1
|
Turlej E, Domaradzka A, Radzka J, Drulis-Fajdasz D, Kulbacka J, Gizak A. Cross-Talk Between Cancer and Its Cellular Environment-A Role in Cancer Progression. Cells 2025; 14:403. [PMID: 40136652 PMCID: PMC11940884 DOI: 10.3390/cells14060403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
The tumor microenvironment is a dynamic and complex three-dimensional network comprising the extracellular matrix and diverse non-cancerous cells, including fibroblasts, adipocytes, endothelial cells and various immune cells (lymphocytes T and B, NK cells, dendritic cells, monocytes/macrophages, myeloid-derived suppressor cells, and innate lymphoid cells). A constantly and rapidly growing number of studies highlight the critical role of these cells in shaping cancer survival, metastatic potential and therapy resistance. This review provides a synthesis of current knowledge on the modulating role of the cellular microenvironment in cancer progression and response to treatment.
Collapse
Affiliation(s)
- Eliza Turlej
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Aleksandra Domaradzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Justyna Radzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Dominika Drulis-Fajdasz
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Julita Kulbacka
- Departament of Molecular and Cellular Biology, Faculty of Pharmacy, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland;
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Agnieszka Gizak
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| |
Collapse
|
2
|
Li C, Zhou M, Li Y, Jia H, Huang L. Engineered IL-21-Expressing Nanovesicles for Co-Delivery of GOX and Ferrocene to Induce Synergistic Anti-Tumor Effects. Adv Healthc Mater 2025; 14:e2403477. [PMID: 39763117 DOI: 10.1002/adhm.202403477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/20/2024] [Indexed: 03/04/2025]
Abstract
Glucose oxidase (GOX)-induced starvation is a safe treatment for tumor. However, the non-specific targeting of GOX and the plasticity of tumor metabolism lead to toxic side effects and low tumor mortality. Thus, it is necessary to develop a synergistic strategy with high tumor targeting specificity to enhance the mortality of GOX. In this study, a genetically engineered CD44 targeting peptide (CP) and IL-21 fusion protein-displaying nanovesicles platform (mCP@IL21-Fc-GOX) are designed to efficiently encapsulate GOX and ferrocene (Fc). After reaching the tumor site, IL-21 can be precisely released and targeted to NK cells through the cleavage of MMP-2, thus achieving precise anti-tumor immunotherapy of IL-21. Second, the exposed CP enable mCP-Fc-GOX to be further targeted to tumor cells, completing the synergistic anti-cancer effects of starvation and chemodynamic therapy (CDT) triggered by GOX and Fc. In situ breast cancer models, the results show that mCP@IL21-Fc-GOX not only enhances NK and T cells aggregation in tumor tissue but also achieves precise nutrition deprivation and abundant reactive oxygen species production, thus significantly inhibits tumor growth based on the synergistic function of the immunotherapy, starvation and CDT. Therefore, this work provides a smart nanovesicle platform for achieving precise and safe synergistic anti-tumor therapy.
Collapse
Affiliation(s)
- Chao Li
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Mengyang Zhou
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Yang Li
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Haojie Jia
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Lin Huang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| |
Collapse
|
3
|
Zhang YT, Wei YN, Liu CC, Yang MQ. Bibliometric analysis: a study of the microenvironment in cervical cancer (2000-2024). Front Oncol 2025; 15:1508173. [PMID: 40083880 PMCID: PMC11903265 DOI: 10.3389/fonc.2025.1508173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/06/2025] [Indexed: 03/16/2025] Open
Abstract
Objective The incidence of cervical cancer has increased in recent years. The tumor microenvironment (TME) is the local biological environment involved in tumor occurrence and development. This study aimed to conduct a comprehensive analysis of the global research on the TME in cervical cancer (CC), providing a knowledge framework in this field from a holistic and systematic perspective based on a bibliometric analysis. Methods Studies focusing on the TME in cervical cancer were searched using the Web of Science Core Collection database. The annual output, cooperation, hotspots, research status, and development trends in this field were analyzed using bibliometric softwares (VOSviewer and CiteSpace). Results A total of 1,057 articles published between 2000 and 2024 were selected. The number of publications and citations has recently increased. Cooperation network analysis indicated that China holds the foremost position in research on the TME in cervical cancer with the highest volume of publications, thus exerting the greatest influence. Fudan University had the highest output. Frontiers in Oncology showed the highest degree of productivity in this field. Rofstad, Einar K. made the most article contributions and was the most co-cited author. Four clusters were obtained after a cluster analysis of the keywords: TME, cervical cancer, immunotherapy, and prognosis. Immunotherapy, human papillomavirus, and biomarkers were relatively recent keywords that attracted increasing attention from researchers. Discussion This bibliometric analysis provides a data-based and objective introduction to the TME of cervical cancer, and offers readers a valuable reference for future research. Conclusions Comprehensive research in this field was mainly distributed in the TME of cervical cancer through the analysis of keywords and documents. Sufficient evidence supports mechanism research and application exploration. Further research should explore new topics related to the TME of cervical cancer.
Collapse
Affiliation(s)
- Yun-Tao Zhang
- Department of Obstetrics, Changyi People’s Hospital, Changyi, Shandong, China
| | - Yan-Ni Wei
- Faculty of Health Management, Weifang Nursing Vocational College, Weifang, Shandong, China
| | - Chen-Chen Liu
- Department of Pathology, Weifang People’s Hospital (First Affiliated Hospital of Shandong Second Medical University), Weifang, Shandong, China
| | - Mai-Qing Yang
- Department of Pathology, Weifang People’s Hospital (First Affiliated Hospital of Shandong Second Medical University), Weifang, Shandong, China
| |
Collapse
|
4
|
Wang S, Zhao M, Gao Z, Yang X, Lu Y, Fu J. Prognostic Value of Circulating Lymphocyte Subsets in Cervical Cancer Following Postoperative Radiotherapy. Int J Med Sci 2025; 22:1029-1038. [PMID: 40027185 PMCID: PMC11866531 DOI: 10.7150/ijms.107392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/22/2025] [Indexed: 03/05/2025] Open
Abstract
Background and objective: The prognostic value of circulating lymphocyte subsets in cervical cancer patients receiving postoperative radiotherapy remains unclear. This study aimed to explore the prognostic significance of these lymphocyte subsets in this patient population. Methods: Peripheral blood samples were collected from 101 cervical cancer patients prior to receiving postoperative radiotherapy. Flow cytometry was utilized to determine the proportions and absolute counts of lymphocyte subsets, including total T cells, CD4+ T cells, CD8+ T cells, natural killer (NK) cells, and B cells. The Kaplan-Meier method and Cox regression analysis were employed to estimate the overall survival (OS) and identify the key prognostic factors. Receiver operating characteristic (ROC) curves were generated to assess the predictive accuracy. Results: The survival analysis indicated that patients with a decreased proportion of NK cells (P = 0.02) or reduced NK cell counts (P = 0.01) exhibited significantly poorer overall survival (OS) compared to those with higher levels of NK cells. In univariate Cox analysis, both the proportion of NK cells (P = 0.025; HR, 0.33; 95% CI, 0.12-0.87) and NK cell counts (P = 0.015; HR = 0.28) significantly influenced OS. In multivariate analysis, the proportion of CD4+ T cells (P = 0.02; HR, 0.08; 95% CI, 0.01-0.72) and NK cell counts (P = 0.08; HR, 0.11; 95% CI, 0.01-1.37) emerged as independent prognostic factors. The areas under the ROC curves (AUCs) for NK cell counts in predicting 1-, 2-, and 3-year survival were 0.66, 0.76, and 0.68, respectively. Patients diagnosed with stage IIIC1 exhibited a significant reduction in both the absolute counts and the proportion of NK cells compared to those diagnosed with earlier stages, specifically IB3 and IIA. Conclusions: Our study found that pre-treatment levels of circulating NK cell counts and proportions serve as promising prognostic biomarkers for cervical cancer patients undergoing postoperative radiotherapy.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Radiation Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengli Zhao
- Department of Radiation Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongrong Gao
- Department of Radiation Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojing Yang
- Department of Radiation Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Lu
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Rd, Shanghai 200011, China
| | - Jie Fu
- Department of Radiation Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Mohammed MM, Al-Khafaji ZAI, Al-Hilli NM. An exploration of the natural and acquired immunological mechanisms to high-risk human papillomavirus infection and unmasking immune escape in cervical cancer: A concise synopsis. Tzu Chi Med J 2025; 37:28-41. [PMID: 39850385 PMCID: PMC11753526 DOI: 10.4103/tcmj.tcmj_134_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/17/2024] [Accepted: 08/29/2024] [Indexed: 01/25/2025] Open
Abstract
The most common STD that triggers cervical cancer is the human papillomavirus. More than 20 types of human papillomavirus (HPV) can induce uterine cervical cancer. Almost all women acquire genital HPV infection soon after their first intercourse, with most of them clearing the virus within 3 years. An immune response is necessary to clear. The first responders to HPV infection are the innate immune system elements composed of macrophages, keratinocytes, natural killer cells, and natural killer T-lymphocytic (NKT) cells. Cytotoxic T lymphocytes (CTLs) comprise the second line of defense and kill HPV16-infected cells expressing various peptides derived from their transforming early viral oncoproteins, mainly E2•E6. Even though HPV can manage to trick away our immune systems, first of all, it is important to emphasize that HPV replication does not kill the host cells. It does not replicate viral antigens or cause inflammation. The HPV16 E6 and E7 genes suppress host cell type 1 interferons (IFNs), which are detectable after infection. The patient may have immunological tolerance; hence, there are no costimulatory signals from inflammatory cytokines like IFNs during antigen recognition. Evidence shows that HlA class I generations have been inhibited by HPV16 E5, which could protect this tumor cell from CTL attack. HPV16 E7 is responsible for initiating immunotolerance and increasing regulatory T cells (Treg) to repress immunological regression. Evasion from immune system protection plays a critical role in the outcome of persistent HPV infection and the development of cervical cancer. Vaccination against HPV16 and 18 during adolescence is the most effective method for preventing cervical cancer in women, considering the immunological processes involved.
