1
|
Zhao BR, Hu XR, Wang WD, Zhou Y. Cardiorenal syndrome: clinical diagnosis, molecular mechanisms and therapeutic strategies. Acta Pharmacol Sin 2025:10.1038/s41401-025-01476-z. [PMID: 39910210 DOI: 10.1038/s41401-025-01476-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/02/2025] [Indexed: 02/07/2025]
Abstract
As the heart and kidneys are closely connected by the circulatory system, primary dysfunction of either organ usually leads to secondary dysfunction or damage to the other organ. These interactions play a major role in the pathogenesis of a clinical entity named cardiorenal syndrome (CRS). The pathophysiology of CRS is complicated and involves multiple body systems. In early studies, CRS was classified into five subtypes according to the organs associated with the vicious cycle and the acuteness and chronicity of CRS. Increasing evidence shows that CRS is associated with a variety of pathological mechanisms, such as haemodynamics, neurohormonal changes, hypervolemia, hypertension, hyperuraemia and hyperuricaemia. In this review, we summarize the classification and currently available diagnostic biomarkers of CRS. We highlight the recently revealed molecular pathogenesis of CRS, such as oxidative stress and inflammation, hyperactive renin‒angiotensin‒aldosterone system, maladaptive Wnt/β-catenin signalling pathway and profibrotic TGF‒β1/Smad signalling pathway, as well as other pathogeneses, such as dysbiosis of the gut microbiota and dysregulation of noncoding RNAs. Targeting these CRS-associated signalling pathways has new therapeutic potential for treating CRS. In addition, various chemical drugs, natural products, complementary therapies, blockers, and agonists that protect against CRS are summarized. Since the molecular mechanisms of CRS remain to be elucidated, no single intervention has been shown to be effective in treating CRS. Pharmacologic therapies designed to block CRS are urgently needed. This review presents a critical therapeutic avenue for targeting CRS and concurrently illuminates challenges and opportunities for discovering novel treatment strategies for CRS.
Collapse
Affiliation(s)
- Bo-Rui Zhao
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xin-Rong Hu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Wei-Dong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yi Zhou
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Li K, Xia X, Tong Y. Multiple roles of mitochondrial autophagy receptor FUNDC1 in mitochondrial events and kidney disease. Front Cell Dev Biol 2024; 12:1453365. [PMID: 39445333 PMCID: PMC11496291 DOI: 10.3389/fcell.2024.1453365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
This article reviews the latest research progress on the role of mitochondrial autophagy receptor FUN14 domain containing 1 (FUNDC1) in mitochondrial events and kidney disease. FUNDC1 is a protein located in the outer membrane of mitochondria, which maintains the function and quality of mitochondria by regulating mitochondrial autophagy, that is, the selective degradation process of mitochondria. The structural characteristics of FUNDC1 enable it to respond to intracellular signal changes and regulate the activity of mitochondrial autophagy through phosphorylation and dephosphorylation. During phosphorylation, unc-51-like kinase 1 (ULK1) promotes the activation of mitophagy by phosphorylating Ser17 of FUNDC1. In contrast, Src and CK2 kinases inhibit the interaction between FUNDC1 and LC3 by phosphorylating Tyr18 and Ser13, thereby inhibiting mitophagy. During dephosphorylation, PGAM5 phosphatase enhances the interaction between FUNDC1 and LC3 by dephosphorylating Ser13, thereby activating mitophagy. BCL2L1 inhibits the activity of PGAM5 by interacting with PGAM5, thereby preventing the dephosphorylation of FUNDC1 and inhibiting mitophagy. FUNDC1 plays an important role in mitochondrial events, participating in mitochondrial fission, maintaining the homeostasis of iron and proteins in mitochondrial matrix, and mediating crosstalk between mitochondria, endoplasmic reticulum and lysosomes, which have important effects on cell energy metabolism and programmed death. In the aspect of kidney disease, the abnormal function of FUNDC1 is closely related to the occurrence and development of many diseases. In acute kidney injury (AKI), cardiorenal syndrome (CRS), diabetic nephropathy (DN), chronic kidney disease (CKD) ,renal fibrosis (RF) and renal anemia, FUNDC1-mediated imbalance of mitophagy may be one of the key factors in disease progression. Therefore, in-depth study of the regulatory mechanism and function of FUNDC1 is of great significance for understanding the pathogenesis of renal disease and developing new treatment strategies.
