in detail, including the effect of methotrexate on the humoral and cellular response of individual vaccines. The available evidence for recommendations for withholding methotrexate in the post-vaccination period is presented. Lastly, an overview of potential immunological mechanisms through which MTX modulates the immunogenicity of vaccinations is also provided.
Collapse
Affiliation(s)
- Jakub Wroński
- Department of Rheumatology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland.
| | - Marzena Ciechomska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland
| | - Ewa Kuca-Warnawin
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland
| |
Collapse
|
15
|
Schmidt T, Dahlberg A, Berthold E, Król P, Arve-Butler S, Rydén E, Najibi SM, Mossberg A, Bengtsson AA, Kahn F, Månsson B, Kahn R. Synovial monocytes contribute to chronic inflammation in childhood-onset arthritis via IL-6/STAT signalling and cell-cell interactions. Front Immunol 2023; 14:1190018. [PMID: 37283752 PMCID: PMC10239926 DOI: 10.3389/fimmu.2023.1190018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Monocytes are key effector cells in inflammatory processes. We and others have previously shown that synovial monocytes in childhood-onset arthritis are activated. However, very little is known about how they contribute to disease and attain their pathological features. Therefore, we set out to investigate the functional alterations of synovial monocytes in childhood-onset arthritis, how they acquire this phenotype, and whether these mechanisms could be used to tailorize treatment. Methods The function of synovial monocytes was analysed by assays believed to reflect key pathological events, such as T-cell activation-, efferocytosis- and cytokine production assays using flow cytometry in untreated oligoarticular juvenile idiopathic arthritis (oJIA) patients (n=33). The effect of synovial fluid on healthy monocytes was investigated through mass spectrometry and functional assays. To characterize pathways induced by synovial fluid, we utilized broad-spectrum phosphorylation assays and flow cytometry, as well as inhibitors to block specific pathways. Additional effects on monocytes were studied through co-cultures with fibroblast-like synoviocytes or migration in transwell systems. Results Synovial monocytes display functional alterations with inflammatory and regulatory features, e.g., increased ability to induce T-cell activation, resistance to cytokine production following activation with LPS and increased efferocytosis. In vitro, synovial fluid from patients induced the regulatory features in healthy monocytes, such as resistance to cytokine production and increased efferocytosis. IL-6/JAK/STAT signalling was identified as the main pathway induced by synovial fluid, which also was responsible for a majority of the induced features. The magnitude of synovial IL-6 driven activation in monocytes was reflected in circulating cytokine levels, reflecting two groups of low vs. high local and systemic inflammation. Remaining features, such as an increased ability to induce T-cell activation and markers of antigen presentation, could be induced by cell-cell interactions, specifically via co-culture with fibroblast-like synoviocytes. Conclusions Synovial monocytes in childhood-onset arthritis are functionally affected and contribute to chronic inflammation, e.g., via promoting adaptive immune responses. These data support a role of monocytes in the pathogenesis of oJIA and highlight a group of patients more likely to benefit from targeting the IL-6/JAK/STAT axis to restore synovial homeostasis.
