1
|
Lin W, Wang S, Liu R, Zhang D, Zhang J, Qi X, Li Z, Miao M, Cai X, Su G. Research progress of cPLA2 in cardiovascular diseases (Review). Mol Med Rep 2025; 31:103. [PMID: 39981923 PMCID: PMC11868774 DOI: 10.3892/mmr.2025.13468] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/28/2025] [Indexed: 02/22/2025] Open
Abstract
Cytoplasmic phospholipase A2 (cPLA2) is a vital member of the PLA2 family. Studies have demonstrated that cPLA2 plays a key role in various inflammatory‑related diseases and cancers. However, limited research has focused on cPLA2 in cardiovascular diseases. The present review discussed and summarized the research progress on cPLA2 in atherosclerosis, cardiomyopathy, myocardial ischemia‑reperfusion injury and other related conditions. It also highlighted the critical molecular mechanisms by which cPLA2 regulates the pathophysiological processes of vascular endothelial cells, platelets and myocardial cells in cardiovascular diseases. Current studies confirm that cPLA2 plays an important role in cardiovascular diseases and has the potential to become a therapeutic target for the diagnosis, treatment evaluation and prognosis of these conditions. The present review systematically explored the significant role of cPLA2 in cardiovascular diseases and elaborated on its underlying molecular mechanisms. The findings aimed to refine the theoretical understanding of cardiovascular disease pathogenesis and provide a foundation for developing novel treatment strategies.
Collapse
Affiliation(s)
- Wenyu Lin
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Shuya Wang
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Ronghan Liu
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Dan Zhang
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Jiaxing Zhang
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Xiaohan Qi
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Zheng Li
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Meng Miao
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Xiaojun Cai
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Guohai Su
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
2
|
Glaser EP, Kopper TJ, Bailey WM, Kashif HK, Kumari R, Stewart AN, Gensel JC. Cytosolic phospholipase A2 in infiltrating monocyte derived macrophages does not impair recovery after spinal cord injury in female mice. Sci Rep 2025; 15:1. [PMID: 39747330 PMCID: PMC11696740 DOI: 10.1038/s41598-024-84936-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025] Open
Abstract
Spinal cord injury (SCI) leads to permanent motor and sensory loss that is exacerbated by intraspinal inflammation and persists months to years after injury. After SCI, monocyte-derived macrophages (MDMs) infiltrate the lesion to aid in myelin-rich debris clearance. During debris clearance, MDMs adopt a proinflammatory phenotype that exacerbates neurodegeneration and hinders recovery. The underlying cause of the lipid-mediated MDM phenotype shift is unclear. Our previous work suggests that cytosolic phospholipase A2 (cPLA2) plays a role in the proinflammatory potentiating effect of myelin on macrophages in vitro. Cytosolic phospholipase A2 (cPLA2) frees arachidonic acid from phospholipids, generating eicosanoids that play an important role in inflammation, immunity, and host defense. cPLA2 is expressed in macrophages along with multiple other cell types after SCI, and cPLA2 inhibition has been reported to both reduce and exacerbate secondary injury pathology recovery. The role of cPLA2 in MDMs after SCI is not fully understood. We hypothesize that cPLA2 activation in MDMs after SCI contributes to secondary injury. Here, we report that cPLA2 plays an important role in the myelin-induced inflammatory macrophage phenotype in vitro using macrophages derived from cPLA2 knockout bone marrow. Furthermore, to investigate the role of cPLA2 in MDMs after SCI, we generated female bone marrow chimeras using cPLA2 knock-out donors and assessed locomotor recovery using the Basso Mouse Scale (BMS), CatWalk gait analysis system, and horizontal ladder task over six weeks. We also evaluated tissue sparing and intralesional axon density six weeks after injury. cPLA2 KO chimeras did not display altered locomotor recovery or tissue pathology after SCI compared to WT chimera controls. These data suggest that although cPLA2 plays a critical role in myelin-mediated potentiation of proinflammatory macrophage activation in vitro, it may not contribute to secondary injury pathology in vivo after SCI.