Collapse
Affiliation(s)
| | | | - Nadia Mudher Al-Hilli
- Department of Obstetrics and Gynecology, College of Medicine, University of Babylon, Hilla, Iraq
| |
Collapse
|
6
|
Gu Y, Li T, Zhang M, Chen J, Shen F, Ding J, Zhou G, Hua K. The Display between HPV Infection and Host Immunity in Cervical Cancer. FRONT BIOSCI-LANDMRK 2024; 29:426. [PMID: 39735976 DOI: 10.31083/j.fbl2912426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/20/2024] [Accepted: 08/06/2024] [Indexed: 12/31/2024]
Abstract
Most cervical cancers are related to the persistent infections of high-risk Human Papillomavirus (HPV) infections. Increasing evidence has witnessed the immunosuppressive effectiveness of HPV in the oncogenesis steps and progression steps. Here we review the immune response in HPV-related cervical malignancies and discuss the crosstalk between HPVs and the host immune response. Furthermore, we describe the identification and development of current immunotherapies in cervical cancer. Above all, we hope to provide a novel insight of the display between HPV infections and the host immune system.
Collapse
Affiliation(s)
- Yuanyuan Gu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 200011 Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, 200011 Shanghai, China
| | - Tingting Li
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
| | - Menglei Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 200011 Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, 200011 Shanghai, China
| | - Junhao Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 200011 Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, 200011 Shanghai, China
| | - Fang Shen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 200011 Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, 200011 Shanghai, China
| | - Jingxin Ding
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 200011 Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, 200011 Shanghai, China
| | - Guannan Zhou
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 200011 Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, 200011 Shanghai, China
| | - Keqin Hua
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 200011 Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, 200011 Shanghai, China
| |
Collapse
|
7
|
Jiang J, Kaysar K, Pan Y, Xia L, Li J. A Zeolitic Imidazolate Framework-Based Antimicrobial Peptide Delivery System with Enhanced Anticancer Activity and Low Systemic Toxicity. Pharmaceutics 2024; 16:1591. [PMID: 39771569 PMCID: PMC11678129 DOI: 10.3390/pharmaceutics16121591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The clinical efficacies of anticancer drugs are limited by non-selective toxic effects on healthy tissues and low bioavailability in tumor tissue. Therefore, the development of vehicles that can selectively deliver and release drugs at the tumor site is critical for further improvements in patient survival. METHODS We prepared a CEC nano-drug delivery system, CEC@ZIF-8, with a zeolite imidazole framework-8 (ZIF-8) as a carrier, which can achieve the response of folate receptor (FR). We characterized this system in terms of morphology, particle size, zeta potential, infrared (IR), x-ray diffraction (XRD), and transcriptome analysis, and examined the in vitro cytotoxicity and cellular uptake properties of CEC@ZIF-8 using cervical cancer cells. Lastly, we established a TC-1 tumor-bearing mouse model and evaluated its in vivo anti-cervical cancer activity. RESULTS The CEC@ZIF-8 nano-delivery system had favorable biocompatibility, heat stability, and pH responsiveness, with a CEC loading efficiency of 12%, a hydrated particle size of 174 ± 5.8 nm, a zeta potential of 20.57 mV, and slow and massive drug release in an acidic environment (pH 5.5), whereas release was 6% in a neutral environment (pH 7.4). At the same time, confocal imaging and cell viability assays demonstrated greater intracellular accumulation and more potent cytotoxicity against cancer cells compared to free CEC. The mechanism was analyzed by a series of transcriptome analyses, which revealed that CEC@ZIF-8 NPs differentially regulate the expression levels of 1057 genes in cancer cells, and indicated that the enriched pathways were mainly cell cycle and apoptosis-related pathways via the enrichment analysis of the differential genes. Flow cytometry showed that CEC@ZIF-8 NPs inhibited the growth of HeLa cells by arresting the cell cycle at the G0/G1 phase. Flow cytometry also revealed that CEC@ZIF-8 NPs induced greater apoptosis rates than CEC, while unloaded ZIF-8 had little inherent pro-apoptotic activity. Furthermore, the levels of reactive oxygen species (ROS) were also upregulated by CEC@ZIF-8 NPs while ROS inhibitors and caspase inhibitors reversed CEC@ZIF-8 NPs-induced apoptosis. Finally, CEC@ZIF-8 NPs also reduced the growth rate of xenograft tumors in mice without the systemic toxicity observed with cisplatin treatment. CONCLUSIONS The CEC@ZIF-8 nano-drug delivery system significantly enhanced the anti-cervical cancer effect of CEC both in vivo and in vitro, providing a more promising drug delivery system for clinical applications and tumor management. At the same time, this work demonstrates the clinical potential of CEC-loaded ZIF-8 nanoparticles for the selective destruction of tumor tissues.
Collapse
Affiliation(s)
| | | | | | - Lijie Xia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (J.J.); (K.K.); (Y.P.)
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (J.J.); (K.K.); (Y.P.)
| |
Collapse
|
8
|
Cheng H, Li Y, Cheng J, Zhang Y, Zhang B. Study on the effect and mechanisms of piperine against cervical cancer based on network pharmacology and experimental validation. Biotechnol Genet Eng Rev 2024; 40:4875-4898. [PMID: 37235876 DOI: 10.1080/02648725.2023.2217611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Piperine has immunomodulatory and anti-inflammatory properties, and its potential in treating cervical cancer needs further exploration. Using data from The Cancer Genome Atlas (TCGA), we identified immune-related differentially expressed genes (IRDEGs) in cervical cancer. Predicted targets of piperine were compared with cervical cancer-associated genes from various databases. Protein-protein interaction (PPI) network analysis, enrichment of GO and KEGG pathways, and molecular docking were performed. Kaplan-Meier survival analysis was done to assess prognostic significance. In vitro and in vivo experiments were conducted to confirm findings. We obtained 403 IRDEGs, 125 piperine targets, and 7037 cervical cancer genes. PPI network analysis revealed potential targets and pathways regulated by piperine. Molecular docking showed good binding activity of piperine with specific targets. In vitro, piperine inhibited cervical cancer cell proliferation, migration, and invasion, and promoted apoptosis. In vivo, piperine suppressed tumor growth and downregulated expression of IL-1β and NLRP3 in tumor cells. Piperine also downregulated expression of IL-17A, IL-21, IL-22, and RORγt, and decreased the number of Th17 cells in tumor tissues. Piperine may inhibit cervical cancer progression through modulation of Th17 cell activation mediated by the NLRP3/IL-1β axis. Further studies are warranted to explore the potential of piperine as an immunomodulatory agent in cervical cancer treatment.