Collapse
Affiliation(s)
- Tobias Schmidt
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Alma Dahlberg
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Elisabet Berthold
- Department of Rheumatology, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Petra Król
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Sabine Arve-Butler
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Department of Rheumatology, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Emilia Rydén
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Seyed Morteza Najibi
- Department of Rheumatology, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Anki Mossberg
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Anders A. Bengtsson
- Department of Rheumatology, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Fredrik Kahn
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Bengt Månsson
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Robin Kahn
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
16
|
Ciechomska M, Roszkowski L, Burakowski T, Massalska M, Felis-Giemza A, Roura AJ. Circulating miRNA-19b as a biomarker of disease progression and treatment response to baricitinib in rheumatoid arthritis patients through miRNA profiling of monocytes. Front Immunol 2023; 14:980247. [PMID: 37056771 PMCID: PMC10086423 DOI: 10.3389/fimmu.2023.980247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
IntroductionA number of studies have demonstrated a key role of miRNA isolated from cells, tissue or body fluids as disease-specific biomarkers of autoimmune rheumatic diseases including rheumatoid arthritis (RA) and systemic sclerosis (SSc). Also, the expression level of miRNA is changing during disease development, therefore miRNA can be used as biomarkers monitoring RA progression and treatment response. In this study we have investigated the monocytes-specific miRNA that could serve as potential biomarkers of disease progression observed in sera and synovial fluids (SF) in early (eRA) and advanced (aRA) RA and in RA patients before and 3 months after selective JAK inhibitor (JAKi) -baricitinib treatment.MethodsSamples from healthy control (HC) (n=37), RA (n=44) and SSc (n=10) patients were used. MiRNA-seq of HC, RA, and SSc monocytes was performed to find versatile miRNA present in different rheumatic diseases. Selected miRNAs were validated in body fluids in eRA (<2 years disease onset) and aRA (>2 years disease onset) and RA patients receiving baricitinib.ResultsUsing miRNA-seq, we selected top 6 miRNA out of 95 that were significantly changed in both RA and SSc monocytes compared to HC. To identify circulating miRNA predicting RA progression, these 6 miRNA were measured in eRA and aRA sera and SF. Interestingly, miRNA (-19b-3p, -374a-5p, -3614-5p) were significantly increased in eRA sera vs HC and even further upregulated in SF vs aRA sera. In contrast, miRNA-29c-5p was significantly reduced in eRA sera vs HC and even further decreased in SF vs aRA sera. Kegg pathway analysis predicted that miRNA were involved in inflammatory-mediated pathways. ROC analysis demonstrated that miRNA-19b-3p (AUC=0.85, p=0.04) can be used as biomarker predicting JAKi response.DiscussionIn conclusion, we identified and validated miRNA candidates which were present simultaneously in monocytes, sera, SF and that can be used as biomarkers predicting joint inflammation and monitoring therapy response to JAKi in RA patients.
Collapse
Affiliation(s)
- Marzena Ciechomska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
- *Correspondence: Marzena Ciechomska,
| | - Leszek Roszkowski
- Department of Outpatient Clinics, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Tomasz Burakowski
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Magdalena Massalska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Anna Felis-Giemza
- Biologic Therapy Center, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Adria-Jaume Roura
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| |
Collapse
|
17
|
Wu YJ, Zhang SS, Yin Q, Lei M, Wang QH, Chen WG, Luo TT, Zhou P, Ji CL. α-Mangostin Inhibited M1 Polarization of Macrophages/Monocytes in Antigen-Induced Arthritis Mice by Up-Regulating Silent Information Regulator 1 and Peroxisome Proliferators-Activated Receptor γ Simultaneously. Drug Des Devel Ther 2023; 17:563-577. [PMID: 36860800 PMCID: PMC9969869 DOI: 10.2147/dddt.s397914] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Background α-Mangostin (MG) showed the potentials in alleviating experimental arthritis, inhibiting inflammatory polarization of macrophages/monocytes, and regulating peroxisome proliferators-activated receptor γ (PPAR-γ) and silent information regulator 1 (SIRT1) signals. The aim of this study was to analyze the correlations among the above-mentioned properties. Methods Antigen-induced arthritis (AIA) was established in mouse, which was treated with MG in combination with SIRT1/PPAR-γ inhibitors to clarify the role of the two signals in the anti-arthritic actions. Pathological changes were systematically investigated. Phenotypes of cells were investigated by flow cytometry. Expression and co-localization of SIRT1 and PPAR-γ proteins in joint tissues were observed by the immunofluorescence method. Finally, clinical implications from the synchronous up-regulation of SIRT1 and PPAR-γ were validated by experiments in vitro. Results SIRT1 and PPAR-γ inhibitors (nicotinamide and T0070097) reduced the therapeutic effects of MG on AIA mice, and abrogated MG-induced up-regulation of SIRT1/PPAR-γ and inhibition of M1 polarization in macrophages/monocytes. MG has a good binding affinity to PPAR-γ, and MG promoted the co-expression of SIRT1 and PPAR-γ in joints. Synchronously activating SIRT1 and PPAR-γ was revealed to be necessary by MG to repress inflammatory responses in THP-1 monocytes. Conclusion MG binds PPAR-γ and excites this signaling to initiate ligand-dependent anti-inflammatory activity. Due to certain unspecified signal transduction crosstalk mechanism, it then promoted SIRT1 expression and further limited inflammatory polarization of macrophages/monocytes in AIA mice.