Collapse
Affiliation(s)
- Kaiqing Li
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xue Xia
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Tong
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
3
|
Stabile J, Neres-Santos RS, Molina Hernandes ID, Cruz Junho CV, Alves GF, Silva IC, Carneiro-Ramos MS, Fürstenau CR. Renal ischemia and reperfusion impact the purinergic signaling in a vascular bed distant from the injured site. Biochimie 2024; 222:37-44. [PMID: 38360398 DOI: 10.1016/j.biochi.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/23/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
AIMS Acute kidney injury (AKI) is a public health problem and represents a risk factor for cardiovascular diseases (CVD) and vascular damage. This study aimed to investigate the impact of AKI on purinergic components in mice aorta. MAIN METHODS The kidney ischemia was achieved by the occlusion of the left kidney pedicle for 60 min, followed by reperfusion for 8 (IR8) and 15 (IR15) days. Renal function was assessed through biochemical assays, while gene expression levels were evaluated by RT-qPCR. KEY FINDINGS Analyses of renal parameters showed renal remodeling through mass loss in the left kidney and hypertrophy of the right kidney in the IR15 group. Furthermore, after 15 days, local inflammation was evidenced in the aorta. Moreover, the aorta purinergic components were significantly impacted by the renal ischemia and reperfusion model, with increases in gene expression of the pro-inflammatory purinoceptors P2Y1, P2Y2, P2Y6, and P2X4, potentially contributing to the vessel inflammation. The expression of NTPDase2 and ecto-5'-nucleotidase were also significantly increased in the aorta of the same group. In addition, both ATP and AMP hydrolysis were significantly increased in the aorta from IR15 animals, driving the entire purinergic cascade to the production of the anti-inflammatory adenosine. SIGNIFICANCE In short, this is the first time that inflammation of the aorta due to AKI was shown to have an impact on purinergic signaling components, with emphasis on the adenosinergic pathway. This seems to be closely implicated in the establishment of vascular inflammation in this model of AKI and deserves to be further investigated.
Collapse
Affiliation(s)
- Jeferson Stabile
- Laboratory of Vascular Biochemistry, Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, Brazil.
| | - Raquel Silva Neres-Santos
- Laboratory of Cardiovascular Immunology, Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, Brazil.
| | - Isabela Dorta Molina Hernandes
- Laboratory of Vascular Biochemistry, Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, Brazil.
| | - Carolina Victória Cruz Junho
- Laboratory of Cardiovascular Immunology, Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, Brazil; Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany.
| | - Geovane Felippe Alves
- Laboratory of Vascular Biochemistry, Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, Brazil.
| | - Isabella Cardoso Silva
- Laboratory of Vascular Biochemistry, Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, Brazil; Institute of Biotechnology, Federal University of Uberlândia, Patos de Minas, MG, Brazil.
| | - Marcela Sorelli Carneiro-Ramos
- Laboratory of Cardiovascular Immunology, Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, Brazil.
| | - Cristina Ribas Fürstenau
- Laboratory of Vascular Biochemistry, Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, Brazil.