Collapse
Affiliation(s)
- Ethan P Glaser
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Timothy J Kopper
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave, Aurora, CO, 80045, USA
| | - William M Bailey
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Hassan K Kashif
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Reena Kumari
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Andrew N Stewart
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - John C Gensel
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
| |
Collapse
|
3
|
McGorum B, Pirie RS, Bano L, Davey T, Harris J, Montecucco C. Neurotoxic phospholipase A 2: A proposed cause of equine grass sickness and other animal dysautonomias (multiple system neuropathies). Equine Vet J 2025; 57:11-18. [PMID: 39630613 DOI: 10.1111/evj.14442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2024] [Indexed: 12/07/2024]
Affiliation(s)
- Bruce McGorum
- Royal Dick School of Veterinary Studies, University of Edinburgh, Roslin, UK
| | - R Scott Pirie
- Royal Dick School of Veterinary Studies, University of Edinburgh, Roslin, UK
| | - Luca Bano
- Istituto Zooprofilattico Sperimentale delle Venezie, Treviso, Italy
| | - Tracey Davey
- Electron Microscopy Research Services, Newcastle University, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - John Harris
- Medical Toxicology Centre and Institute of Neuroscience, Newcastle University, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Cesare Montecucco
- National Research Council Institute of Neuroscience and Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
4
|
Zhang C, Jiang F, Liu S, Ni H, Feng Z, Huang M, Lu Y, Qian Y, Shao J, Rui Q. TREM1 promotes neuroinflammation after traumatic brain injury in rats: Possible involvement of ERK/cPLA2 signalling pathway. Neuroscience 2024; 561:74-86. [PMID: 39304022 DOI: 10.1016/j.neuroscience.2024.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
The neuroinflammatory response promotes secondary brain injury after traumatic brain injury (TBI). Triggering receptor expressed on myeloid cells 1 (TREM1) is a key regulator of inflammation. However, the role of TREM1 in TBI is poorly studied. The purpose of this study was to investigate the role of TREM1 in TBI and the possible underlying mechanism. We found that the protein expression of TREM1 significantly increased after TBI in rats, and the TREM1 protein localized to microglia. Inhibition of the TREM1 protein with LP17 significantly blocked ERK phosphorylation and reduced cytoplasmic phospholipase A2 (cPLA2) protein expression and phosphorylation. In addition, LP17-mediated TREM1 inhibition significantly reduced the protein expression of iNOS and increased the protein expression of Arg1. Moreover, after TREM1 was inhibited, the secretion of the proinflammatory factors TNF-α and IL-1β was significantly reduced, while the secretion of the anti-inflammatory factors IL-4 and IL-10 was significantly increased. Additionally, inhibition of TREM1 by LP17 significantly reduced neuronal apoptosis and ameliorated nerve dysfunction in TBI model rats. In conclusion, our findings suggest that TREM1 enhances neuroinflammation and promotes neuronal apoptosis after TBI, and these effects may be partly mediated via the ERK/cPLA2 signalling pathway.
Collapse
Affiliation(s)
- Chunyan Zhang
- Department of Neurology, The Third People's Hospital of Zhangjiagang City, Suzhou 215006, China
| | - Feng Jiang
- Department of Neurosurgery, The First People's Hospital of Zhangjiagang City, Suzhou 215006, China
| | - Shengqing Liu
- Department of Neurology, The Third People's Hospital of Zhangjiagang City, Suzhou 215006, China
| | - Haibo Ni
- Department of Neurosurgery, The Fourth Affiliated Hospital of Soochow University, Suzhou 215123, China
| | - Zhanchun Feng
- Department of Neurology, The Third People's Hospital of Zhangjiagang City, Suzhou 215006, China
| | - Minye Huang
- Department of Neurology, The Third People's Hospital of Zhangjiagang City, Suzhou 215006, China
| | - Yunwei Lu
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518000, China
| | - Yinwei Qian
- Department of Neurology, The Third People's Hospital of Zhangjiagang City, Suzhou 215006, China
| | - Jianfeng Shao
- Department of Neurology, The Third People's Hospital of Zhangjiagang City, Suzhou 215006, China.
| | - Qin Rui
- Department of Center of Clinical Laboratory, The Fourth Affiliated Hospital of Soochow University, Suzhou 215123, China.
| |
Collapse
|
5
|
Lohitaksha K, Kumari D, Shukla M, Byagari L, Ashireddygari VR, Tammineni P, Reddanna P, Gorla M. Eicosanoid signaling in neuroinflammation associated with Alzheimer's disease. Eur J Pharmacol 2024; 976:176694. [PMID: 38821162 DOI: 10.1016/j.ejphar.2024.176694] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative condition affecting a substantial portion of the global population. It is marked by a complex interplay of factors, including the accumulation of amyloid plaques and tau tangles within the brain, leading to neuroinflammation and neuronal damage. Recent studies have underscored the role of free lipids and their derivatives in the initiation and progression of AD. Eicosanoids, metabolites of polyunsaturated fatty acids like arachidonic acid (AA), emerge as key players in this scenario. Remarkably, eicosanoids can either promote or inhibit the development of AD, and this multifaceted role is determined by how eicosanoid signaling influences the immune responses within the brain. However, the precise molecular mechanisms dictating the dual role of eicosanoids in AD remain elusive. In this comprehensive review, we explore the intricate involvement of eicosanoids in neuronal function and dysfunction. Furthermore, we assess the therapeutic potential of targeting eicosanoid signaling pathways as a viable strategy for mitigating or halting the progression of AD.