Collapse
Affiliation(s)
- Yi-Jin Wu
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China,Xin’an Medical Research Center, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China,Vascular Diseases Research Center of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Sa-Sa Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Qin Yin
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Ming Lei
- Xin’an Medical Research Center, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Qi-Hai Wang
- School of Pharmacy, Anhui College of Traditional Chinese Medicine, Wuhu, Anhui, 241000, People’s Republic of China
| | - Wen-Gang Chen
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Ting-Ting Luo
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Peng Zhou
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230000, People’s Republic of China,Correspondence: Peng Zhou; Cong-Lan Ji, Email ;
| | - Cong-Lan Ji
- School of Pharmacy, Anhui College of Traditional Chinese Medicine, Wuhu, Anhui, 241000, People’s Republic of China,Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241000, People’s Republic of China
| |
Collapse
|
18
|
Talmon M, Percio M, Obeng JA, Ruffinatti FA, Sola D, Sainaghi PP, Bellis E, Cusinato S, Ianniello A, Fresu LG. Transcriptomic profile comparison of monocytes from rheumatoid arthritis patients in treatment with methotrexate, anti-TNFa, abatacept or tocilizumab. PLoS One 2023; 18:e0282564. [PMID: 36877690 PMCID: PMC9987802 DOI: 10.1371/journal.pone.0282564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/20/2023] [Indexed: 03/07/2023] Open
Abstract
It is well documented that patients affected by rheumatoid arthritis (RA) have distinct susceptibility to the different biologic DMARDs available on the market, probably because of the many facets of the disease. Monocytes are deeply involved in the pathogenesis of RA and we therefore evaluated and compared the transcriptomic profile of monocytes isolated from patients on treatment with methotrexate alone or in combination with tocilizumab, anti-TNFα or abatacept and from healthy donors. Whole-genome transcriptomics yielded a list of regulated genes by Rank Product statistics and DAVID was then used for functional annotation enrichment analysis. Last, data were validated by qRT-PCR. Abatacept, tocilizumab and anti-TNFa cohorts were separately compared with methotrexate, leading to the identification of 78, 6, and 436 differentially expressed genes, respectively. The upper-most ranked genes were related to inflammatory processes and immune responses. Such an approach draws the genomic profile of monocytes in treated RA patients and lays the basis for finding gene signature for tailored therapeutic choices.
