1
|
L C, P M, I B, A R, H D, D S. Obesity-driven musculotendinous remodeling impairs tissue resilience to mechanical damage. Cell Tissue Res 2025:10.1007/s00441-025-03967-1. [PMID: 40163175 DOI: 10.1007/s00441-025-03967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025]
Abstract
Obesity has been associated with lower muscle strength-to-body mass ratio. Here, we evaluated the effects of diet-induced obesity on the mechano-structural properties of isolated muscles and tendons. Thirty 10-week-old male C57BL/6 J mice were randomly assigned to either an obesogenic high-fat diet group (OB) for 24 weeks or a control group (CN) maintained on a standard chow diet. Soleus muscle (SOL) and Achilles tendon (AT) specimens were isolated and subjected either to failure testing, 300 cycles of passive stretch-destretch, or isometric twitch contractions. Morpho-structural and protein expression analyses were conducted to assess collagen and adipose tissue accumulation, concentrations of cross-linking factors, and any alterations in the POSTN-TGFβ1-Akt signaling pathway. OB SOL and AT tissues were more fragile than those from CN (p < 0.05). A piecewise linear regression model revealed a tendency for OB tissues to exhibit steeper mechanical property changes within the first 20 cycles compared to CN, followed by a similar plateau phase in both groups. OB SOL-AT complexes showed a slower twitch-contraction-relaxation pattern than CN (p < 0.05). OB tendons and muscles were larger than those of the CN, with muscles featuring bigger fibers, and higher collagen area fraction (p < 0.05). Elevated TGFβ1 and POSTN concentrations were observed in OB tissues (p < 0.05), alongside increased P-Akt and P-4EBP1 expression (p < 0.05). These findings highlight the detrimental effects of obesity on the structural integrity of muscle and tendon tissues and suggest a significant role of POSTN-TGFβ1-Akt signaling in obesity-associated musculotendinous remodeling.
Collapse
Affiliation(s)
- Cesanelli L
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania.
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania.
| | - Minderis P
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Balnyte I
- Department of Histology and Embryology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ratkevicius A
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
- Sports and Exercise Medicine Centre, Queen Mary University of London, London, UK
| | - Degens H
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Satkunskiene D
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania
| |
Collapse
|
2
|
Dreher SI, Grubba P, von Toerne C, Moruzzi A, Maurer J, Goj T, Birkenfeld AL, Peter A, Loskill P, Hauck SM, Weigert C. IGF1 promotes human myotube differentiation toward a mature metabolic and contractile phenotype. Am J Physiol Cell Physiol 2024; 326:C1462-C1481. [PMID: 38690930 PMCID: PMC11371365 DOI: 10.1152/ajpcell.00654.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 05/03/2024]
Abstract
Skeletal muscle mediates the beneficial effects of exercise, thereby improving insulin sensitivity and reducing the risk for type 2 diabetes. Current human skeletal muscle models in vitro are incapable of fully recapitulating its physiological functions especially muscle contractility. By supplementation of insulin-like growth factor 1 (IGF1), a growth factor secreted by myofibers in vivo, we aimed to overcome these limitations. We monitored the differentiation process starting from primary human CD56-positive myoblasts in the presence/absence of IGF1 in serum-free medium in daily collected samples for 10 days. IGF1-supported differentiation formed thicker multinucleated myotubes showing physiological contraction upon electrical pulse stimulation (EPS) following day 6. Myotubes without IGF1 were almost incapable of contraction. IGF1 treatment shifted the proteome toward skeletal muscle-specific proteins that contribute to myofibril and sarcomere assembly, striated muscle contraction, and ATP production. Elevated PPARGC1A, MYH7, and reduced MYH1/2 suggest a more oxidative phenotype further demonstrated by higher abundance of proteins of the respiratory chain and elevated mitochondrial respiration. IGF1-treatment also upregulated glucose transporter (GLUT)4 and increased insulin-dependent glucose uptake compared with myotubes differentiated without IGF1. To conclude, addition of IGF1 to serum-free medium significantly improves the differentiation of human myotubes that showed enhanced myofibril formation, response to electrical pulse stimulation, oxidative respiratory capacity, and glucose metabolism overcoming limitations of previous standards. This novel protocol enables investigation of muscular exercise on a molecular level.NEW & NOTEWORTHY Human skeletal muscle models are highly valuable to study how exercise prevents type 2 diabetes without invasive biopsies. Current models did not fully recapitulate the function of skeletal muscle especially during exercise. By supplementing insulin-like growth factor 1 (IGF1), the authors developed a functional human skeletal muscle model characterized by inducible contractility and increased oxidative and insulin-sensitive metabolism. The novel protocol overcomes the limitations of previous standards and enables investigation of exercise on a molecular level.
