1
|
Torun EG, Bağrul D, Ece İ. Recanalization and interventional stenting of a closed ductus arteriosus in pulmonary hypertension associated with von Hippel-Lindau disease: a case report. Cardiol Young 2025; 35:856-859. [PMID: 40083230 DOI: 10.1017/s1047951125001374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Pulmonary arterial hypertension remains a progressive, life-threatening condition despite advances in medical treatments. We report the first case of the interventional creation of a reverse Potts shunt by stenting a closed ductus arteriosus in a four-year-old child with right ventricular failure due to suprasystemic pulmonary arterial hypertension associated with Von Hippel-Lindau disease, unresponsive to triple anti-pulmonary arterial hypertension therapy. Following the procedure, the patient's clinical status and echocardiographic systolic and diastolic right ventricular function improved.
Collapse
Affiliation(s)
- Emine Gülşah Torun
- Department of Pediatric Cardiology, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Denizhan Bağrul
- Department of Pediatric Cardiology, Ankara Bilkent City Hospital, Ankara, Turkey
| | - İbrahim Ece
- Department of Pediatric Cardiology, Ankara Bilkent City Hospital, Ankara, Turkey
| |
Collapse
|
2
|
Berto Gomes LA, Smith OE, Bollwein H, Kowalewski MP. Dynamic Regulation of HIF1α and Oxygen-Sensing Factors in Cyclic Bovine Corpus Luteum and During LPS Challenge. Animals (Basel) 2025; 15:595. [PMID: 40003076 PMCID: PMC11851762 DOI: 10.3390/ani15040595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Understanding the corpus luteum (CL) and its role in cattle reproduction is crucial, particularly as it is a progesterone source for the establishment and maintenance of pregnancy. Reduced oxygen levels significantly impact these processes. This study investigated the effects of the luteal stage on the spatio-temporal gene expression patterns of HIF1α and oxygen-sensing factors, as well as the impact of lipopolysaccharide (LPS)-induced inflammation on these factors. Endothelial inflammatory responses were also addressed. The samples included CL collected at the early, mid, and late stages, as well as biopsies from mid-luteal stage cows treated either with saline (controls) or LPS. Samples collected in subsequent cycles assessed potential carryover effects. RT-PCR revealed upregulation of HIF1α, PHD1, PHD3, FIH, and VHL encoding genes in the mid-luteal stage. In situ hybridization revealed the compartmentalization of HIF1α and its regulators within the luteal and endothelial cells, suggesting their cell-specific roles. LPS treatment affected PHD1 and PHD3 expression, while increasing endothelial pro-inflammatory factors ICAM1 and NFκB, suggesting vascular inflammation and modulated oxygen sensing. These findings reveal new insights into the spatio-temporal expression of HIF1α-regulating factors in the CL, highlighting their potential role in controlling luteal function, detailing their cellular compartmentalization, and the effects of LPS-mediated inflammatory responses.
Collapse
Affiliation(s)
- Luiz Antonio Berto Gomes
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (L.A.B.G.); (O.E.S.)
| | - Olivia Eilers Smith
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (L.A.B.G.); (O.E.S.)
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland;
- AgroVet-Strickhof, Vetsuisse Faculty, University of Zurich, CH-8315 Eschikon, Switzerland
| | - Mariusz Pawel Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (L.A.B.G.); (O.E.S.)