| |
Collapse
|
4
|
Prem PN, Kurian GA. Does cardiac impairment develop in ischemic renal surgery in rats depending on the reperfusion time? Heliyon 2024; 10:e31389. [PMID: 38803877 PMCID: PMC11129087 DOI: 10.1016/j.heliyon.2024.e31389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
Background Renal dysfunction is known to cause heart failure. However, renal dysfunction associated with kidney surgeries (mediated by reperfusion injury) that affects the cardiac physiological function, especially during the recovery and repair phase of renal surgery is unknown. Method Male Wistar rats (238 ± 18 g) were subjected to renal sham and ischemia-reperfusion (IR-bilateral clamping for 15 min/45 min and reperfusion for 24 h/48 h/7 days) surgeries. At the end of the experiment, the heart was isolated from the animal (to exclude neurohormonal influence) and perfused for 60 min with Krebs-Hanseleit buffer to study the physiological changes. Result Renal artery bilateral occlusion for 45 min that creates ischemia, followed by 24 h of reperfusion did not impart any significant cardiac physiological functional decline but 48 h of reperfusion exhibited a significant decline in cardiac hemodynamic indices (Rate pressure product in x104 mmHg*beats/min: Sham- 3.53 ± 0.19, I45_R48-2.82 ± 0.21) with mild tissue injury. However, 7 days of reperfusion inflict significant physiological decline (Rate pressure product in x104 mmHg*beats/min - 2.5 ± 0.14) and tissue injury (Injury score- 4 ± 1.5) in isolated rat hearts. Interestingly, when the renal artery bilateral occlusion time was reduced to 15 min the changes in the hearts were negligible after 7 days. Cellular level exploration reveals a positive relation between functional deterioration of mitochondria and elevated mitochondrial oxidative stress and inflammation with cardiac physiological decline and injury linked with renal ischemia-reperfusion surgery. Conclusion Cardiac functional decline associated with renal surgery is manifested during renal repair or recovery. This decline depends on cardiac mitochondrial health, which is negatively influenced by the renal IR mediators and kidney function.
Collapse
Affiliation(s)
- Priyanka N. Prem
- Vascular Biology Lab, ASK-1, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India
- School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India
| | - Gino A. Kurian
- Vascular Biology Lab, ASK-1, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India
- School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India
| |
Collapse
|
5
|
Abstract
The management of patients with complex comorbidity involving several organ systems can use an approach focused on each organ system independently or can use an approach trying to integrate various injuries and dysfunction into a single syndrome. Cardiorenal syndromes can develop with an initial injury to either the heart or kidney and then sequential involvement of the second organ. This can occur acutely or chronically. Cardiorenal syndrome type 3 is defined by acute renal injury with subsequent cardiac injury and/or dysfunction. Studies on these patients must use strict inclusion criteria. Pavan reported information on 100 patients with acute kidney injury in India to determine the frequency of cardiorenal syndrome type 3. He excluded patients with significant prior comorbidity. The most frequent causes of acute kidney injury in these patients were drug toxicity, gastroenteritis with volume contraction, and obstetrical complications. This study included 100 patients with acute kidney injury, and 29 developed cardiorenal syndrome type 3. Important outcomes included frequent mortality and chronic renal failure. Other studies have reported that cardiorenal syndrome type 3 occurs relatively infrequently. The analysis of large data bases has demonstrated that the development of acute kidney injury in hospitalized patients has important consequences, including the development of heart failure and increased mortality, but the complexity of these cohorts makes it difficult to determine the time course for the development of multisystem disorders. The pathogenesis of cardiorenal syndrome type 3 involves mitochondrial dysfunction, immune dysregulation, and ischemia-reperfusion. Cardiac events occur secondary to fluid overload, electrolyte disorders, and uremic toxins. These patients need increased attention during hospitalization and outpatient management in an effort to slow the progression of the primary disorder and treat complications.