Collapse
Affiliation(s)
- Hui Cheng
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu, China
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Yanyu Li
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu, China
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Jie Cheng
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu, China
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Yanling Zhang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu, China
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Bei Zhang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu, China
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| |
Collapse
|
9
|
Liu Y, Yang Z, Feng L, Xia Y, Wei G, Lu W. Advance in Nanomedicine for Improving Mucosal Penetration and Effective Therapy of Cervical Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303772. [PMID: 37340569 DOI: 10.1002/smll.202303772] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Indexed: 06/22/2023]
Abstract
Insufficient intratumor drug distribution and serious adverse effects are often associated with systemic chemotherapy for cervical cancer. Considering the location of cervical cancer, access to the cervix through the vagina may provide an alternative administration route for high drug amounts at the tumor site, minimal systemic exposure as well as convenience of non-invasive self-medication. Enormous progress has been made in nanomedicine to improve mucosal penetration and enhance the effectiveness of therapy for cervical cancer. This review article first introduce the physiological state of cervicovaginal cavity and the characteristics of intravaginal environment in cervical cancers. Based on introduction to the physiological state of cervicovaginal cavity and the characteristics of intravaginal environment in cervical cancers, both "first mucus-adhering then mucosal penetration" and "first mucus-penetrating then mucosal penetration" strategies are discussed with respect to mechanism, application condition, and examples. Finally, existing challenges and future directions are envisioned in the rational design, facile synthesis, and comprehensive utilization of nanomedicine for local therapy of cervical cancer. This review is expected to provide useful reference information for future research on nanomedicine for intravaginally administered formulations for topical treatment of cervical cancer.
Collapse
Affiliation(s)
- Yu Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, 201203, China
| | - Ziyi Yang
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, 201203, China
| | - Linglin Feng
- Shanghai Institute of Planned Parenthood Research, Key Laboratory of Contraceptives and Devices Research (NPFPC), Shanghai Engineer and Technology Research Center of Reproductive Health Drug and Devices, Shanghai, 200032, China
| | - Yu Xia
- Yangtze River Pharmaceutical Group Co., Ltd., Taizhou, Jiangsu, 225300, China
| | - Gang Wei
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, 201203, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, 201203, China
| |
Collapse
|
10
|
Ye X, Xie S. The Value of Human Epididymal Protein 4, Carcinoembryonic Antigen and Alpha-Fetoprotein in the Early Diagnosis of Cervical Cancer. Gynecol Obstet Invest 2024; 90:100-107. [PMID: 39217979 DOI: 10.1159/000540855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVES This research aimed to unveil the value of human epididymal protein 4 (HE4), carcinoembryonic antigen (CEA) and alpha-fetoprotein (AFP) in the early diagnosis of cervical cancer. DESIGN This was a clinical study. PARTICIPANTS Sixty patients with cervical cancer stage IA-IIA (early stage cervical cancer group), 60 patients with cervical intraepithelial neoplasia (CIN) (disease control group), and 60 healthy women who had passed the physical examination (healthy control group) were selected. SETTING The review was conducted in a Jiaxing First Hospital. METHODS Sixty patients with cervical cancer stage IA-IIA (early stage cervical cancer group), 60 patients with CIN (disease control group), and 60 healthy women who had passed the physical examination (healthy control group) were selected. The expression levels of serum HE4, CEA, and AFP in the three groups were detected, and the correlation between the levels of serum HE4, CEA, and AFP and the clinicopathological characteristics of patients with early stage cervical cancer were analyzed, and the receiver operating characteristic (ROC) curves were plotted to identify the value of the single and triple tests of serum HE4, CEA, and AFP for the early stage diagnosis of cervical cancer. RESULTS The levels of serum HE4, CEA, and AFP in the early stage cervical cancer group were higher than those in the disease control and the healthy control groups (p < 0.05). The levels of serum HE4, CEA, and AFP were related to the FIGO stage as well as the histological grading of patients with early stage cervical cancer (p < 0.05). The results of the ROC curves revealed that the AUC areas of HE4, CEA, and AFP for single as well as triple diagnosis of patients with early stage cervical cancer were 0.725, 0.679, 0.663, and 0.811, respectively, and the AUC of the three combined tests was markedly higher than that of HE4, CEA, AFP single test (p < 0.05). LIMITATIONS There is a lack of larger sample sizes to test whether the combined HE4, CEA, and AFP detection has sufficient validity at the individual level and there are not enough serum samples in this study to perform circulating HPV-DNA detection and compare it with the levels of serum markers. CONCLUSION The combination of HE4, CEA, and AFP has good clinical reference value analysis in the auxiliary diagnosis of early stage cervical cancer, and it is worthy of further validation and popularization.
Collapse
Affiliation(s)
- Xiaoyan Ye
- Department of Gynecology, Jiaxing First Hospital, Jiaxing, China
| | - Shanyan Xie
- Department of Pathology, Jiaxing Maternal and Child Health Hospital, Jiaxing, China
| |
Collapse
|
11
|
Dancy E, Stratton P, Pichard DC, Marciano BE, Cowen EW, McBride AA, Van Doorslaer K, Merideth MA, Salmeri N, Hughes MS, Heller T, Parta M, Hickstein DD, Kong HH, Holland SM, Zerbe CS. Human papillomavirus disease in GATA2 deficiency: a genetic predisposition to HPV-associated female anogenital malignancy. Front Immunol 2024; 15:1445711. [PMID: 39267745 PMCID: PMC11390362 DOI: 10.3389/fimmu.2024.1445711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
Objective Patients with pathogenic variants in the GATA Binding Protein 2 (GATA2), a hematopoietic transcription factor, are at risk for human papillomavirus-related (HPV) anogenital cancer at younger than expected ages. A female cohort with GATA2 haploinsufficiency was systematically assessed by two gynecologists to characterize the extent and severity of anogenital HPV disease, which was also compared with affected males. Methods A 17-year retrospective review of medical records, including laboratory, histopathology and cytopathology records was performed for patients diagnosed with GATA2 haploinsufficiency followed at the National Institutes of Health. Student's t-test and Mann-Whitney U test or Fisher's exact test were used to compare differences in continuous or categorical variables, respectively. Spearman's rho coefficient was employed for correlations. Results Of 68 patients with GATA2 haploinsufficiency, HPV disease was the initial manifestation in 27 (40%). HPV occurred at median 18.9 (15.2-26.2) years in females, and 25.6 (23.4-26.9) years in males. Fifty-two (76%), 27 females and 25 males, developed HPV-related squamous intraepithelial lesions (SIL) including two males with oral cancer. Twenty-one patients developed anogenital high-grade SIL (HSIL) or carcinoma (16 females versus 5 males, (59% versus 20%, respectively, p=0.005) at median 27 (18.6-59.3) years for females and 33 (16.5-40.1) years for males. Females were more likely than males to require >2 surgeries to treat recurrent HSIL (p=0.0009). Of 30 patients undergoing hematopoietic stem cell transplant (HSCT) to manage disease arising from GATA2 haploinsufficiency, 12 (nine females, three males) had persistent HSIL/HPV disease. Of these nine females, eight underwent peri-transplant surgical treatment of HSIL. Five of seven who survived post-HSCT received HPV vaccination and had no or minimal evidence of HPV disease 2 years post-HSCT. HPV disease persisted in two receiving immunosuppression. HPV disease/low SIL (LSIL) resolved in all three males. Conclusion Females with GATA2 haploinsufficiency exhibit a heightened risk of recurrent, multifocal anogenital HSIL requiring frequent surveillance and multiple treatments. GATA2 haploinsufficiency must be considered in a female with extensive, multifocal genital HSIL unresponsive to multiple surgeries. This population may benefit from early intervention like HSCT accompanied by continued, enhanced surveillance and treatment by gynecologic oncologists and gynecologists in those with anogenital HPV disease.
Collapse
Affiliation(s)
- Ehren Dancy
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Pamela Stratton
- Office of the Clinical Director, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Dominique C Pichard
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Beatriz E Marciano
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Edward W Cowen
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alison A McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Koenraad Van Doorslaer
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- Department of Immunobiology, College of Medicine, BIO5 Institute, Cancer Biology Graduate Interdisciplinary Program, Genetics Graduate Interdisciplinary Program, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| | - Melissa A Merideth
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Noemi Salmeri
- Gynecology/Obstetrics Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
- Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Marybeth S Hughes
- Department of Surgery, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Theo Heller
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | | | - Dennis D Hickstein
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Heidi H Kong
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Christa S Zerbe
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
12
|
Shih YW, Chang CW, Chang HCR, Tsai JR, Wang WJ, Fang HF, Lin CL, Rias YA, Tsai HT. Mediating Effect of White Blood Cells and Tobacco Exposure on Cervical Neoplasm Risk Among Taiwanese Women. Biol Res Nurs 2024; 26:380-389. [PMID: 38271218 DOI: 10.1177/10998004241229069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Background: Both the high-risk human papillomavirus (HR-HPV) infection and tobacco exposure are significantly associated with cervical neoplasm risk. Immune cells play important roles in carcinogenesis. However, it is still unclear whether immune cells have a mediating effect on the HR-HPV infection and tobacco exposure with cervical neoplasm development. Aim: The aim of this study was to determine how the increased white blood cell (WBC) count affects the relationship between HR-HPV DNA load and tobacco exposure in the development of cervical neoplasia. Methods: A hospital-based case-control study design was conducted with a total of 108 cases of Taiwanese women with ≥ cervical intraepithelial neoplasia (CIN) I confirmed by biopsy, and 222 healthy Taiwanese female subjects with negative findings on a Pap smear were assigned to the control group. The study evaluated HR-HPV status and immune cell counts (WBCs, natural killer (NK) cells) and tobacco exposure by a self-construct questionnaire. Results: Both HR-HPV DNA load and tobacco exposure significantly independently increased cervical neoplasm risk (AORs: 1.28 and 1.42, respectively). Similar significant results were found for WBCs and NK cells, with respective AORs of 1.20 and 1.00. Moreover, increased WBCs (β = 0.04, 95% CI corrected: 0.01-0.07) and tobacco exposure (β = 0.02, 95% CI corrected: 0.01-0.04) mediated the relationship between the high-risk HPV DNA load and cervical neoplasm risk. Conclusions: Elevated WBC count acts as both predictor and mediator in cervical neoplasm development linked to HR-HPV DNA load. Monitoring and maintaining WBC levels within the normal range could be a preventive strategy for cervical neoplasm development.