Collapse
Affiliation(s)
| | - Deepika Kumari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, India
| | - Manas Shukla
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Lavanya Byagari
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | - Prasad Tammineni
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Pallu Reddanna
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India; Brane Enterprises Private Limited, Hyderabad, India.
| | - Madhavi Gorla
- National Institute of Animal Biotechnology, Hyderabad, India.
| |
Collapse
|
6
|
Zhang J, Li Z, Zhang Y, Guo YL, Zhu YR, Xia WX, Dai Y, Xia YF. Mume Fructus (Prunus mume Sieb. et Zucc.) extract accelerates colonic mucosal healing of mice with colitis induced by dextran sulfate sodium through potentiation of cPLA2-mediated lysophosphatidylcholine synthesis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154985. [PMID: 37516090 DOI: 10.1016/j.phymed.2023.154985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/15/2023] [Accepted: 07/15/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND Mume Fructus (MF) is the fruit of Prunus mume Sieb. et Zucc, a plant of Rosaceae family. Previous studies demonstrated that MF was capable of ameliorating ulcerative colitis (UC) in mice, its action mechanism needs to be clarified. PURPOSE This study deciphered whether and how MF extract accelerates colonic mucosal healing, the therapeutic endpoint of UC. METHODS Biochemical, histopathological and qRT-PCR analyses were utilized to define the therapeutic efficacy of MF on dextran sulfate sodium (DSS)-induced colitis in mice. UHPLC-QTOF-MS/MS-based metabolomics technique was adopted to explore the changes of endogenous metabolites associated with UC and responses to MF intervention. qRT-PCR analysis was performed to confirm the molecular pathway in vivo. The effects of MF and lysophosphatidylcholine (LPC) on cell viability, wound healing, proliferation, and migration were examined through a series of in vitro experiments. Moreover, the effects of different subtypes of phospholipase A2 (PLA2) inhibitors on MF-treated colonic epithelial cells were detected by wound healing test and transwell assay. RESULTS Orally administered MF could alleviate colitis in mice mainly by accelerating the healing of colonic mucosa. Guided by an unbiased metabolomics screen, we identified LPC synthesis as a major modifying pathway in colitis mice after MF treatment. Notably, MF facilitated the synthesis of LPC by enhancing the expression of PLA2 in colitis mice. Mechanistically, MF and LPC accelerated wound closure by promoting cell migration. Moreover, the promotion of MF on wound healing and migration of colonic epithelial cells was blunted by a cytosolic phospholipase A2 (cPLA2) inhibitor. CONCLUSION MF can facilitate colonic mucosal healing of mice with colitis through cPLA2-mediated intestinal LPC synthesis, which may become a novel therapeutic agent of UC.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ze Li
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ying Zhang
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yi-Lei Guo
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yan-Rong Zhu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wen-Xin Xia
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Yu-Feng Xia
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
7
|
Nadalin S, Zatković L, Peitl V, Karlović D, Vidrih B, Puljić A, Pavlić SD, Buretić-Tomljanović A. Association between PLA2 gene polymorphisms and treatment response to antipsychotic medications: A study of antipsychotic-naïve first-episode psychosis patients and nonadherent chronic psychosis patients. Prostaglandins Leukot Essent Fatty Acids 2023; 194:102578. [PMID: 37290257 DOI: 10.1016/j.plefa.2023.102578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
Here we investigated whether antipsychotic treatment was influenced by three polymorphisms: rs10798059 (BanI) in the phospholipase A2 (PLA2)G4A gene, rs4375 in PLA2G6, and rs1549637 in PLA2G4C. A total of 186 antipsychotic-naïve first-episode psychosis patients or nonadherent chronic psychosis individuals (99 males and 87 females) were genotyped by polymerase chain reaction analysis/restriction fragment length polymorphism. At baseline, and after 8 weeks of treatment with various antipsychotic medications, we assessed patients' Positive and Negative Syndrome Scale (PANSS) scores, PANSS factors, and metabolic syndrome-related parameters (fasting plasma lipid and glucose levels, and body mass index). We found that PLA2G4A polymorphism influenced changes in PANSS psychopathology, and PLA2G6 polymorphism influenced changes in PANSS psychopathology and metabolic parameters. PLA2G4C polymorphism did not show any impact on PANSS psychopathology or metabolic parameters. The polymorphisms' effect sizes were estimated as moderate to strong, with contributions ranging from around 6.2-15.7%. Furthermore, the polymorphisms' effects manifested in a gender-specific manner.