Collapse
Affiliation(s)
- Maria Talmon
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | - Marcella Percio
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | - Joyce Afrakoma Obeng
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | | | - Daniele Sola
- Struttura Complessa Allergologia ed Immunologia, CAAD Ipazia, Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | - Pier Paolo Sainaghi
- Struttura Complessa Allergologia ed Immunologia, CAAD Ipazia, Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
- Department of Translational Medicine, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | - Emanuela Bellis
- Day Hospital Multidisciplinare—Struttura Complessa di Nefrologia e Dialisi, Ospedale di Borgomanero, Borgomanero, Italy
| | - Stefano Cusinato
- Day Hospital Multidisciplinare—Struttura Complessa di Nefrologia e Dialisi, Ospedale di Borgomanero, Borgomanero, Italy
| | - Aurora Ianniello
- Day Hospital Multidisciplinare—Struttura Complessa di Nefrologia e Dialisi, Ospedale di Borgomanero, Borgomanero, Italy
| | - Luigia G. Fresu
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
- * E-mail:
| |
Collapse
|
19
|
Roszkowski L, Jaszczyk B, Plebańczyk M, Ciechomska M. S100A8 and S100A12 Proteins as Biomarkers of High Disease Activity in Patients with Rheumatoid Arthritis That Can Be Regulated by Epigenetic Drugs. Int J Mol Sci 2022; 24:ijms24010710. [PMID: 36614150 PMCID: PMC9820830 DOI: 10.3390/ijms24010710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune chronic inflammatory disease that is still not well understood in terms of its pathogenesis and presents diagnostic and therapeutic challenges. Monocytes are key players in initiating and maintaining inflammation through the production of pro-inflammatory cytokines and S100 proteins in RA. This study aimed to test a specific DNA methylation inhibitor (RG108) and activator (budesonide) in the regulation of pro-inflammatory mediators-especially the S100 proteins. We also searched for new biomarkers of high disease activity in RA patients. RNA sequencing analysis of healthy controls (HCs) and RA monocytes was performed. Genes such as the S100 family, TNF, and IL-8 were validated by qRT-PCR following DNA-methylation-targeted drug treatment in a monocytic THP-1 cell line. The concentrations of the S100A8, S100A11, and S100A12 proteins in the sera and synovial fluids of RA patients were tested and correlated with clinical parameters. We demonstrated that RA monocytes had significantly increased levels of S100A8, S100A9, S100A11, S100A12, MYD88, JAK3, and IQGAP1 and decreased levels of IL10RA and TGIF1 transcripts. In addition, stimulation of THP-1 cells with budesonide statistically reduced the expression of the S100 family, IL-8, and TNF genes. In contrast, THP-1 cells treated with RG108 had increased levels of the S100 family and TNF genes. We also revealed a significant upregulation of S100A8, S100A11, and S100A12 in RA patients, especially in early RA compared to HC sera. In addition, protein levels of S100A8, S100A11, and S100A12 in RA synovial fluids compared to HC sera were significantly increased. Overall, our data suggest that the S100A8 and S100A12 proteins are strongly elevated during ongoing inflammation, so they could be used as a better biomarker of disease activity than CRP. Interestingly, epigenetic drugs can regulate these S100 proteins, suggesting their potential use in targeting RA inflammation.
Collapse
Affiliation(s)
- Leszek Roszkowski
- Department of Outpatient Clinics, National Institute of Geriatrics, Rheumatology and Rehabilitation (NIGRiR), 02-637 Warsaw, Poland
| | - Bożena Jaszczyk
- Department of Outpatient Clinics, National Institute of Geriatrics, Rheumatology and Rehabilitation (NIGRiR), 02-637 Warsaw, Poland
| | - Magdalena Plebańczyk
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation (NIGRiR), 02-637 Warsaw, Poland
| | - Marzena Ciechomska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation (NIGRiR), 02-637 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-670-95-63
| |
Collapse
|
20
|
Fukue R, Okazaki Y, Gono T, Kuwana M. Abatacept downregulates Fcγ receptor I on circulating monocytes: a potential therapeutic mechanism in patients with rheumatoid arthritis. Arthritis Res Ther 2022; 24:194. [PMID: 35964055 PMCID: PMC9375333 DOI: 10.1186/s13075-022-02886-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/03/2022] [Indexed: 11/22/2022] Open
Abstract
Background Abatacept is a recombinant fusion protein composed of the extracellular domain of cytotoxic T-lymphocyte antigen 4 and the Fc portion of immunoglobulin (Ig) G. The mechanism of action of abatacept in rheumatoid arthritis (RA) is believed to be competitive inhibition of T cell costimulation mediated by the binding of CD28 to CD80/CD86 on antigen-presenting cells, and recent studies have shown that abatacept induces reverse signaling in macrophages and osteoclast precursors in a T cell-independent manner. This study aimed to investigate the therapeutic effects of abatacept on circulating monocytes that contribute to RA pathogenesis. Methods Purified circulating monocytes derived from RA patients and controls were cultured in the absence or presence of abatacept or CD28-Ig for 24 h. The recovered cells were subjected to flow cytometry to evaluate the expression levels of cell surface molecules, and cytokines and chemokines in the culture supernatant were measured by multiplex bead arrays. The expression of candidate molecules was further examined by immunoblotting using total cellular extracts of the cultured monocytes. Finally, the effects of abatacept on cytokine production in monocytes stimulated with the immune complex of anti-citrullinated peptide antibodies (ACPAs) were examined. Results CD64/FcγRI was identified as a monocyte-derived molecule that was downregulated by abatacept but not CD28-Ig. This effect was observed in both RA patients and controls. The abatacept-induced downregulation of CD64/FcγRI was abolished by treatment with anti-CD86 antibodies but not anti-CD80 antibodies. Abatacept suppressed the production of interleukin (IL)-1β, IL-6, C-C motif chemokine ligand 2, and tumor necrosis factor-α in cultured monocytes stimulated with the ACPA immune complex. Conclusions The therapeutic effects of abatacept on RA are mediated, in part, by the downregulation of CD64/FcγRI on circulating monocytes via direct binding to CD86 and the suppression of immune complex-mediated inflammatory cytokine production. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02886-8.