Collapse
Affiliation(s)
- Robin Okpara
- From the Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock Texas
| | | | | |
Collapse
|
6
|
Chen Y, Li Z, Zhang H, Chen H, Hao J, Liu H, Li X. Mitochondrial metabolism and targeted treatment strategies in ischemic-induced acute kidney injury. Cell Death Discov 2024; 10:69. [PMID: 38341438 DOI: 10.1038/s41420-024-01843-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Ischemia-reperfusion injury (IRI) is a common cause of acute kidney injury (AKI). The kidney is susceptible to IRI under several clinical conditions, including hypotension, sepsis, and surgical procedures, such as partial nephrectomy and kidney transplantation. Extensive research has been conducted on the mechanism and intervention strategies of renal IRI in past decades; however, the complex pathophysiology of IRI-induced AKI (IRI-AKI) is not fully understood, and there remains a lack of effective treatments for AKI. Renal IRI involves several processes, including reactive oxygen species (ROS) production, inflammation, and apoptosis. Mitochondria, the centers of energy metabolism, are increasingly recognized as substantial contributors to the early phases of IRI. Multiple mitochondrial lesions have been observed in the renal tubular epithelial cells (TECs) of IRI-AKI mice, and damaged or dysfunctional mitochondria are toxic to the cells because they produce ROS and release cell death factors, resulting in TEC apoptosis. In this review, we summarize the recent advances in the mitochondrial pathology in ischemic AKI and highlight promising therapeutic approaches targeting mitochondrial dysfunction to prevent or treat human ischemic AKI.
Collapse
Affiliation(s)
- Yongming Chen
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Zixian Li
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Hongyong Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhan-jiang Central Hospital, Zhanjiang, 524001, China
| | - Huixia Chen
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Junfeng Hao
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Huafeng Liu
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Xiaoyu Li
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
7
|
Falconi CA, Fogaça-Ruiz F, da Silva JV, Neres-Santos RS, Sanz CL, Nakao LS, Stinghen AEM, Junho CVC, Carneiro-Ramos MS. Renocardiac Effects of p-Cresyl Sulfate Administration in Acute Kidney Injury Induced by Unilateral Ischemia and Reperfusion Injury In Vivo. Toxins (Basel) 2023; 15:649. [PMID: 37999512 PMCID: PMC10674368 DOI: 10.3390/toxins15110649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
The precise mechanisms underlying the cardiovascular complications due to acute kidney injury (AKI) and the retention of uremic toxins like p-cresyl sulfate (PCS) remain incompletely understood. The objective of this study was to evaluate the renocardiac effects of PCS administration in animals subjected to AKI induced by ischemia and reperfusion (IR) injury. C57BL6 mice were subjected to distinct protocols: (i) administration with PCS (20, 40, or 60 mg/L/day) for 15 days and (ii) AKI due to unilateral IR injury associated with PCS administration for 15 days. The 20 mg/L dose of PCS led to a decrease in renal mass, an increase in the gene expression of Cystatin C and kidney injury molecule 1 (KIM-1), and a decrease in the α-actin in the heart. During AKI, PCS increased the renal injury biomarkers compared to control; however, it did not exacerbate these markers. Furthermore, PCS did not enhance the cardiac hypertrophy observed after 15 days of IR. An increase, but not potentialized, in the cardiac levels of interleukin (IL)-1β and IL-6 in the IR group treated with PCS, as well as in the injured kidney, was also noticed. In short, PCS administration did not intensify kidney injury, inflammation, and cardiac outcomes after AKI.
Collapse
Affiliation(s)
- Carlos Alexandre Falconi
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-170, SP, Brazil; (C.A.F.); (F.F.-R.); (J.V.d.S.); (R.S.N.-S.)
| | - Fernanda Fogaça-Ruiz
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-170, SP, Brazil; (C.A.F.); (F.F.-R.); (J.V.d.S.); (R.S.N.-S.)
| | - Jéssica Verônica da Silva
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-170, SP, Brazil; (C.A.F.); (F.F.-R.); (J.V.d.S.); (R.S.N.-S.)
| | - Raquel Silva Neres-Santos
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-170, SP, Brazil; (C.A.F.); (F.F.-R.); (J.V.d.S.); (R.S.N.-S.)
| | - Carmen Lucía Sanz
- Department of Basic Pathology, Universidade Federal do Paraná, Curitiba 81530-000, PR, Brazil; (C.L.S.); (L.S.N.)
| | - Lia Sumie Nakao
- Department of Basic Pathology, Universidade Federal do Paraná, Curitiba 81530-000, PR, Brazil; (C.L.S.); (L.S.N.)
| | - Andréa Emília Marques Stinghen
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, PR, Brazil;
| | - Carolina Victoria Cruz Junho
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-170, SP, Brazil; (C.A.F.); (F.F.-R.); (J.V.d.S.); (R.S.N.-S.)