Collapse
Affiliation(s)
- Sergej Nadalin
- Department of Psychiatry, General Hospital "Dr. Josip Benčević", Slavonski Brod, Croatia; School of Medicine, Catholic University of Croatia, Zagreb, Croatia.
| | - Lena Zatković
- Hospital pharmacy, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Vjekoslav Peitl
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia; Department of Psychiatry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Dalibor Karlović
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia; Department of Psychiatry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Branka Vidrih
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia; Department of Psychiatry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Antonia Puljić
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia; Department of Psychiatry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Sanja Dević Pavlić
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Alena Buretić-Tomljanović
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
8
|
Farooqui AA, Farooqui T, Sun GY, Lin TN, Teh DBL, Ong WY. COVID-19, Blood Lipid Changes, and Thrombosis. Biomedicines 2023; 11:biomedicines11041181. [PMID: 37189799 DOI: 10.3390/biomedicines11041181] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Although there is increasing evidence that oxidative stress and inflammation induced by COVID-19 may contribute to increased risk and severity of thromboses, the underlying mechanism(s) remain to be understood. The purpose of this review is to highlight the role of blood lipids in association with thrombosis events observed in COVID-19 patients. Among different types of phospholipases A2 that target cell membrane phospholipids, there is increasing focus on the inflammatory secretory phospholipase A2 IIA (sPLA2-IIA), which is associated with the severity of COVID-19. Analysis indicates increased sPLA2-IIA levels together with eicosanoids in the sera of COVID patients. sPLA2 could metabolise phospholipids in platelets, erythrocytes, and endothelial cells to produce arachidonic acid (ARA) and lysophospholipids. Arachidonic acid in platelets is metabolised to prostaglandin H2 and thromboxane A2, known for their pro-coagulation and vasoconstrictive properties. Lysophospholipids, such as lysophosphatidylcholine, could be metabolised by autotaxin (ATX) and further converted to lysophosphatidic acid (LPA). Increased ATX has been found in the serum of patients with COVID-19, and LPA has recently been found to induce NETosis, a clotting mechanism triggered by the release of extracellular fibres from neutrophils and a key feature of the COVID-19 hypercoagulable state. PLA2 could also catalyse the formation of platelet activating factor (PAF) from membrane ether phospholipids. Many of the above lipid mediators are increased in the blood of patients with COVID-19. Together, findings from analyses of blood lipids in COVID-19 patients suggest an important role for metabolites of sPLA2-IIA in COVID-19-associated coagulopathy (CAC).
Collapse
Affiliation(s)
- Akhlaq A Farooqui
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Tahira Farooqui
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Grace Y Sun
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Teng-Nan Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11929, Taiwan
| | - Daniel B L Teh
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore
- Neurobiology Research Programme, Life Sciences Institute, National University of Singapore, Singapore 119260, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore
- Neurobiology Research Programme, Life Sciences Institute, National University of Singapore, Singapore 119260, Singapore
| |
Collapse
|
9
|
Stachowicz K. The role of polyunsaturated fatty acids in neuronal signaling in depression and cognitive processes. Arch Biochem Biophys 2023; 737:109555. [PMID: 36842491 DOI: 10.1016/j.abb.2023.109555] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/03/2023] [Accepted: 02/24/2023] [Indexed: 02/26/2023]
Abstract
This study aimed to evaluate research findings on the role of polyunsaturated fatty acids (PUFAs) in neuronal signaling. Polyunsaturated fatty acids (PUFAs) are the building blocks of the brain and are responsible for the proper functioning of neurons, synapses, and neuronal communication. The deficiency of a significant component, omega-3 (ω-3) FA, in favor of omega-6 (ω-6) FA can exacerbate the course of mental illness and be one of the triggers of the cascade of neurodegenerative changes. PUFAs play an essential role in transmitting neuronal signals, affecting brain homeostasis. Physicochemical parameters of lipid layers significantly affect their functioning; interactions between lipids and proteins in brain cells are critical for mechanical stability and maintaining adequate elasticity for vesicle budding and membrane fusion. This paper discusses the role of PUFA deficiency or inappropriate ratios in brain tissue. The deficiency is a crucial element in depressive disorders and cognitive impairment, while in Alzheimer's disease, there is some controversy.