Collapse
Affiliation(s)
- Ryosuke Fukue
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Yuka Okazaki
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Takahisa Gono
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Masataka Kuwana
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan.
| |
Collapse
|
21
|
Tucci G, Garufi C, Pacella I, Zagaglioni M, Pinzon Grimaldos A, Ceccarelli F, Conti F, Spinelli FR, Piconese S. Baricitinib therapy response in rheumatoid arthritis patients associates to STAT1 phosphorylation in monocytes. Front Immunol 2022; 13:932240. [PMID: 35958600 PMCID: PMC9357974 DOI: 10.3389/fimmu.2022.932240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Baricitinib is a Janus kinase (JAK) 1 and 2 inhibitor approved for treating rheumatoid arthritis (RA). The JAK/STAT system is essential in the intracellular signaling of different cytokines and in the activation process of the monocyte lineage. This study verifies the effects of baricitinib on STAT phosphorylation in monocytes of RA patients and evaluates the correlation between STAT phosphorylation and response to therapy. We evaluated the disease activity of patients (DAS28CRP) at baseline (T0) and after 4 and 12 weeks (T1–T3) of treatment with baricitinib, dividing them into responders (n = 7) and non-responders (n = 7) based on the reduction of DAS28CRP between T0 and T1 of at least 1.2 points. Through flow cytometry, STAT1 phosphorylation was analyzed at T0/T1/T3 in monocytes, at basal conditions and after IL2, IFNα, and IL6 stimulation. We showed that monocyte frequency decreased from T0 to T1 only in responders. Regarding the phosphorylation of STAT1, we observed a tendency for higher basal pSTAT1 in monocytes of non-responder patients and, after 4 weeks, a significant reduction of cytokine-induced pSTAT1 in monocytes of responders compared with non-responders. The single IFNα stimulation only partially recapitulated the differences in STAT1 phosphorylation between the two patient subgroups. Finally, responders showed an increased IFN signature at baseline compared with non-responders. These results may suggest that monocyte frequency and STAT1 phosphorylation in circulating monocytes could represent early markers of response to baricitinib therapy.