Collapse
Affiliation(s)
- Ya Wen Shih
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
- School of Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan
- Post‑Baccalaureate Program in Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan
| | - Ching Wen Chang
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan
| | | | - Jia Ruey Tsai
- Department of Medical Oncology, Taipei Medical University Taipei Cancer Center/Taipei Medical University Hospital, Taipei, Taiwan
| | - Wei-Jun Wang
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan
- Proton Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hui Fen Fang
- Department of Nursing, Taipei Medical University Taipei Cancer Center/Taipei Medical University Hospital, Taipei, Taiwan
| | - Chia Ling Lin
- Department of Pharmacy, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yohanes Andy Rias
- Faculty of Nursing, Chulalongkorn University, Bangkok, Thailand
- Faculty of Health, College of Nursing, Institut Ilmu Kesehatan Bhakti Wiyata Kediri, Kediri, Indonesia
| | - Hsiu Ting Tsai
- School of Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan
- Post‑Baccalaureate Program in Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
13
|
Del Prete R, Nesta D, Triggiano F, Lorusso M, Garzone S, Vitulano L, Denicolò S, Indraccolo F, Mastria M, Ronga L, Inchingolo F, Aityan SK, Nguyen KCD, Tran TC, Gargiulo Isacco C, Santacroce L. Human Papillomavirus Carcinogenicity and the Need of New Perspectives: Thoughts from a Retrospective Analysis on Human Papillomavirus Outcomes Conducted at the Hospital University of Bari, Apulia, Italy, between 2011 and 2022. Diagnostics (Basel) 2024; 14:968. [PMID: 38732382 PMCID: PMC11083870 DOI: 10.3390/diagnostics14090968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND The current manuscript's aim was to determine the human papillomavirus (HPV) genotype-specific prevalence and distribution among individuals, males, and females, of different ages in the region of Apulia, Italy, highlighting the possible variables involved in the carcinogenicity mechanism. In addition, we proposed two hypothetical models of HPV's molecular dynamics, intending to clarify the impact of prevention and therapeutic strategies, explicitly modeled by recent survey data. METHODS We presented clinical data from 9647 participants tested for either high-risk (HR) or low-risk (LR) HPV at the affiliated Bari Policlinic University Hospital of Bari from 2011 to 2022. HPV DNA detection was performed using nested-polymerase chain reaction (PCR) and multiplex real-time PCR assay. Statistical analysis showed significant associations for all genders and ages and both HR- and LR-HPV types. A major number of significant pairwise associations were detected for the higher-risk types and females and lower-risk types and males. RESULTS The overall prevalence of HPV was 50.5% (n-4.869) vs. 49.5% (n-4.778) of the study population, of which 74.4% (n-3621) were found to be HPV high-risk (HR-HPV) genotypes and 57.7% (n-2.807) low-risk HPV (LR-HPV) genotypes, of which males were 58% and females 49%; the three most prevalent HR-HPV genotypes were HPV 53 (n707-15%), 16 (n704-14%), and 31 (n589-12%), and for LR-HPV, they were 42 (19%), 6 (16%), and 54 (13%); 56% of patients screened for HPV were ≤ 30 years old, 53% were between 31 and 40 years old, 46% were 41-50 and 51-60 years old, and finally, 44% of subjects were >60 years old. CONCLUSIONS Our study provided comprehensive epidemiological data on HPV prevalence and genotype distribution among 9647 participants, which could serve as a significant reference for clinical practice, and it implied the necessity for more effective screening methods for HPV carcinogenesis covering the use of more specific molecular investigations. Although this is a predominantly descriptive and epidemiological study, the data obtained offer not only a fairly unique trend compared to other studies of different realities and latitudes but also lead us to focus on the HPV infection within two groups of young people and adults and hypothesize the possible involvement of dysbiosis, stem cells, and the retrotransposition mechanism.
Collapse
Affiliation(s)
- Raffaele Del Prete
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| | - Daniela Nesta
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| | - Francesco Triggiano
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| | - Mara Lorusso
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| | - Stefania Garzone
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| | - Lorenzo Vitulano
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| | - Sofia Denicolò
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| | - Francesca Indraccolo
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| | - Michele Mastria
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| | - Luigi Ronga
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| | - Sergey K. Aityan
- College of Engineering, Northeastern University, 5000 MacArthur Blvd., Oakland, CA 94613, USA;
| | - Kieu C. D. Nguyen
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| | - Toai Cong Tran
- Department of Basic Medical Sciences and Biomedical Research Center, Pham Ngoc Thach University of Medicine, Ho Chi Minh City 700100, Vietnam;
| | - Ciro Gargiulo Isacco
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| | - Luigi Santacroce
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| |
Collapse
|
14
|
Zhao W, Li Q, Wen S, Li Y, Bai Y, Tian Z. Novel biomarkers of inflammation-associated immunity in cervical cancer. Front Oncol 2024; 14:1351736. [PMID: 38532933 PMCID: PMC10964772 DOI: 10.3389/fonc.2024.1351736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/12/2024] [Indexed: 03/28/2024] Open
Abstract
Background Cervical cancer (CC) is a highly malignant gynecological cancer with a direct causal link to inflammation, primarily resulting from persistent high-risk human papillomavirus (HPV) infection. Given the challenges in early detection and mid to late-stage treatment, our research aims to identify inflammation-associated immune biomarkers in CC. Methods Using a bioinformatics approach combined with experimental validation, we integrated two CC datasets (GSE39001 and GSE63514) in the Gene Expression Omnibus (GEO) to eliminate batch effects. Immune-related inflammation differentially expressed genes (DGEs) were obtained by R language identification. Results This analysis identified 37 inflammation-related DEGs. Subsequently, we discussed the different levels of immune infiltration between CC cases and controls. Weighted gene co-expression network analysis (WGCNA) identified seven immune infiltration-related modules in CC. We identified 15 immune DEGs associated with inflammation at the intersection of these findings. In addition, we constructed a protein interaction network using the String database and screened five hub genes using "CytoHubba": CXC chemokine ligand 8 (CXCL8), CXC chemokine ligand 10 (CXCL10), CX3C chemokine receptor 1 (CX3CR1), Fc gamma receptors 3B (FCGR3B), and SELL. The expression of these five genes in CC was determined by PCR experiments. In addition, we assessed their diagnostic value and further analyzed the association of immune cells with them. Conclusions Five inflammation- and immune-related genes were identified, aiming to provide new directions for early diagnosis and mid to late-stage treatment of CC from multiple perspectives.
Collapse
Affiliation(s)
- Weihong Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qi Li
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Songquan Wen
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yaqin Li
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, Beijing, China
| | - Ying Bai
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Zhiyu Tian
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
15
|
Zhang H, Yang L, Wang T, Li Z. NK cell-based tumor immunotherapy. Bioact Mater 2024; 31:63-86. [PMID: 37601277 PMCID: PMC10432724 DOI: 10.1016/j.bioactmat.2023.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/16/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023] Open
Abstract
Natural killer (NK) cells display a unique inherent ability to identify and eliminate virus-infected cells and tumor cells. They are particularly powerful for elimination of hematological cancers, and have attracted considerable interests for therapy of solid tumors. However, the treatment of solid tumors with NK cells are less effective, which can be attributed to the very complicated immunosuppressive microenvironment that may lead to the inactivation, insufficient expansion, short life, and the poor tumor infiltration of NK cells. Fortunately, the development of advanced nanotechnology has provided potential solutions to these issues, and could improve the immunotherapy efficacy of NK cells. In this review, we summarize the activation and inhibition mechanisms of NK cells in solid tumors, and the recent advances in NK cell-based tumor immunotherapy boosted by diverse nanomaterials. We also propose the challenges and opportunities for the clinical application of NK cell-based tumor immunotherapy.