Collapse
Affiliation(s)
- Katarzyna Stachowicz
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| |
Collapse
|
10
|
Yasmeen N, Selvaraj H, Lakhawat SS, Datta M, Sharma PK, Jain A, Khanna R, Srinivasan J, Kumar V. Possibility of averting cytokine storm in SARS-COV 2 patients using specialized pro-resolving lipid mediators. Biochem Pharmacol 2023; 209:115437. [PMID: 36731803 PMCID: PMC9884647 DOI: 10.1016/j.bcp.2023.115437] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023]
Abstract
Fatal "cytokine storms (CS)" observed in critically ill COVID-19 patients are consequences of dysregulated host immune system and over-exuberant inflammatory response. Acute respiratory distress syndrome (ARDS), multi-system organ failure, and eventual death are distinctive symptoms, attributed to higher morbidity and mortality rates among these patients. Consequent efforts to save critical COVID-19 patients via the usage of several novel therapeutic options are put in force. Strategically, drugs being used in such patients are dexamethasone, remdesivir, hydroxychloroquine, etc. along with the approved vaccines. Moreover, it is certain that activation of the resolution process is important for the prevention of chronic diseases. Until recently Inflammation resolution was considered a passive process, rather it's an active biochemical process that can be achieved by the use of specialized pro-resolving mediators (SPMs). These endogenous mediators are an array of atypical lipid metabolites that include Resolvins, lipoxins, maresins, protectins, considered as immunoresolvents, but their role in COVID-19 is ambiguous. Recent evidence from studies such as the randomized clinical trial, in which omega 3 fatty acid was used as supplement to resolve inflammation in COVID-19, suggests that direct supplementation of SPMs or the use of synthetic SPM mimetics (which are still being explored) could enhance the process of resolution by regulating the aberrant inflammatory process and can be useful in pain relief and tissue remodeling. Here we discussed the biosynthesis of SPMs, & their mechanistic pathways contributing to inflammation resolution along with sequence of events leading to CS in COVID-19, with a focus on therapeutic potential of SPMs.
Collapse
Affiliation(s)
- Nusrath Yasmeen
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Harikrishnan Selvaraj
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Sudarshan S Lakhawat
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Manali Datta
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Pushpender K Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Ajay Jain
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Rakhi Khanna
- Rajasthan State Regional Forensic Science Laboratory, Kota, Rajasthan, India
| | | | - Vikram Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India.
| |
Collapse
|
11
|
Khan SA, Ilies MA. The Phospholipase A2 Superfamily: Structure, Isozymes, Catalysis, Physiologic and Pathologic Roles. Int J Mol Sci 2023; 24:ijms24021353. [PMID: 36674864 PMCID: PMC9862071 DOI: 10.3390/ijms24021353] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/23/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
The phospholipase A2 (PLA2) superfamily of phospholipase enzymes hydrolyzes the ester bond at the sn-2 position of the phospholipids, generating a free fatty acid and a lysophospholipid. The PLA2s are amphiphilic in nature and work only at the water/lipid interface, acting on phospholipid assemblies rather than on isolated single phospholipids. The superfamily of PLA2 comprises at least six big families of isoenzymes, based on their structure, location, substrate specificity and physiologic roles. We are reviewing the secreted PLA2 (sPLA2), cytosolic PLA2 (cPLA2), Ca2+-independent PLA2 (iPLA2), lipoprotein-associated PLA2 (LpPLA2), lysosomal PLA2 (LPLA2) and adipose-tissue-specific PLA2 (AdPLA2), focusing on the differences in their structure, mechanism of action, substrate specificity, interfacial kinetics and tissue distribution. The PLA2s play important roles both physiologically and pathologically, with their expression increasing significantly in diseases such as sepsis, inflammation, different cancers, glaucoma, obesity and Alzheimer's disease, which are also detailed in this review.
Collapse
|
12
|
Ni WF, Zhou KL, Zhang HJ, Chen YT, Hu XL, Cai WT, Wang XY. Functions and mechanisms of cytosolic phospholipase A 2 in central nervous system trauma. Neural Regen Res 2023; 18:258-266. [PMID: 35900400 PMCID: PMC9396495 DOI: 10.4103/1673-5374.346460] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Lauer AA, Nguyen VTT, Janitschke D, dos Santos Guilherme M, Bachmann CM, Grimm HS, Hartmann T, Endres K, Grimm MOW. The Influence of Acitretin on Brain Lipidomics in Adolescent Mice-Implications for Pediatric and Adolescent Dermatological Therapy. Int J Mol Sci 2022; 23:ijms232415535. [PMID: 36555176 PMCID: PMC9778912 DOI: 10.3390/ijms232415535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Administration of systemic retinoids such as acitretin has not been approved yet for pediatric patients. An adverse event of retinoid-therapy that occurs with lower prevalence in children than in adults is hyperlipidemia. This might be based on the lack of comorbidities in young patients, but must not be neglected. Especially for the development of the human brain up to young adulthood, dysbalance of lipids might be deleterious. Here, we provide for the first time an in-depth analysis of the influence of subchronic acitretin-administration on lipid composition of brain parenchyma of young wild type mice. For comparison and to evaluate the systemic effect of the treatment, liver lipids were analogously investigated. As expected, triglycerides increased in liver as well as in brain and a non-significant increase in cholesterol was observed. However, specifically brain showed an increase in lyso-phosphatidylcholine and carnitine as well as in sphingomyelin. Group analysis of lipid classes revealed no statistical effects, while single species were tissue-dependently changed: effects in brain were in general more subtly as compared to those in liver regarding the mere number of changed lipid species. Thus, while the overall impact of acitretin seems comparably small regarding brain, the change in individual species and their role in brain development and maturation has to be considered.