Collapse
Affiliation(s)
- Gloria Tucci
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Cristina Garufi
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Ilenia Pacella
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Marta Zagaglioni
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Alessandra Pinzon Grimaldos
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Fulvia Ceccarelli
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Fabrizio Conti
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesca Romana Spinelli
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Silvia Piconese
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
- Unità di Neuroimmunologia, IRCCS Fondazione Santa Lucia, Rome, Italy
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Rome, Italy
- *Correspondence: Silvia Piconese,
| |
Collapse
|
22
|
Martinez-Arroyo O, Ortega A, Forner MJ, Cortes R. Mesenchymal Stem Cell-Derived Extracellular Vesicles as Non-Coding RNA Therapeutic Vehicles in Autoimmune Diseases. Pharmaceutics 2022; 14:pharmaceutics14040733. [PMID: 35456567 PMCID: PMC9028692 DOI: 10.3390/pharmaceutics14040733] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/17/2022] [Accepted: 03/26/2022] [Indexed: 02/07/2023] Open
Abstract
Autoimmune diseases (ADs) are characterized by the activation of the immune system against self-antigens. More common in women than in men and with an early onset, their incidence is increasing worldwide, and this, combined with their chronic nature, is contributing to an enlarged medical and economic burden. Conventional immunosuppressive agents are designed to alleviate symptoms but do not constitute an effective therapy, highlighting a need to develop new alternatives. In this regard, mesenchymal stem cells (MSCs) have demonstrated powerful immunosuppressive and regenerative effects. MSC-derived extracellular vesicles (MSC-EVs) have shown some advantages, such as less immunogenicity, and are proposed as novel therapies for ADs. In this review, we summarize current perspectives on therapeutic options for ADs based on MSCs and MSC-EVs, focusing particularly on their mechanism of action exerted through their non-coding RNA (ncRNA) cargo. A complete state-of-the-art review was performed, centralized on some of the most severe ADs (rheumatoid arthritis, autoimmune type 1 diabetes mellitus, and systemic lupus erythematosus), giving evidence that a promising field is evolving to overcome the current knowledge and provide new therapeutic possibilities centered on MSC-EVs and their role as ncRNA delivery vehicles for AD gene therapy.
Collapse
Affiliation(s)
- Olga Martinez-Arroyo
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (O.M.-A.); (M.J.F.)
| | - Ana Ortega
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (O.M.-A.); (M.J.F.)
- Correspondence: (A.O.); (R.C.); Tel.: +34-96398-3916 (R.C.); Fax: +34-96398-7860 (R.C.)
| | - Maria J. Forner
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (O.M.-A.); (M.J.F.)
- Internal Medicine Unit, Hospital Clinico Universitario, 46010 Valencia, Spain
| | - Raquel Cortes
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (O.M.-A.); (M.J.F.)
- Correspondence: (A.O.); (R.C.); Tel.: +34-96398-3916 (R.C.); Fax: +34-96398-7860 (R.C.)
| |
Collapse
|
23
|
Martínez-Ramos S, Rafael-Vidal C, Pego-Reigosa JM, García S. Monocytes and Macrophages in Spondyloarthritis: Functional Roles and Effects of Current Therapies. Cells 2022; 11:cells11030515. [PMID: 35159323 PMCID: PMC8834543 DOI: 10.3390/cells11030515] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 01/27/2023] Open
Abstract
Spondyloarthritis (SpA) is a family of chronic inflammatory diseases, being the most prevalent ankylosing spondylitis (AS) and psoriatic arthritis (PsA). These diseases share genetic, clinical and immunological features, such as the implication of human leukocyte antigen (HLA) class I molecule 27 (HLA-B27), the inflammation of peripheral, spine and sacroiliac joints and the presence of extra-articular manifestations (psoriasis, anterior uveitis, enthesitis and inflammatory bowel disease). Monocytes and macrophages are essential cells of the innate immune system and are the first line of defence against external agents. In rheumatic diseases including SpA, the frequency and phenotypic and functional characteristics of both cell types are deregulated and are involved in the pathogenesis of these diseases. In fact, monocytes and macrophages play key roles in the inflammatory processes characteristics of SpA. The aim of this review is analysing the characteristics and functional roles of monocytes and macrophages in these diseases, as well as the impact of different current therapies on these cell types.
Collapse
Affiliation(s)
- Sara Martínez-Ramos
- Rheumatology & Immuno-Mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain; (S.M.-R.); (C.R.-V.); (J.M.P.-R.)
- Rheumatology Department, University Hospital Complex of Vigo, 36214 Vigo, Spain
| | - Carlos Rafael-Vidal
- Rheumatology & Immuno-Mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain; (S.M.-R.); (C.R.-V.); (J.M.P.-R.)