- Center for Clinical Studies (ZKS), Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland
| |
Collapse
|
3
|
Ye C, Ren S, Sadula A, Guo X, Yuan M, Meng M, Li G, Zhang X, Yuan C. The expression characteristics of transmembrane protein genes in pancreatic ductal adenocarcinoma through comprehensive analysis of bulk and single-cell RNA sequence. Front Oncol 2023; 13:1047377. [PMID: 37265785 PMCID: PMC10229874 DOI: 10.3389/fonc.2023.1047377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 05/02/2023] [Indexed: 06/03/2023] Open
Abstract
Background Transmembrane (TMEM) protein genes are a class of proteins that spans membranes and function to many physiological processes. However, there is very little known about TMEM gene expression, especially in cancer tissue. Using single-cell and bulk RNA sequence may facilitate the understanding of this poorly characterized protein genes in PDAC. Methods We selected the TMEM family genes through the Human Protein Atlas and characterized their expression by single-cell and bulk transcriptomic datasets. Identification of the key TMEM genes was performed through three machine learning algorithms: LASSO, SVM-RFE and RF-SRC. Then, we established TMEM gene riskscore and estimate its implication in predicting survival and response to systematic therapy. Additionally, we explored the difference and impact of TMEM gene expression in PDAC through immunohistochemistry and cell line research. Results 5 key TMEM genes (ANO1, TMEM59, TMEM204, TMEM205, TMEM92) were selected based on the single-cell analysis and machine learning survival outcomes. Patients stratified into the high and low-risk groups based on TMEM riskscore, were observed with distinct overall survival in internal and external datasets. Moreover, through bulk RNA-sequence and immunohistochemical staining we verified the protein expression of TMEM genes in PDAC and revealed TMEM92 as an essential regulator of pancreatic cancer cell proliferation, migration, and invasion. Conclusion Our study on TMEM gene expression and behavior in PDAC has revealed unique characteristics, offering potential for precise therapeutic approaches. Insights into molecular mechanisms expand understanding of PDAC complexity and TMEM gene roles. Such knowledge may inform targeted therapy development, benefiting patients.
Collapse
Affiliation(s)
- Chen Ye
- Department of General Surgery, Peking University Third Hospital, Beijing, China
- Department of Hepatobiliary surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Siqian Ren
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | | | - Xin Guo
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Meng Yuan
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Meng Meng
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Gang Li
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Xiaowei Zhang
- Department of Hematology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Chunhui Yuan
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| |
Collapse
|
4
|
Cinque A, Minnei R, Floris M, Trevisani F. The Clinical and Molecular Features in the VHL Renal Cancers; Close or Distant Relatives with Sporadic Clear Cell Renal Cell Carcinoma? Cancers (Basel) 2022; 14:5352. [PMID: 36358771 PMCID: PMC9657498 DOI: 10.3390/cancers14215352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022] Open
Abstract
Von Hippel-Lindau (VHL) disease is an autosomal dominant inherited cancer syndrome caused by germline mutations in the VHL tumor suppressor gene, characterized by the susceptibility to a wide array of benign and malign neoplasms, including clear-cell renal cell carcinoma. Moreover, VHL somatic inactivation is a crucial molecular event also in sporadic ccRCCs tumorigenesis. While systemic biomarkers in the VHL syndrome do not currently play a role in clinical practice, a new promising class of predictive biomarkers, microRNAs, has been increasingly studied. Lots of pan-genomic studies have deeply investigated the possible biological role of microRNAs in the development and progression of sporadic ccRCC; however, few studies have investigated the miRNA profile in VHL patients. Our review summarize all the new insights related to clinical and molecular features in VHL renal cancers, with a particular focus on the overlap with sporadic ccRCC.
Collapse
Affiliation(s)
- Alessandra Cinque
- Biorek S.r.l., San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Roberto Minnei
- Nephrology, Dialysis, and Transplantation, G. Brotzu Hospital, University of Cagliari, 09134 Cagliari, Italy
| | - Matteo Floris
- Nephrology, Dialysis, and Transplantation, G. Brotzu Hospital, University of Cagliari, 09134 Cagliari, Italy
| | - Francesco Trevisani
- Biorek S.r.l., San Raffaele Scientific Institute, 20132 Milan, Italy
- Urological Research Institute, San Raffaele Scientific Institute, 20132 Milan, Italy
- Unit of Urology, San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
5
|
Hypoxia as a Modulator of Inflammation and Immune Response in Cancer. Cancers (Basel) 2022; 14:cancers14092291. [PMID: 35565420 PMCID: PMC9099524 DOI: 10.3390/cancers14092291] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
A clear association between hypoxia and cancer has heretofore been established; however, it has not been completely developed. In this sense, the understanding of the tumoral microenvironment is critical to dissect the complexity of cancer, including the reduction in oxygen distribution inside the tumoral mass, defined as tumoral hypoxia. Moreover, hypoxia not only influences the tumoral cells but also the surrounding cells, including those related to the inflammatory processes. In this review, we analyze the participation of HIF, NF-κB, and STAT signaling pathways as the main components that interconnect hypoxia and immune response and how they modulate tumoral growth. In addition, we closely examine the participation of the immune cells and how they are affected by hypoxia, the effects of the progression of cancer, and some innovative applications that take advantage of this knowledge, to suggest potential therapies. Therefore, we contribute to the understanding of the complexity of cancer to propose innovative therapeutic strategies in the future.