Collapse
Affiliation(s)
- Anna A. Lauer
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology, Saarland University, 66421 Homburg, Germany
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
| | - Vu Thu Thuy Nguyen
- Department of Psychiatry and Psychotherapy, University Medical Center Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Daniel Janitschke
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology, Saarland University, 66421 Homburg, Germany
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
| | - Malena dos Santos Guilherme
- Department of Psychiatry and Psychotherapy, University Medical Center Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Cornel M. Bachmann
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology, Saarland University, 66421 Homburg, Germany
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
| | - Heike S. Grimm
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology, Saarland University, 66421 Homburg, Germany
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
| | - Tobias Hartmann
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology, Saarland University, 66421 Homburg, Germany
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center Johannes Gutenberg-University, 55131 Mainz, Germany
- Correspondence: (K.E.); (M.O.W.G.); Tel.: +49-6131-17-2133 (K.E.); +49-6841-1647927 (M.O.G.)
| | - Marcus O. W. Grimm
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology, Saarland University, 66421 Homburg, Germany
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
- Correspondence: (K.E.); (M.O.W.G.); Tel.: +49-6131-17-2133 (K.E.); +49-6841-1647927 (M.O.G.)
| |
Collapse
|
14
|
Gynther M, Estrada ML, Loppi S, Korhonen P, Kanninen KM, Malm T, Koistinaho J, Auriola S, Fricker G, Puris E. Increased Expression and Activity of Brain Cortical cPLA2 Due to Chronic Lipopolysaccharide Administration in Mouse Model of Familial Alzheimer's Disease. Pharmaceutics 2022; 14:2438. [PMID: 36365256 PMCID: PMC9695895 DOI: 10.3390/pharmaceutics14112438] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 02/05/2024] Open
Abstract
Cytosolic phospholipase A2 (cPLA2) is an enzyme regulating membrane phospholipid homeostasis and the release of arachidonic acid utilized in inflammatory responses. It represents an attractive target for the treatment of Alzheimer's disease (AD). Previously, we showed that lipopolysaccharide (LPS)-induced systemic inflammation caused abnormal lipid metabolism in the brain of a transgenic AD mouse model (APdE9), which might be associated with potential changes in cPLA2 activity. Here, we investigated changes in cPLA2 expression and activity, as well as the molecular mechanisms underlying these alterations due to chronic LPS administration in the cerebral cortex of female APdE9 mice as compared to saline- and LPS-treated female wild-type mice and saline-treated APdE9 mice. The study revealed the significant effects of genotype LPS treatment on cortical cPLA2 protein expression and activity in APdE9 mice. LPS treatment resulted in nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) activation in the cortex of APdE9 mice. The gene expressions of inflammation markers Il1b and Tnfa were significantly elevated in the cortex of both APdE9 groups compared to the wild-type groups. The study provides evidence of the elevated expression and activity of cPLA2 in the brain cortex of APdE9 mice after chronic LPS treatment, which could be associated with NFkB activation.
Collapse
Affiliation(s)
- Mikko Gynther
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
| | - Mariana Leal Estrada
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
| | - Sanna Loppi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
- Department of Immunobiology, University of Arizona, 1656 E Mabel Street, Tucson, AZ 85724-5221, USA
| | - Paula Korhonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Katja M. Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
- Neuroscience Center, Helsinki Institute for Life Science, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Seppo Auriola
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
| | - Elena Puris
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
| |
Collapse
|
15
|
Rat Group IIA Secreted Phospholipase A 2 Binds to Cytochrome c Oxidase and Inhibits Its Activity: A Possible Episode in the Development of Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms232012368. [PMID: 36293221 PMCID: PMC9604285 DOI: 10.3390/ijms232012368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 01/24/2023] Open
Abstract
Alzheimer's disease (AD), a progressive form of dementia, is characterized by the increased expression of secreted phospholipase A2 group IIA (GIIA) in the affected tissue and the dysfunction of neuronal mitochondria, similar to that induced by an orthologous GIIA from snake venom, β-neurotoxic ammodytoxin (Atx), in the motor neurons. To advance our knowledge about the role of GIIA in AD, we studied the effect of rat GIIA on the neuronal mitochondria and compared it with that of the Atx. We produced recombinant rat GIIA (rGIIA) and its enzymatically inactive mutant, rGIIA(D49S), and demonstrated that they interact with the subunit II of cytochrome c oxidase (CCOX-II) as Atx. rGIIA and rGIIA(D49S) bound to this essential constituent of the respiratory chain complex with an approximately 100-fold lower affinity than Atx; nevertheless, both rGIIA molecules potently inhibited the CCOX activity in the isolated rat mitochondria. Like Atx, rGIIA was able to reach the mitochondria in the PC12 cells from the extracellular space, independent of its enzymatic activity. Consistently, the inhibition of the CCOX activity in the intact PC12 cells and in the rat's brain tissue sections was clearly demonstrated using rGIIA(D49S). Our results show that the effects of mammalian and snake venom β-neurotoxic GIIA on the neuronal mitochondria have similar molecular backgrounds. They suggest that the elevated extracellular concentration of GIIA in the AD tissue drives the translocation of this enzyme into local neurons and their mitochondria to inhibit the activity of the CCOX in the respiratory chain. Consequently, the process of oxidative phosphorylation in the neurons is attenuated, eventually leading to their degeneration. Atx was thus revealed as a valuable molecular tool for further investigations of the role of GIIA in AD.