- Rheumatology Department, University Hospital Complex of Vigo, 36214 Vigo, Spain
| | - José M. Pego-Reigosa
- Rheumatology & Immuno-Mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain; (S.M.-R.); (C.R.-V.); (J.M.P.-R.)
- Rheumatology Department, University Hospital Complex of Vigo, 36214 Vigo, Spain
| | - Samuel García
- Rheumatology & Immuno-Mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain; (S.M.-R.); (C.R.-V.); (J.M.P.-R.)
- Rheumatology Department, University Hospital Complex of Vigo, 36214 Vigo, Spain
- Correspondence: ; Tel.: +34-986-217-463
| |
Collapse
|
24
|
Chen X, Zhou B, Gao Y, Wang K, Wu J, Shuai M, Men K, Duan X. Efficient Treatment of Rheumatoid Arthritis by Degradable LPCE Nano-Conjugate-Delivered p65 siRNA. Pharmaceutics 2022; 14:pharmaceutics14010162. [PMID: 35057057 PMCID: PMC8780552 DOI: 10.3390/pharmaceutics14010162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 02/05/2023] Open
Abstract
Rheumatoid arthritis (RA) is one of the most common autoimmune diseases worldwide, causing severe cartilage damage and disability. Despite the recent progress made in RA treatment, limitations remain in achieving early and efficient therapeutic intervention. Advanced therapeutic strategies are in high demand, and siRNA-based therapeutic technology with a gene-silencing ability represents a new approach for RA treatment. In this study, we created a cationic delivery micelle consisting of low-molecular-weight (LMW) polyethylenimine (PEI)–cholesterol–polyethylene glycol (PEG) (LPCE) for small interfering RNA (siRNA)-based RA gene therapy. The carrier is based on LMW PEI and modified with cholesterol and PEG. With these two modifications, the LPCE micelle becomes multifunctional, and it efficiently delivered siRNA to macrophages with a high efficiency greater than 70%. The synthesized LPCE exhibits strong siRNA protection ability and high safety. By delivering nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 siRNA, the p65 siRNA/LPCE complex efficiently inhibited macrophage-based cytokine release in vitro. Local administration of the p65 siRNA/LPCE complex exhibited a fast and potent anti-inflammatory effect against RA in a mouse model. According to the results of this study, the functionalized LPCE micelle that we prepared has potential gene therapeutic implications for RA.
Collapse
Affiliation(s)
- Xiaohua Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China; (X.C.); (Y.G.); (K.W.); (J.W.); (K.M.)
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China;
| | - Bailing Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China; (X.C.); (Y.G.); (K.W.); (J.W.); (K.M.)
- Correspondence: (B.Z.); (X.D.)
| | - Yan Gao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China; (X.C.); (Y.G.); (K.W.); (J.W.); (K.M.)
| | - Kaiyu Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China; (X.C.); (Y.G.); (K.W.); (J.W.); (K.M.)
| | - Jieping Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China; (X.C.); (Y.G.); (K.W.); (J.W.); (K.M.)
| | - Ming Shuai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China;
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China; (X.C.); (Y.G.); (K.W.); (J.W.); (K.M.)
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China;
- Correspondence: (B.Z.); (X.D.)
| |
Collapse
|
25
|
Zhu W, Dong W, Zhang S, Shuai Y. Alterations between Autophagy and Apoptosis in Alveolar Bone Mesenchymal Stem Cells under Orthodontic Force and Their Effects on Osteogenesis. J HARD TISSUE BIOL 2022. [DOI: 10.2485/jhtb.31.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Wenyin Zhu
- Department of The Third Outpatient, Nanjing Stomatological Hospital, Medical School of Nanjing University
| | - Wenrui Dong
- Department of The Third Outpatient, Nanjing Stomatological Hospital, Medical School of Nanjing University
| | - Shuangshuang Zhang
- Department of The Third Outpatient, Nanjing Stomatological Hospital, Medical School of Nanjing University
| | - Yi Shuai
- Department of Stomatology, General Hospital of Eastern Theater Command
| |
Collapse
|