Collapse
Affiliation(s)
- Hao Zhang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Li Yang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Tingting Wang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| |
Collapse
|
16
|
Fan H, Zhou Y, Zhang Z, Zhou G, Yuan C. ROR1-AS1: A Meaningful Long Noncoding RNA in Oncogenesis. Mini Rev Med Chem 2024; 24:1884-1893. [PMID: 38859780 DOI: 10.2174/0113895575294482240530154620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 06/12/2024]
Abstract
Long noncoding RNA (lncRNA) is a non-coding RNA with a length of more than 200 nucleotides, involved in multiple regulatory processes in vivo, and is related to the physiology and pathology of human diseases. An increasing number of experimental results suggest that when lncRNA is abnormally expressed, it results in the development of tumors. LncRNAs can be divided into five broad categories: sense, antisense, bidirectional, intronic, and intergenic. Studies have found that some antisense lncRNAs are involved in a variety of human tumorigenesis. The newly identified ROR1-AS1, which functions as an antisense RNA of ROR1, is located in the 1p31.3 region of the human genome. Recent studies have reported that abnormal expression of lncRNA ROR1-AS1 can affect cell growth, proliferation, invasion, and metastasis and increase oncogenesis and tumor spread, indicating lncRNA ROR1-AS1 as a promising target for many tumor biological therapies. In this study, the pathophysiology and molecular mechanism of ROR1-AS1 in various malignancies are discussed by retrieving the related literature. ROR1-AS1 is a cancer-associated lncRNA, and studies have found that it is either over- or underexpressed in multiple malignancies, including liver cancer, colon cancer, osteosarcoma, glioma, cervical cancer, bladder cancer, lung adenocarcinoma, and mantle cell lymphoma. Furthermore, it has been demonstrated that lncRNA ROR1-AS1 participates in proliferation, migration, invasion, and suppression of apoptosis of cancer cells. Furthermore, lncRNA ROR1-AS1 promotes the development of tumors by up-regulating or downregulating ROR1-AS1 conjugates and various pathways and miR-504, miR-4686, miR-670-3p, and miR-375 sponges, etc., suggesting that lncRNA ROR1-AS1 may be used as a marker in tumors or a potential therapeutic target for a variety of tumors.
Collapse
Affiliation(s)
- Hong Fan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Yunxi Zhou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Ziyan Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Gang Zhou
- College of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Yichang Hospital of Traditional Chinese Medicine, Yichang, 443002, China
| | - Chengfu Yuan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| |
Collapse
|
17
|
Ghafouri-Fard S, Askari A, Zangooie A, Shoorei H, Pourmoshtagh H, Taheri M. Non-coding RNA profile for natural killer cell activity. Mol Cell Probes 2023; 72:101935. [PMID: 37806642 DOI: 10.1016/j.mcp.2023.101935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/10/2023]
Abstract
Natural killer cells (NK cells) are a type of cytotoxic lymphocytes which are involved in innate immunity, alongside with assisting with adaptive immune response. Since they have cytotoxic effects, disruptions in their functionality and development leads to a variety of conditions, whether malignant or non-malignant. The profile and interaction of these non-coding RNAs and NK cells in different conditions is extensively studied, and it is now approved that if dysregulated, non-coding RNAs have detrimental effects on NK cell activity and can contribute to the pathogenesis of diverse disorders. In this review, we aim at a thorough inspection on the role of different non-coding RNAs on the activity and development of NK cells, in a broad spectrum of conditions, including blood-related disorders, viral infections, neurological diseases, gastrointestinal disorders, lung disorders, reproductive system conditions and other types of maladies, alongside with providing insight to the future non-coding RNA-NK cell studies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arian Askari
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Zangooie
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Hamed Shoorei
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran; Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hasan Pourmoshtagh
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Condrat CE, Cretoiu D, Radoi VE, Mihele DM, Tovaru M, Bordea CI, Voinea SC, Suciu N. Unraveling Immunological Dynamics: HPV Infection in Women-Insights from Pregnancy. Viruses 2023; 15:2011. [PMID: 37896788 PMCID: PMC10611104 DOI: 10.3390/v15102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
During pregnancy, hormonal and immune adaptations are vital for supporting the genetically distinct fetus during elevated infection risks. The global prevalence of HPV necessitates its consideration during pregnancy. Despite a seemingly mild immune response, historical gestational viral infections underscore its significance. Acknowledging the established HPV infection risks during pregnancy, our review explores the unfolding immunological changes in pregnant women with HPV. Our analysis aims to uncover strategies for safely modulating the immune system, mitigating adverse pregnancy consequences, and enhancing maternal and child health. This comprehensive narrative review delves into the existing knowledge and studies on this topic.
Collapse
Affiliation(s)
- Carmen Elena Condrat
- Department of Obstetrics and Gynecology, Polizu Clinical Hospital, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania; (C.E.C.)
| | - Dragos Cretoiu
- Department of Genetics, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania; (D.C.); (V.E.R.)
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania
| | - Viorica Elena Radoi
- Department of Genetics, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania; (D.C.); (V.E.R.)
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania
| | - Dana Mihaela Mihele
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Mihaela Tovaru
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Cristian Ioan Bordea
- Department of Surgical Oncology, Prof. Dr. Alexandru Trestioreanu Oncology Institute, Carol Davila University of Medicine and Pharmacy, 252 Fundeni Rd., 022328 Bucharest, Romania
| | - Silviu Cristian Voinea
- Department of Surgical Oncology, Prof. Dr. Alexandru Trestioreanu Oncology Institute, Carol Davila University of Medicine and Pharmacy, 252 Fundeni Rd., 022328 Bucharest, Romania
| | - Nicolae Suciu
- Department of Obstetrics and Gynecology, Polizu Clinical Hospital, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania; (C.E.C.)
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania
- Department of Obstetrics and Gynecology, Polizu Clinical Hospital, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania
| |
Collapse
|
19
|
Razizadeh MH, Zafarani A, Taghavi-Farahabadi M, Khorramdelazad H, Minaeian S, Mahmoudi M. Natural killer cells and their exosomes in viral infections and related therapeutic approaches: where are we? Cell Commun Signal 2023; 21:261. [PMID: 37749597 PMCID: PMC10519079 DOI: 10.1186/s12964-023-01266-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/11/2023] [Indexed: 09/27/2023] Open
Abstract
Innate immunity is the first line of the host immune system to fight against infections. Natural killer cells are the innate immunity lymphocytes responsible for fighting against virus-infected and cancerous cells. They have various mechanisms to suppress viral infections. On the other hand, viruses have evolved to utilize different ways to evade NK cell-mediated responses. Viruses can balance the response by regulating the cytokine release pattern and changing the proportion of activating and inhibitory receptors on the surface of NK cells. Exosomes are a subtype of extracellular vesicles that are involved in intercellular communication. Most cell populations can release these nano-sized vesicles, and it was shown that these vesicles produce identical outcomes to the originating cell from which they are released. In recent years, the role of NK cell-derived exosomes in various diseases including viral infections has been highlighted, drawing attention to utilizing the therapeutic potential of these nanoparticles. In this article, the role of NK cells in various viral infections and the mechanisms used by viruses to evade these important immune system cells are initially examined. Subsequently, the role of NK cell exosomes in controlling various viral infections is discussed. Finally, the current position of these cells in the treatment of viral infections and the therapeutic potential of their exosomes are reviewed. Video Abstract.