Collapse
|
16
|
Shinto LH, Raber J, Mishra A, Roese N, Silbert LC. A Review of Oxylipins in Alzheimer's Disease and Related Dementias (ADRD): Potential Therapeutic Targets for the Modulation of Vascular Tone and Inflammation. Metabolites 2022; 12:826. [PMID: 36144230 PMCID: PMC9501361 DOI: 10.3390/metabo12090826] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 12/01/2022] Open
Abstract
There is now a convincing body of evidence from observational studies that the majority of modifiable Alzheimer's disease and related dementia (ADRD) risk factors are vascular in nature. In addition, the co-existence of cerebrovascular disease with AD is more common than AD alone, and conditions resulting in brain ischemia likely promote detrimental effects of AD pathology. Oxylipins are a class of bioactive lipid mediators derived from the oxidation of long-chain polyunsaturated fatty acids (PUFAs) which act as modulators of both vascular tone and inflammation. In vascular cognitive impairment (VCI), there is emerging evidence that oxylipins may have both protective and detrimental effects on brain structure, cognitive performance, and disease progression. In this review, we focus on oxylipin relationships with vascular and inflammatory risk factors in human studies and animal models pertinent to ADRD. In addition, we discuss future research directions with the potential to impact the trajectory of ADRD risk and disease progression.
Collapse
Affiliation(s)
- Lynne H. Shinto
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., CR120, Portland, OR 97239, USA
| | - Jacob Raber
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., CR120, Portland, OR 97239, USA
- Departments of Behavioral Neuroscience and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR 97239, USA
| | - Anusha Mishra
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., CR120, Portland, OR 97239, USA
- Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR 97239, USA
| | - Natalie Roese
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., CR120, Portland, OR 97239, USA
| | - Lisa C. Silbert
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., CR120, Portland, OR 97239, USA
- Veterans Affairs Medical Center, Portland, OR 97239, USA
| |
Collapse
|
17
|
Mangini M, D’Angelo R, Vinciguerra C, Payré C, Lambeau G, Balestrieri B, Charles JF, Mariggiò S. Multimodal regulation of the osteoclastogenesis process by secreted group IIA phospholipase A 2. Front Cell Dev Biol 2022; 10:966950. [PMID: 36105351 PMCID: PMC9467450 DOI: 10.3389/fcell.2022.966950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/25/2022] [Indexed: 01/21/2023] Open
Abstract
Increasing evidence points to the involvement of group IIA secreted phospholipase A2 (sPLA2-IIA) in pathologies characterized by abnormal osteoclast bone-resorption activity. Here, the role of this moonlighting protein has been deepened in the osteoclastogenesis process driven by the RANKL cytokine in RAW264.7 macrophages and bone-marrow derived precursor cells from BALB/cJ mice. Inhibitors with distinct selectivity toward sPLA2-IIA activities and recombinant sPLA2-IIA (wild-type or catalytically inactive forms, full-length or partial protein sequences) were instrumental to dissect out sPLA2-IIA function, in conjunction with reduction of sPLA2-IIA expression using small-interfering-RNAs and precursor cells from Pla2g2a knock-out mice. The reported data indicate sPLA2-IIA participation in murine osteoclast maturation, control of syncytium formation and resorbing activity, by mechanisms that may be both catalytically dependent and independent. Of note, these studies provide a more complete understanding of the still enigmatic osteoclast multinucleation process, a crucial step for bone-resorbing activity, uncovering the role of sPLA2-IIA interaction with a still unidentified receptor to regulate osteoclast fusion through p38 SAPK activation. This could pave the way for the design of specific inhibitors of sPLA2-IIA binding to interacting partners implicated in osteoclast syncytium formation.