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Marcela Sorelli Carneiro-Ramos
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-170, SP, Brazil; (C.A.F.); (F.F.-R.); (J.V.d.S.); (R.S.N.-S.)
| |
Collapse
|
8
|
Vernier ICS, Neres-Santos RS, Andrade-Oliveira V, Carneiro-Ramos MS. Immune Cells Are Differentially Modulated in the Heart and the Kidney during the Development of Cardiorenal Syndrome 3. Cells 2023; 12:605. [PMID: 36831272 PMCID: PMC9953884 DOI: 10.3390/cells12040605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/28/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Cardiorenal syndrome type 3 (CRS 3) occurs when there is an acute kidney injury (AKI) leading to the development of an acute cardiac injury. The immune system is involved in modulating the severity of kidney injury, and the role of immune system cells in the development of CRS 3 is not well established. The present work aims to characterize the macrophage and T and B lymphocyte populations in kidney and heart tissue after AKI induced by renal I/R. Thus, C57BL/6 mice were subjected to a renal I/R protocol by occlusion of the left renal pedicle (unilateral) for 60 min, followed by reperfusion for 3, 8 and 15 days. The immune cell populations of interest were identified using flow cytometry, and RT-qPCR was used to evaluate gene expression. As a result, a significant increase in TCD4+, TCD8+ lymphocytes and M1 macrophages to the renal tissue was observed, while B cells in the heart decreased. A renal tissue repair response characterized by Foxp3 activation predominated. However, a more inflammatory profile was shown in the heart tissue influenced by IL-17RA and IL-1β. In conclusion, the AKI generated by renal I/R was able to activate and recruit T and B lymphocytes and macrophages, as well as pro-inflammatory mediators to renal and cardiac tissue, showing the role of the immune system as a bridge between both organs in the context of CRS 3.
Collapse
Affiliation(s)
- Imara Caridad Stable Vernier
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, São Paulo 09210-580, Brazil
| | - Raquel Silva Neres-Santos
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, São Paulo 09210-580, Brazil
| | - Vinicius Andrade-Oliveira
- Bernardo’s Laboratory, Center of Natural and Human Sciences (CCNH), Federal University of ABC, São Paulo 09210-580, Brazil
| | - Marcela Sorelli Carneiro-Ramos
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, São Paulo 09210-580, Brazil
| |
Collapse
|
9
|
Liu Y, Guan X, Shao Y, Zhou J, Huang Y. The Molecular Mechanism and Therapeutic Strategy of Cardiorenal Syndrome Type 3. Rev Cardiovasc Med 2023; 24:52. [PMID: 39077418 PMCID: PMC11273121 DOI: 10.31083/j.rcm2402052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 07/31/2024] Open
Abstract
Cardiorenal syndrome type 3 (CRS3) is defined as acute kidney injury (AKI)-induced acute cardiac dysfunction, characterized by high morbidity and mortality. CRS3 often occurs in elderly patients with AKI who need intensive care. Approximately 70% of AKI patients develop into CRS3. CRS3 may also progress towards chronic kidney disease (CKD) and chronic cardiovascular disease (CVD). However, there is currently no effective treatment. Although the major intermediate factors that can mediate cardiac dysfunction remain elusive, recent studies have summarized the AKI biomarkers, identified direct mechanisms, including mitochondrial dysfunction, inflammation, oxidative stress, apoptosis and activation of the sympathetic nervous system (SNS) and renin-angiotensin-aldosterone system (RAAS), inflammasome, as well as indirect mechanisms such as fluid overload, electrolyte imbalances, acidemia and uremic toxins, which are involved in the pathophysiological changes of CRS3. This study reviews the main pathological characteristics, underlying molecular mechanisms, and potential therapeutic strategies of CRS3. Mitochondrial dysfunction and inflammatory factors have been identified as the key initiators and abnormal links between the impaired heart and kidney, which contribute to the formation of a vicious circle, ultimately accelerating the progression of CRS3. Therefore, targeting mitochondrial dysfunction, antioxidants, Klotho, melatonin, gene therapy, stem cells, exosomes, nanodrugs, intestinal microbiota and Traditional Chinese Medicine may serve as promising therapeutic approaches against CRS3.