Collapse
Affiliation(s)
- Mohammad Hossein Razizadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Zafarani
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Taghavi-Farahabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Sara Minaeian
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Mahmoudi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Silva AJD, de Moura IA, da Gama MATM, Leal LRS, de Pinho SS, Espinoza BCF, dos Santos DL, Santos VEP, Sena MGAMD, Invenção MDCV, de Macêdo LS, de França Neto PL, de Freitas AC. Advancing Immunotherapies for HPV-Related Cancers: Exploring Novel Vaccine Strategies and the Influence of Tumor Microenvironment. Vaccines (Basel) 2023; 11:1354. [PMID: 37631922 PMCID: PMC10458729 DOI: 10.3390/vaccines11081354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/27/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
The understanding of the relationship between immunological responses and cancers, especially those related to HPV, has allowed for the study and development of therapeutic vaccines against these neoplasias. There is a growing number of studies about the composition and influence of the tumor microenvironment (TME) in the progression or establishment of the most varied types of cancer. Hence, it has been possible to structure immunotherapy approaches based on therapeutic vaccines that are even more specific and directed to components of TME and the immune response associated with tumors. Among these components are dendritic cells (DCs), which are the main professional antigen-presenting cells (APCs) already studied in therapy strategies for HPV-related cancers. On the other hand, tumor-associated macrophages are also potential targets since the profile present in tumor infiltrates, M1 or M2, influences the prognosis of some types of cancer. These two cell types can be targets for therapy or immunomodulation. In this context, our review aims to provide an overview of immunotherapy strategies for HPV-positive tumors, such as cervical and head and neck cancers, pointing to TME immune cells as promising targets for these approaches. This review also explores the potential of immunotherapy in cancer treatment, including checkpoint inhibitors, cytokine immunotherapies, immunotherapy vaccines, and cell therapies. Furthermore, it highlights the importance of understanding the TME and its effect on the design and achievement of immunotherapeutic methods.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil; (A.J.D.S.); (I.A.d.M.); (M.A.T.M.d.G.); (L.R.S.L.); (S.S.d.P.); (B.C.F.E.); (D.L.d.S.); (V.E.P.S.); (M.G.A.M.D.S.); (M.D.C.V.I.); (L.S.d.M.); (P.L.d.F.N.)
| |
Collapse
|
21
|
Li Y, Feng Y, Chen Y, Lin W, Gao H, Chen M, Osafo KS, Mao X, Kang Y, Huang L, Liu D, Xu S, Huang L, Dong B, Sun P. Peripheral blood lymphocytes influence human papillomavirus infection and clearance: a retrospective cohort study. Virol J 2023; 20:80. [PMID: 37127618 PMCID: PMC10152704 DOI: 10.1186/s12985-023-02039-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND There is a close correlation between HPV infection and systemic immune status. The purpose of this study was to determine which lymphocytes in peripheral blood influence human papillomavirus (HPV) infection and to identify whether peripheral blood lymphocyte (PBL) subsets could be used as biomarkers to predict HPV clearance in the short term. METHODS This study involved 716 women undergoing colposcopy from 2019 to 2021. Logistic and Cox regression were used to analyze the association of PBLs with HPV infection and clearance. Using Cox regression, bidirectional stepwise regression and the Akaike information criterion (AIC), lymphocyte prediction models were developed, with the C-index assessing performance. ROC analysis determined optimal cutoff values, and their accuracy for HPV clearance risk stratification was evaluated via Kaplan‒Meier and time-dependent ROC. Bootstrap resampling validated the model and cutoff values. RESULTS Lower CD4 + T cells were associated with a higher risk of HPV, high-risk HPV, HPV18 and HPV52 infections, with corresponding ORs (95% CI) of 1.58 (1.16-2.15), 1.71 (1.23-2.36), 2.37 (1.12-5.02), and 3.67 (1.78-7.54), respectively. PBL subsets mainly affect the natural clearance of HPV, but their impact on postoperative HPV outcomes is not significant (P > 0.05). Lower T-cell and CD8 + T-cell counts, as well as a higher NK cell count, are unfavorable factors for natural HPV clearance (P < 0.05). The optimal cutoff values determined by the PBL prognostic model (T-cell percentage: 67.39%, NK cell percentage: 22.65%, CD8 + T-cell model risk score: 0.95) can effectively divide the population into high-risk and low-risk groups, accurately predicting the natural clearance of HPV. After internal validation with bootstrap resampling, the above conclusions still hold. CONCLUSIONS CD4 + T cells were important determinants of HPV infection. T cells, NK cells, and CD8 + T cells can serve as potential biomarkers for predicting natural HPV clearance, which can aid in patient risk stratification, individualized treatment, and follow-up management.
Collapse
Affiliation(s)
- Ye Li
- Laboratory of Gynecologic Oncology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital (Fujian Women and Children's Hospital), Fuzhou, Fujian, 350001, China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, Fujian, 350001, China
| | - Yebin Feng
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital (Fujian Women and Children's Hospital), Fuzhou, Fujian, 350001, China
- Department of Scientific Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350001, P.R. China
| | - Yanlin Chen
- Laboratory of Gynecologic Oncology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital (Fujian Women and Children's Hospital), Fuzhou, Fujian, 350001, China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, Fujian, 350001, China
| | - Wenyu Lin
- Laboratory of Gynecologic Oncology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital (Fujian Women and Children's Hospital), Fuzhou, Fujian, 350001, China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, Fujian, 350001, China
| | - Hangjing Gao
- Laboratory of Gynecologic Oncology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital (Fujian Women and Children's Hospital), Fuzhou, Fujian, 350001, China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, Fujian, 350001, China
| | - Ming Chen
- Laboratory of Gynecologic Oncology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital (Fujian Women and Children's Hospital), Fuzhou, Fujian, 350001, China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, Fujian, 350001, China
| | - Kelvin Stefan Osafo
- Laboratory of Gynecologic Oncology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital (Fujian Women and Children's Hospital), Fuzhou, Fujian, 350001, China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, Fujian, 350001, China
| | - Xiaodan Mao
- Laboratory of Gynecologic Oncology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital (Fujian Women and Children's Hospital), Fuzhou, Fujian, 350001, China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, Fujian, 350001, China
| | - Yafang Kang
- Laboratory of Gynecologic Oncology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital (Fujian Women and Children's Hospital), Fuzhou, Fujian, 350001, China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, Fujian, 350001, China
| | - Leyi Huang
- Laboratory of Gynecologic Oncology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital (Fujian Women and Children's Hospital), Fuzhou, Fujian, 350001, China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, Fujian, 350001, China
| | - Dabin Liu
- Department of Gynecology, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350001, P.R. China
| | - Shuxia Xu
- Department of Pathology, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350001, P.R. China
| | - Lixiang Huang
- Laboratory of Gynecologic Oncology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital (Fujian Women and Children's Hospital), Fuzhou, Fujian, 350001, China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, Fujian, 350001, China
| | - Binhua Dong
- Laboratory of Gynecologic Oncology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China.
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital (Fujian Women and Children's Hospital), Fuzhou, Fujian, 350001, China.
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, Fujian, 350001, China.
| | - Pengming Sun
- Laboratory of Gynecologic Oncology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China.
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital (Fujian Women and Children's Hospital), Fuzhou, Fujian, 350001, China.
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, Fujian, 350001, China.
| |
Collapse
|
22
|
Sun Y, Khan MAAK, Mangiola S, Barrow AD. IL17RB and IL17REL Expression Are Associated with Improved Prognosis in HPV-Infected Head and Neck Squamous Cell Carcinomas. Pathogens 2023; 12:pathogens12040572. [PMID: 37111458 PMCID: PMC10143491 DOI: 10.3390/pathogens12040572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Changes in the cellular secretome are implicated in virus infection, malignancy, and anti-tumor immunity. We analyzed the association between transcriptional signatures (TS) from 24 different immune and stromal cell types on the prognosis of HPV-infected and HPV-free head and neck squamous carcinoma (HNSCC) patients from The Cancer Genome Atlas (TCGA) cohort. We found that HPV-positive HNSCC patients have tumors with elevated immune cell TS and improved prognosis, which was specifically associated with an increased tumor abundance of memory B and activated natural killer (NK) cell TS, compared to HPV-free HNSCC patients. HPV-infected patients upregulated many transcripts encoding secreted factors, such as growth factors, hormones, chemokines and cytokines, and their cognate receptors. Analysis of secretome transcripts and cognate receptors revealed that tumor expression of IL17RB and IL17REL are associated with a higher viral load and memory B and activated NK cell TS, as well as improved prognosis in HPV-infected HNSCC patients. The transcriptional parameters that we describe may be optimized to improve prognosis and risk stratification in the clinic and provide insights into gene and cellular targets that may potentially enhance anti-tumor immunity mediated by NK cells and memory B cells in HPV-infected HNSCC patients.