Collapse
Affiliation(s)
- Simon I Dreher
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
| | - Paul Grubba
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
| | - Christine von Toerne
- Metabolomics and Proteomics Core Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Alessia Moruzzi
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Jennifer Maurer
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
| | - Thomas Goj
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Andreas L Birkenfeld
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München, University of Tübingen, Tübingen, Germany
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Peter
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München, University of Tübingen, Tübingen, Germany
| | - Peter Loskill
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Cora Weigert
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München, University of Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Kovac L, Goj T, Ouni M, Irmler M, Jähnert M, Beckers J, Hrabé De Angelis M, Peter A, Moller A, Birkenfeld AL, Weigert C, Schürmann A. Skeletal Muscle Gene Expression Signatures of Obese High and Low Responders to Endurance Exercise Training. J Clin Endocrinol Metab 2024; 109:1318-1327. [PMID: 37988600 PMCID: PMC11031218 DOI: 10.1210/clinem/dgad677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
CONTEXT Exercise training is known to improve glucose tolerance and reverse insulin resistance in people with obesity. However, some individuals fail to improve or even decline in their clinical traits following exercise intervention. OBJECTIVE This study focused on gene expression and DNA methylation signatures in skeletal muscle of low (LRE) and high responders (RES) to 8 weeks of supervised endurance training. METHODS We performed skeletal muscle gene expression and DNA methylation analyses in LRE and RES before and after exercise intervention. Additionally, we applied the least absolute shrinkage and selection operator (LASSO) approach to identify predictive marker genes of exercise outcome. RESULTS We show that the two groups differ markedly already before the intervention. RES were characterized by lower expression of genes involved in DNA replication and repair, and higher expression of extracellular matrix (ECM) components. The LASSO approach identified several novel candidates (eg, ZCWPW2, FOXRED1, STK40) that have not been previously described in the context of obesity and exercise response. Following the intervention, LRE reacted with expression changes of genes related to inflammation and apoptosis, RES with genes related to mitochondrial function. LRE exhibited significantly higher expression of ECM components compared to RES, suggesting improper remodeling and potential negative effects on insulin sensitivity. Between 45% and 70% of differences in gene expression could be linked to differences in DNA methylation. CONCLUSION Together, our data offer an insight into molecular mechanisms underlying differences in response to exercise and provide potential novel markers for the success of intervention.
Collapse
Affiliation(s)
- Leona Kovac
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal 14558, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg 85764, Germany
- Research Group Molecular and Clinical Life Science of Metabolic Diseases, Faculty of Health Sciences Brandenburg, University of Potsdam, Brandenburg 14469, Germany
| | - Thomas Goj
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg 85764, Germany
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen 72076, Germany
| | - Meriem Ouni
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal 14558, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg 85764, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Markus Jähnert
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal 14558, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg 85764, Germany
| | - Johannes Beckers
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg 85764, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg 85764, Germany
- School of Life Sciences, Chair of Experimental Genetics, Technical University Munich, Freising 85764, Germany
| | - Martin Hrabé De Angelis
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg 85764, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg 85764, Germany
- School of Life Sciences, Chair of Experimental Genetics, Technical University Munich, Freising 85764, Germany
| | - Andreas Peter
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg 85764, Germany
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen 72076, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Tübingen 72076, Germany
| | - Anja Moller
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg 85764, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Tübingen 72076, Germany
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen 72076, Germany
| | - Andreas L Birkenfeld
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg 85764, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Tübingen 72076, Germany
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen 72076, Germany
| | - Cora Weigert
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg 85764, Germany