Collapse
Affiliation(s)
- Yong Liu
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037 Chongqing, China
| | - Xu Guan
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037 Chongqing, China
| | - Yuming Shao
- Medical Division, Xinqiao Hospital, Army Medical University, 400037 Chongqing, China
| | - Jie Zhou
- Department of Oncology, Southwest Cancer Center, Southwest Hospital, Army Medical University, 400038 Chongqing, China
| | - Yinghui Huang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037 Chongqing, China
| |
Collapse
|
10
|
Junho CVC, González-Lafuente L, Neres-Santos RS, Navarro-García JA, Rodríguez-Sánchez E, Ruiz-Hurtado G, Carneiro-Ramos MS. Klotho relieves inflammation and exerts a cardioprotective effect during renal ischemia/reperfusion-induced cardiorenal syndrome. Biomed Pharmacother 2022; 153:113515. [DOI: 10.1016/j.biopha.2022.113515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/02/2022] Open
|
11
|
Cai C, Wu F, Zhuang B, Ou Q, Peng X, Shi N, Peng L, Li Z, Wang J, Cai S, Tan Y. Empagliflozin activates Wnt/β-catenin to stimulate FUNDC1-dependent mitochondrial quality surveillance against type-3 cardiorenal syndrome. Mol Metab 2022; 64:101553. [PMID: 35863636 PMCID: PMC9372775 DOI: 10.1016/j.molmet.2022.101553] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 12/04/2022] Open
Abstract
Objectives Cardiorenal syndrome type-3 (CRS-3) is an abrupt worsening of cardiac function secondary to acute kidney injury. Mitochondrial dysfunction is a key pathological mechanism of CRS-3, and empagliflozin can improve mitochondrial biology by promoting mitophagy. Here, we assessed the effects of empagliflozin on mitochondrial quality surveillance in a mouse model of CRS-3. Methods Cardiomyocyte-specific FUNDC1-knockout (FUNDC1CKO) mice were subjected to CRS-3 prior to assessment of mitochondrial homeostasis in the presence or absence of empagliflozin. Results CRS-3 model mice exhibited lower heart function, increased inflammatory responses and exacerbated myocardial oxidative stress than sham-operated controls; however, empagliflozin attenuated these alterations. Empagliflozin stabilized the mitochondrial membrane potential, suppressed mitochondrial reactive oxygen species production, increased mitochondrial respiratory complex activity and restored the oxygen consumption rate in cardiomyocytes from CRS-3 model mice. Empagliflozin also normalized the mitochondrial morphology, mitochondrial dynamics and mitochondrial permeability transition pore opening rate in cardiomyocytes. Cardiomyocyte-specific ablation of FUN14 domain-containing protein 1 (FUNDC1) in mice abolished the protective effects of empagliflozin on mitochondrial homeostasis and myocardial performance. Empagliflozin activated β-catenin and promoted its nuclear retention, thus increasing FUNDC1-induced mitophagy in heart tissues; however, a β-catenin inhibitor reversed these effects. Conclusions In summary, empagliflozin activated Wnt/β-catenin to stimulate FUNDC1-dependent mitochondrial quality surveillance, ultimately improving mitochondrial function and cardiac performance during CRS-3. Thus, empagliflozin could be considered for the clinical management of heart function following acute kidney injury. Empagliflozin reduces myocardial damage and improves myocardial function after CRS-3. Empagliflozin normalizes the mitochondrial structure in cardiomyocytes during CRS-3. Empagliflozin attenuates cardiomyocyte mitochondrial dysfunction during CRS-3. Empagliflozin activates FUNDC1-dependent mitophagy and preserves mitochondrial integrity in the heart during CRS-3. Loss of FUNDC1 abolishes the cardioprotective effects of empagliflozin during CRS-3.