Collapse
Affiliation(s)
- Yuhan Sun
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne 3000, Australia
| | - Md Abdullah Al Kamran Khan
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne 3000, Australia
| | - Stefano Mangiola
- Division of Bioinformatics, Walter and Eliza Hall Institute, Parkville 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne 3010, Australia
| | - Alexander David Barrow
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne 3000, Australia
| |
Collapse
|
23
|
Gao Y, Zhang X, Jiang T, Zhou H, Liu H, Hu Y, Cao J. Inhibition of hepatic natural killer cell function via the TIGIT receptor in schistosomiasis-induced liver fibrosis. PLoS Pathog 2023; 19:e1011242. [PMID: 36930687 PMCID: PMC10022799 DOI: 10.1371/journal.ppat.1011242] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
Schistosomiasis is a zoonotic parasitic disease. Schistosoma japonicum eggs deposited in the liver tissue induce egg granuloma formation and liver fibrosis, seriously threatening human health. Natural killer (NK) cells kill activated hepatic stellate cells (HSCs) or induce HSC apoptosis and inhibit the progression of liver fibrosis. However, the function of NK cells in liver fibrosis caused by S. japonicum infection is significantly inhibited. The mechanism of this inhibition remains unclear. Twenty mice were percutaneously infected with S. japonicum cercariae. Before infection and 2, 4, 6, and 8 weeks after infection, five mice were euthanized and dissected at each time point. Hepatic NK cells were isolated and transcriptome sequenced. The sequencing results showed that Tigit expression was high at 4-6 weeks post infection. This phenomenon was verified by reverse transcription quantitative PCR (RT-qPCR) and flow cytometry. NK cells derived from Tigit-/- and wild-type (WT) mice were co-cultured with HSCs. It was found that Tigit-/- NK cells induced apoptosis in a higher proportion of HSCs than WT NK cells. Schistosomiasis infection models of Tigit-/- and WT mice were established. The proportion and killing activity of hepatic NK cells were significantly higher in Tigit-/- mice than in WT mice. The degree of liver fibrosis in Tigit-/- mice was significantly lower than that in WT mice. NK cells were isolated from Tigit-/- and WT mice and injected via the tail vein into WT mice infected with S. japonicum. The degree of liver fibrosis in mice that received NK cell infusion reduced significantly, but there was no significant difference between mice that received NK cells from Tigit-/- and WT mice, respectively. Our findings indicate that Tigit knockout enhanced the function of NK cells and reduced the degree of liver fibrosis in schistosomiasis, thus providing a novel strategy for treating hepatic fibrosis induced by schistosomiasis.
Collapse
Affiliation(s)
- Yuan Gao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China; World Health Organization Collaborating Center for Tropical Diseases, Shanghai, China
| | - Xiaocheng Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China; World Health Organization Collaborating Center for Tropical Diseases, Shanghai, China
| | - Tingting Jiang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China; World Health Organization Collaborating Center for Tropical Diseases, Shanghai, China
| | - Hao Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China; World Health Organization Collaborating Center for Tropical Diseases, Shanghai, China
| | - Hua Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China; World Health Organization Collaborating Center for Tropical Diseases, Shanghai, China
| | - Yuan Hu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China; World Health Organization Collaborating Center for Tropical Diseases, Shanghai, China
- * E-mail: (YH); (JC)
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China; World Health Organization Collaborating Center for Tropical Diseases, Shanghai, China
- The School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail: (YH); (JC)
| |
Collapse
|
24
|
Tang Y, Qiao C, Li Q, Zhu X, Zhao R, Peng X. Research Progress in the Relationship Between P2X7R and Cervical Cancer. Reprod Sci 2023; 30:823-834. [PMID: 35799022 DOI: 10.1007/s43032-022-01022-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/16/2022] [Indexed: 11/28/2022]
Abstract
Cervical cancer is one of the most common and serious tumors in women. Finding new biomarkers and therapeutic targets plays an important role in the diagnosis, prognosis, and treatment of cervical cancer. Purinergic ligand-gated ion channel 7 receptor (P2X7R) is a purine ligand cation channel, activated by adenosine triphosphate (ATP). Studies have shown that P2X7R plays an important role in a variety of diseases and cancers. More and more studies have shown that P2X7R is also closely related to cervical cancer; therefore, the role of P2X7R in the development of cervical cancer deserves further discussion. The expression level of P2X7R in uterine epithelial cancer tissues was lower than that of the corresponding normal tissues. P2X7R plays an important role in the apoptotic process of cervical cancer through various mechanisms of action, and both antagonists and agonists of P2X7R can inhibit the proliferation of cervical cancer cells, while P2X7R is involved in the antitumor effect of Atr-I on cervical cancer cells. This review evaluates the current role of P2X7R in cervical cancer in order to develop more specific therapies for cervical cancer. In conclusion, P2X7R may become a biomarker for cervical cancer screening, and even a new target for clinical treatment of cervical cancer.
Collapse
Affiliation(s)
- Yiqing Tang
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Cuicui Qiao
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Qianqian Li
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Xiaodi Zhu
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Ronglan Zhao
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China.
| | - Xiaoxiang Peng
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China.
| |
Collapse
|
25
|
George IA, Chauhan R, Dhawale R, Iyer R, Limaye S, Sankaranarayanan R, Venkataramanan R, Kumar P. Insights into therapy resistance in cervical cancer. ADVANCES IN CANCER BIOLOGY - METASTASIS 2022; 6:100074. [DOI: 10.1016/j.adcanc.2022.100074] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
26
|
Restricted Recruitment of NK Cells with Impaired Function Is Caused by HPV-Driven Immunosuppressive Microenvironment of Papillomas in Aggressive Juvenile-Onset Recurrent Respiratory Papillomatosis Patients. J Virol 2022; 96:e0094622. [PMID: 36154611 DOI: 10.1128/jvi.00946-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Laryngopharynx epithelium neoplasia induced by HPV6/11 infection in juvenile-onset recurrent respiratory papillomatosis (JO-RRP) causes a great health issue characteristic of frequent relapse and aggressive disease progression. Local cell-mediated immunity shaped by the recruitment and activation of cytotoxic effector cells is critical for viral clearance. In this study, we found that NK cells in the papillomas of aggressive JO-RRP patients, in contrast to massive infiltrated T cells, were scarce in number and impaired in activation and cytotoxicity as they were in peripheral blood. Data from cell infiltration analysis indicated that the migration of NK cell to papilloma was restricted in aggressive JO-RRP patients. Further study showed that the skewed chemokine expression in the papillomas and elevated ICAM-1 expression in hyperplastic epithelia cells favored the T cell but not NK cell recruitment in aggressive JO-RRP patients. In parallel to the increased CD3+ T cells, we observed a dramatical increase in Tregs and Treg-promoting cytokines such as IL-4, IL-10 and TGFβ in papillomas of aggressive JO-RRP patients. Our study suggested that likely initialized by the intrinsic change in neoplastic epithelial cells with persistent HPV infection, the aggressive papillomas built an entry barrier for NK cell infiltration and formed an immunosuppressive clump to fend off the immune attack from intra-papillomas NK cells. IMPORTANCE Frequent relapse and aggressive disease progression of juvenile-onset recurrent respiratory papillomatosis (JO-RRP) pose a great challenge to the complete remission of HPV 6/11 related laryngeal neoplasia. Local immune responses in papillomas are more relevant to the disease control considering the locale infected restriction of HPV virus in epitheliums. In our study, the restricted NK cell number and reduced expression of activating NKp30 receptor suggested one possible mechanism underlying impaired NK cell defense ability in aggressive JO-RRP papillomas. Meanwhile, the negative impact of HPV persistent infection on NK cell number and function represented yet another example of a chronic pathogen subverting NK cell behavior, affirming a potentially important role for NK cells in viral containment. Further, the skewed chemokine/cytokine expression in the papillomas and the elevated adhesion molecules expression in hyperplastic epithelia cells provided important clues for understanding blocked infiltration and antiviral dysfunction of NK cells in papilloma.
Collapse
|
27
|
Mukherjee AG, Wanjari UR, Namachivayam A, Murali R, Prabakaran DS, Ganesan R, Renu K, Dey A, Vellingiri B, Ramanathan G, Doss C. GP, Gopalakrishnan AV. Role of Immune Cells and Receptors in Cancer Treatment: An Immunotherapeutic Approach. Vaccines (Basel) 2022; 10:1493. [PMID: 36146572 PMCID: PMC9502517 DOI: 10.3390/vaccines10091493] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 12/07/2022] Open
Abstract
Cancer immunotherapy moderates the immune system's ability to fight cancer. Due to its extreme complexity, scientists are working to put together all the puzzle pieces to get a clearer picture of the immune system. Shreds of available evidence show the connection between cancer and the immune system. Immune responses to tumors and lymphoid malignancies are influenced by B cells, γδT cells, NK cells, and dendritic cells (DCs). Cancer immunotherapy, which encompasses adoptive cancer therapy, monoclonal antibodies (mAbs), immune checkpoint therapy, and CART cells, has revolutionized contemporary cancer treatment. This article reviews recent developments in immune cell regulation and cancer immunotherapy. Various options are available to treat many diseases, particularly cancer, due to the progress in various immunotherapies, such as monoclonal antibodies, recombinant proteins, vaccinations (both preventative and curative), cellular immunotherapies, and cytokines.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arunraj Namachivayam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - D. S. Prabakaran
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju 28644, Korea
- Department of Biotechnology, Ayya Nadar Janaki Ammal College (Autonomous), Srivilliputhur Main Road, Sivakasi 626124, Tamil Nadu, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - George Priya Doss C.