Collapse
Affiliation(s)
- Maria Mangini
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Rosa D’Angelo
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Caterina Vinciguerra
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Christine Payré
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne Sophia Antipolis, France
| | - Gérard Lambeau
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne Sophia Antipolis, France
| | - Barbara Balestrieri
- Jeff and Penny Vinik Center for Translational Immunology Research, Department of Medicine, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Julia F. Charles
- Departments of Orthopaedic Surgery and Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Stefania Mariggiò
- Institute of Protein Biochemistry, National Research Council, Naples, Italy,*Correspondence: Stefania Mariggiò,
| |
Collapse
|
18
|
Ong WY, Herr DR, Sun GY, Lin TN. Anti-Inflammatory Effects of Phytochemical Components of Clinacanthus nutans. Molecules 2022; 27:molecules27113607. [PMID: 35684542 PMCID: PMC9182488 DOI: 10.3390/molecules27113607] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
Recent studies on the ethnomedicinal use of Clinacanthus nutans suggest promising anti-inflammatory, anti-tumorigenic, and antiviral properties for this plant. Extraction of the leaves with polar and nonpolar solvents has yielded many C-glycosyl flavones, including schaftoside, isoorientin, orientin, isovitexin, and vitexin. Aside from studies with different extracts, there is increasing interest to understand the properties of these components, especially regarding their ability to exert anti-inflammatory effects on cells and tissues. A major focus for this review is to obtain information on the effects of C. nutans extracts and its phytochemical components on inflammatory signaling pathways in the peripheral and central nervous system. Particular emphasis is placed on their role to target the Toll-like receptor 4 (TLR4)-NF-kB pathway and pro-inflammatory cytokines, the antioxidant defense pathway involving nuclear factor erythroid-2-related factor 2 (NRF2) and heme oxygenase 1 (HO-1); and the phospholipase A2 (PLA2) pathway linking to cyclooxygenase-2 (COX-2) and production of eicosanoids. The ability to provide a better understanding of the molecular targets and mechanism of action of C. nutans extracts and their phytochemical components should encourage future studies to develop new therapeutic strategies for better use of this herb to combat inflammatory diseases.
Collapse
Affiliation(s)
- Wei-Yi Ong
- Department of Anatomy and Neurobiology Research Programme, National University of Singapore, Singapore 119260, Singapore
- Correspondence:
| | - Deron R. Herr
- Department of Pharmacology, National University of Singapore, Singapore 119260, Singapore;
| | - Grace Y. Sun
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA;
| | - Teng-Nan Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan;
| |
Collapse
|
19
|
Kotlyarov S, Kotlyarova A. Molecular Pharmacology of Inflammation Resolution in Atherosclerosis. Int J Mol Sci 2022; 23:4808. [PMID: 35563200 PMCID: PMC9104781 DOI: 10.3390/ijms23094808] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Atherosclerosis is one of the most important problems of modern medicine as it is the leading cause of hospitalizations, disability, and mortality. The key role in the development and progression of atherosclerosis is the imbalance between the activation of inflammation in the vascular wall and the mechanisms of its control. The resolution of inflammation is the most important physiological mechanism that is impaired in atherosclerosis. The resolution of inflammation has complex, not fully known mechanisms, in which lipid mediators derived from polyunsaturated fatty acids (PUFAs) play an important role. Specialized pro-resolving mediators (SPMs) represent a group of substances that carry out inflammation resolution and may play an important role in the pathogenesis of atherosclerosis. SPMs include lipoxins, resolvins, maresins, and protectins, which are formed from PUFAs and regulate many processes related to the active resolution of inflammation. Given the physiological importance of these substances, studies examining the possibility of pharmacological effects on inflammation resolution are of interest.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
20
|
Lipid Droplets, Phospholipase A 2, Arachidonic Acid, and Atherosclerosis. Biomedicines 2021; 9:biomedicines9121891. [PMID: 34944707 PMCID: PMC8699036 DOI: 10.3390/biomedicines9121891] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/01/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023] Open
Abstract
Lipid droplets, classically regarded as static storage organelles, are currently considered as dynamic structures involved in key processes of lipid metabolism, cellular homeostasis and signaling. Studies on the inflammatory state of atherosclerotic plaques suggest that circulating monocytes interact with products released by endothelial cells and may acquire a foamy phenotype before crossing the endothelial barrier and differentiating into macrophages. One such compound released in significant amounts into the bloodstream is arachidonic acid, the common precursor of eicosanoids, and a potent inducer of neutral lipid synthesis and lipid droplet formation in circulating monocytes. Members of the family of phospholipase A2, which hydrolyze the fatty acid present at the sn-2 position of phospholipids, have recently emerged as key controllers of lipid droplet homeostasis, regulating their formation and the availability of fatty acids for lipid mediator production. In this paper we discuss recent findings related to lipid droplet dynamics in immune cells and the ways these organelles are involved in regulating arachidonic acid availability and metabolism in the context of atherosclerosis.
Collapse
|