Collapse
Affiliation(s)
- Chen Cai
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Feng Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Bingjie Zhuang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qing Ou
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaojie Peng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Nengxian Shi
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Lan Peng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Ziying Li
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jin Wang
- Department of Vascular Medicine, Peking University Shougang Hospital, Beijing 100144, China.
| | - Shumin Cai
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Ying Tan
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
12
|
Junho CVC, González-Lafuente L, Navarro-García JA, Rodríguez-Sánchez E, Carneiro-Ramos MS, Ruiz-Hurtado G. Unilateral Acute Renal Ischemia-Reperfusion Injury Induces Cardiac Dysfunction through Intracellular Calcium Mishandling. Int J Mol Sci 2022; 23:ijms23042266. [PMID: 35216382 PMCID: PMC8879526 DOI: 10.3390/ijms23042266] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Acute renal failure (ARF) following renal ischemia-reperfusion (I/R) injury is considered a relevant risk factor for cardiac damage, but the underlying mechanisms, particularly those triggered at cardiomyocyte level, are unknown. Methods: We examined intracellular Ca2+ dynamics in adult ventricular cardiomyocytes isolated from C57BL/6 mice 7 or 15 days following unilateral renal I/R. Results: After 7 days of I/R, the cell contraction was significantly lower in cardiomyocytes compared to sham-treated mice. It was accompanied by a significant decrease in both systolic Ca2+ transients and sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) activity measured as Ca2+ transients decay. Moreover, the incidence of pro-arrhythmic events, measured as the number of Ca2+ sparks, waves or automatic Ca2+ transients, was greater in cardiomyocytes from mice 7 days after I/R than from sham-treated mice. Ca2+ mishandling related to systolic Ca2+ transients and contraction were recovered to sham values 15 days after I/R, but Ca2+ sparks frequency and arrhythmic events remained elevated. Conclusions: Renal I/R injury causes a cardiomyocyte Ca2+ cycle dysfunction at medium (contraction-relaxation dysfunction) and long term (Ca2+ leak), after 7 and 15 days of renal reperfusion, respectively.
Collapse
Affiliation(s)
- Carolina Victoria Cruz Junho
- Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-580, SP, Brazil;
- Cardiorenal Translational Laboratory, Institute of Research Imas12, Hospital Universitario 12 de Octubre, Community of Madrid, 28041 Madrid, Spain; (L.G.-L.); (J.A.N.-G.); (E.R.-S.)
| | - Laura González-Lafuente
- Cardiorenal Translational Laboratory, Institute of Research Imas12, Hospital Universitario 12 de Octubre, Community of Madrid, 28041 Madrid, Spain; (L.G.-L.); (J.A.N.-G.); (E.R.-S.)
| | - José Alberto Navarro-García
- Cardiorenal Translational Laboratory, Institute of Research Imas12, Hospital Universitario 12 de Octubre, Community of Madrid, 28041 Madrid, Spain; (L.G.-L.); (J.A.N.-G.); (E.R.-S.)
| | - Elena Rodríguez-Sánchez
- Cardiorenal Translational Laboratory, Institute of Research Imas12, Hospital Universitario 12 de Octubre, Community of Madrid, 28041 Madrid, Spain; (L.G.-L.); (J.A.N.-G.); (E.R.-S.)
| | - Marcela Sorelli Carneiro-Ramos
- Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-580, SP, Brazil;
- Correspondence: (M.S.C.-R.); (G.R.-H.); Tel.: +34-913908001 (G.R.-H.)
| | - Gema Ruiz-Hurtado
- Cardiorenal Translational Laboratory, Institute of Research Imas12, Hospital Universitario 12 de Octubre, Community of Madrid, 28041 Madrid, Spain; (L.G.-L.); (J.A.N.-G.); (E.R.-S.)
- CIBER-CV, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Correspondence: (M.S.C.-R.); (G.R.-H.); Tel.: +34-913908001 (G.R.-H.)
| |
Collapse
|