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
28
|
Poniewierza P, Panek G. Cervical Cancer Prophylaxis—State-of-the-Art and Perspectives. Healthcare (Basel) 2022; 10:healthcare10071325. [PMID: 35885852 PMCID: PMC9319342 DOI: 10.3390/healthcare10071325] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/28/2022] [Accepted: 07/12/2022] [Indexed: 12/15/2022] Open
Abstract
Background: Each year 604,127 new cases of cervical cancer (CC) are diagnosed, and 341,831 individuals die from the disease. It is the fourth most common cancer among women and the fourth most common cause of death from female cancers worldwide. The pathogenesis of CC is associated with human papillomavirus (HPV) infections and consists of several steps involving cell proliferation outside the human body’s control mechanisms. Strategies to prevent CC are based on screening and vaccination. Scope of the Review: The aim of this paper was to collect and analyze the available literature on the issue of CC prevention and the impact of the COVID-19 pandemic on its implementation. For this purpose, PubMed and Google Scholar databases were searched using keywords, such as “cervical cancer”; “HPV”; “prevention”; “prophylaxis”; “vaccination”; “screening” and “COVID-19” in different variations. Only articles published since 2018 were included in the study. Conclusions: Selected European countries have different CC prevention programs funded by national budgets. This translates into observed differences in the risk of death from CC (age-standardized rate Malta = 1.1, Poland = 5.9). COVID-19 pandemic due to disruption of CC screening may exacerbate these differences in the future. To improve the situation, new screening methods, such as p16/Ki67, HPV self-testing, and the use of artificial intelligence in colposcopic assessment, should be disseminated, as well as free HPV vaccination programs implemented in all countries. The search for new solutions is not without significance and entails ultra-sensitive screening tests for risk groups (mRNA E6/E7, SOX1/SOX14), HPV vaccines with shorter dosing schedules, and new therapeutic pathways using nanotheranostics.
Collapse
Affiliation(s)
- Patryk Poniewierza
- Medicover SP ZOO Company, Aleje Jerozolimskie 96, 00-807 Warsaw, Poland
- Correspondence:
| | - Grzegorz Panek
- Department of Oncologic Gynecology and Obstetrics, The Center of Postgraduate Medical Education, 00-416 Warsaw, Poland;
| |
Collapse
|
29
|
Immunological Aspects of Human Papilloma Virus-Related Cancers Always Says, “I Am like a Box of Complexity, You Never Know What You Are Gonna Get”. Vaccines (Basel) 2022; 10:vaccines10050731. [PMID: 35632488 PMCID: PMC9144219 DOI: 10.3390/vaccines10050731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
The human papillomavirus (HPV) can cause different cancers in both men and women. The virus interferes with functions of the cervix, vulva, vagina, anus in the anogenital area, breast, and head and neck cancer due to the local lesions. The tumors lead to death if not treated as a result of distant metastasis to internal organs and brain. Moreover, HPV attenuates the immune system during chronic infection and releases viral antigens into the tumor microenvironment. The tumors know how difficult is to win the battle with a strong united army of immune cells that are equipped with cytokines and enzymes. They confuse the immune cells with secreting viral antigens. The immune system is equipped with cytokines, a complement system, antibodies, and other secretory proteins to overcome the foreign invaders and viral antigens. However, the majority of the time, tumors win the battle without having all the equipment of the immune cells. Thus, in this review, we describe the recent progression in cellular and humoral immunity studies during the progression of HPV-related cancers. First of all, we describe the role of B, plasmoid cells, and B regulatory cells (Breg) in their functions in the tumor microenvironment. Then, different subtypes of T cells such as T CD8, CD4, T regulatory (Treg) cells were studied in recently published papers. Furthermore, NK cells and their role in tumor progression and prevention were studied. Finally, we indicate the breakthroughs in immunotherapy techniques for HPV-related cancers.
Collapse
|
30
|
Li N, Geng F, Liang SM, Qin X. USP7 inhibits TIMP2 by up-regulating the expression of EZH2 to activate the NF-κB/PD-L1 axis to promote the development of cervical cancer. Cell Signal 2022; 96:110351. [PMID: 35523402 DOI: 10.1016/j.cellsig.2022.110351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Cervical cancer belongs to the most common gynecological malignant cancers. EZH2 has been found to be dysregulated in different kinds of tumors and acts as an oncogene to promote cancer development. However, its upstream regulators and downstream targets in cervical cancer remain unclear. PD-L1 is a surface marker of cancer cells, facilitating the immunosuppressive microenvironment for escape from immunity attack. The molecular mechanism of increased PD-L1 expression in cervical cancer is needed to be explored. METHODS The expression levels of USP7, EZH2 and TIMP2 in cervical cancer patients' samples and cell lines were detected by qRT-PCR and histopathology staining. The functions of USP7, EZH2 and TIMP2 were evaluated by MTT, cell migration and invasion assays after knocking down or overexpression of indicated genes. The tumor microenvironment was determined by testing of PD-L1 expression and cytotoxicity when co-cultured with NK-92 cells. Xenograft model was used to test the function of USP7 in vivo. RESULTS Our data demonstrated that USP7 and EZH2 were upregulated in cervical cancer, while TIMP2 was downregulated. Inhibition of USP7 and EZH2, or overexpression of TIMP2 suppressed proliferation, migration, invasion and immune escape ability of cervical cancer cells. USP7 could increase EZH2 level, which in turn inhibited TIMP2 expression via methylation in its promoter. TIMP2 was able to mediate PD-L1 expression via NF-κB signaling pathway. Knocking down of USP7 could inhibit tumor development in vivo of cervical cancer. CONCLUSIONS The study discovered the function and mechanism of USP7 and highlighted its oncogenic role in cervical cancer development. Our results indicated that targeting USP7 could be a therapeutic strategy the treatment of cervical cancer.
Collapse
Affiliation(s)
- Na Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Feng Geng
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Shu-Mei Liang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Xiaoyan Qin
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China.
| |
Collapse
|
31
|
Zhang W, Xiao P, Tang J, Wang R, Wang X, Wang F, Ruan J, Yu S, Tang J, Huang R, Zhao X. m6A Regulator-Mediated Tumour Infiltration and Methylation Modification in Cervical Cancer Microenvironment. Front Immunol 2022; 13:888650. [PMID: 35572541 PMCID: PMC9098799 DOI: 10.3389/fimmu.2022.888650] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/07/2022] [Indexed: 01/17/2023] Open
Abstract
Background N6-methyladenosine (m6A) is the most abundant internal mRNA modification in eukaryotic cells. There is accumulating evidence that m6A methylation can play a significant role in the early diagnosis and treatment of cancers. However, the mechanism underlying the involvement of m6A in cervical cancer remains unclear. Methods Here, we examined the m6A modification patterns of immune cells in the tumour microenvironments (TMEs) of 306 patients with cervical cancer from The Cancer Genome Atlas dataset and analysed the relations between them according to 32 m6A regulators. Immune infiltration in the TME of cervical cancer was analysed using the CIBERSORT algorithm and single-sample gene set enrichment analysis. The m6Ascore was structured though principal component analysis. Results Two different m6A modification patterns were detected in 306 patients with cervical cancer, designated as m6Acluster A and B. The immune cell infiltration characteristics and biological behaviour differed between the two patterns, with m6Acluster A showing a higher level of immune infiltration. The samples were also divided into two genomic subtypes according to 114 m6A regulatory genes shown to be closely correlated with prognosis on univariate Cox regression analysis. Survival analysis showed that gene cluster B was related to better survival than gene cluster A. Most of the m6A regulators showed higher expression in gene cluster B than in gene cluster A. Single-sample gene set enrichment analysis indicated a higher level of immune cell infiltration in gene cluster A. The m6Ascore signature was examined to determine the m6A modification patterns in cervical cancer. Patients with a high m6Ascore showed better survival, while the low m6Ascore group had a higher mutation frequency and better response to treatment. Conclusions This study showed that m6A modification patterns play important roles in cervical cancer. Analysis of m6A modification patterns will yield an improved understanding of the TME in cervical cancer, and facilitate the development of better immunotherapy strategies.
Collapse
Affiliation(s)
- Wenyi Zhang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Pei Xiao
- Center for Non-Communicable Disease Management, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Jiayi Tang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Rui Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Xiangdong Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Fengxu Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Junpu Ruan
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Shali Yu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Juan Tang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Rongrong Huang
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Xinyuan Zhao, ; Rongrong Huang,
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
- *Correspondence: Xinyuan Zhao, ; Rongrong Huang,
| |
Collapse
|