Collapse
|
6
|
Hudler P, Urbancic M. The Role of VHL in the Development of von Hippel-Lindau Disease and Erythrocytosis. Genes (Basel) 2022; 13:362. [PMID: 35205407 PMCID: PMC8871608 DOI: 10.3390/genes13020362] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/20/2022] Open
Abstract
Von Hippel-Lindau disease (VHL disease or VHL syndrome) is a familial multisystem neoplastic syndrome stemming from germline disease-associated variants of the VHL tumor suppressor gene on chromosome 3. VHL is involved, through the EPO-VHL-HIF signaling axis, in oxygen sensing and adaptive response to hypoxia, as well as in numerous HIF-independent pathways. The diverse roles of VHL confirm its implication in several crucial cellular processes. VHL variations have been associated with the development of VHL disease and erythrocytosis. The association between genotypes and phenotypes still remains ambiguous for the majority of mutations. It appears that there is a distinction between erythrocytosis-causing VHL variations and VHL variations causing VHL disease with tumor development. Understanding the pathogenic effects of VHL variants might better predict the prognosis and optimize management of the patient.
Collapse
Affiliation(s)
- Petra Hudler
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia;
| | - Mojca Urbancic
- Eye Hospital, University Medical Centre Ljubljana, Grabloviceva ulica 46, 1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Albiñana V, Recio-Poveda L, González-Peramato P, Martinez-Piñeiro L, Botella LM, Cuesta AM. Blockade of β2-Adrenergic Receptor Reduces Inflammation and Oxidative Stress in Clear Cell Renal Cell Carcinoma. Int J Mol Sci 2022; 23:ijms23031325. [PMID: 35163250 PMCID: PMC8835934 DOI: 10.3390/ijms23031325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 12/09/2022] Open
Abstract
Von Hippel-Lindau (VHL) syndrome is a rare inherited cancer disease where the lack of VHL protein triggers the development of multisystemic tumors such us retinal hemangioblastomas (HBs), CNS-HBs, and clear cell renal cell carcinoma (ccRCC). Since standard therapies in VHL have shown limited response, leaving surgery as the only possible treatment, targeting of the β2-adrenergic receptor (ADRB2) has shown therapeutic antitumor benefits on VHL-retinal HBs (clinical trial), VHL-CNS HBs, and VHL-ccRCC (in vitro and in vivo). In the present study, we wanted to look deep into the effects of the ADRB2 blockers propranolol and ICI-118,551 on two main aspects of cancer progression: (i) the changes on the inflammatory response of ccRCC cells; and (ii) the modulation on the Warburg effect (glycolytic metabolism), concretely, on the expression of genes involved in the cell reactive oxygen species (ROS) balance and levels. Accordingly, in vitro studies with primary VHL-ccRCC and 786-O cells measuring ROS levels, ROS-expression of detoxifying enzymes, and the expression of p65/NF-κB targets by RT-PCR were carried out. Furthermore, histological analyses of ccRCC samples from heterotopic mouse xenografts were performed. The obtained results show that ADRB2 blockade in ccRCC cells reduces the level of oxidative stress and stabilizes the inflammatory response. Thus, these data further support the idea of targeting ADRB2 as a promising strategy for the treatment of VHL and other non-VHL tumors.
Collapse
Affiliation(s)
- Virginia Albiñana
- Centro de Investigaciones Biológicas Margaritas Salas, 28040 Madrid, Spain; (V.A.); (L.R.-P.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII (Instituto de Salud Carlos III), 28029 Madrid, Spain
| | - Lucía Recio-Poveda
- Centro de Investigaciones Biológicas Margaritas Salas, 28040 Madrid, Spain; (V.A.); (L.R.-P.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII (Instituto de Salud Carlos III), 28029 Madrid, Spain
| | - Pilar González-Peramato
- Department of Pathology, La Paz University Hospital, Autonomous University of Madrid, 28029 Madrid, Spain;
| | | | - Luisa María Botella
- Centro de Investigaciones Biológicas Margaritas Salas, 28040 Madrid, Spain; (V.A.); (L.R.-P.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII (Instituto de Salud Carlos III), 28029 Madrid, Spain
- Correspondence: (L.M.B.); (A.M.C.)
| | - Angel M. Cuesta
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: (L.M.B.); (A.M.C.)
| |
Collapse
|