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen 72076, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Tübingen 72076, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal 14558, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg 85764, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal 14558, Germany
| |
Collapse
|
4
|
Hiam D, Landen S, Jacques M, Voisin S, Lamon S, Eynon N. Muscle miRNAs are influenced by sex at baseline and in response to exercise. BMC Biol 2023; 21:273. [PMID: 38012706 PMCID: PMC10683325 DOI: 10.1186/s12915-023-01755-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Sex differences in microRNA (miRNA) expression profiles have been found across multiple tissues. Skeletal muscle is one of the most sex-biased tissues of the body. MiRNAs are necessary for development and have regulatory roles in determining skeletal muscle phenotype and have important roles in the response to exercise in muscle. Yet there is limited research into the role and regulation of miRNAs in the skeletal muscle at baseline and in response to exercise, a well-known modulator of miRNA expression. The aim of this study was to investigate the effect of sex on miRNA expression in the skeletal muscle at baseline and after an acute bout of high-intensity interval exercise. A total of 758 miRNAs were measured using Taqman®miRNA arrays in the skeletal muscle of 42 healthy participants from the Gene SMART study (23 males and 19 females of comparable fitness levels and aged 18-45 years), of which 308 were detected. MiRNAs that differed by sex at baseline and whose change in expression following high-intensity interval exercise differed between the sexes were identified using mixed linear models adjusted for BMI and Wpeak. We performed in silico analyses to identify the putative gene targets of the exercise-induced, sex-specific miRNAs and overrepresentation analyses to identify enriched biological pathways. We performed functional assays by overexpressing two sex-biased miRNAs in human primary muscle cells derived from male and female donors to understand their downstream effects on the transcriptome. RESULTS At baseline, 148 miRNAs were differentially expressed in the skeletal muscle between the sexes. Interaction analysis identified 111 miRNAs whose response to an acute bout of high-intensity interval exercise differed between the sexes. Sex-biased miRNA gene targets were enriched for muscle-related processes including proliferation and differentiation of muscle cells and numerous metabolic pathways, suggesting that miRNAs participate in programming sex differences in skeletal muscle function. Overexpression of sex-biased miRNA-30a and miRNA-30c resulted in profound changes in gene expression profiles that were specific to the sex of the cell donor in human primary skeletal muscle cells. CONCLUSIONS We uncovered sex differences in the expression levels of muscle miRNAs at baseline and in response to acute high-intensity interval exercise. These miRNAs target regulatory pathways essential to skeletal muscle development and metabolism. Our findings highlight that miRNAs play an important role in programming sex differences in the skeletal muscle phenotype.
Collapse
Affiliation(s)
- Danielle Hiam
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Shanie Landen
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
- Hudson Institute of Medical Research, Melbourne, Australia
| | - Macsue Jacques
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Sarah Voisin
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Séverine Lamon
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| | - Nir Eynon
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia.
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
5
|
Ruebel ML, Borengasser SJ, Zhong Y, Kang P, Faske J, Shankar K. Maternal Exercise Prior to and during Gestation Induces Sex-Specific Alterations in the Mouse Placenta. Int J Mol Sci 2023; 24:16441. [PMID: 38003633 PMCID: PMC10671464 DOI: 10.3390/ijms242216441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
While exercise (EX) during pregnancy is beneficial for both mother and child, little is known about the mechanisms by which maternal exercise mediates changes in utero. Six-week-old female C57BL/6 mice were divided into two groups: with (exercise, EX; N = 7) or without (sedentary, SED; N = 8) access to voluntary running wheels. EX was provided via 24 h access to wheels for 10 weeks prior to conception until late pregnancy (18.5 days post coitum). Sex-stratified placentas and fetal livers were collected. Microarray analysis of SED and EX placentas revealed that EX affected gene transcript expression of 283 and 661 transcripts in male and female placentas, respectively (±1.4-fold, p < 0.05). Gene Set Enrichment and Ingenuity Pathway Analyses of male placentas showed that EX led to inhibition of signaling pathways, biological functions, and down-regulation of transcripts related to lipid and steroid metabolism, while EX in female placentas led to activation of pathways, biological functions, and gene expression related to muscle growth, brain, vascular development, and growth factors. Overall, our results suggest that the effects of maternal EX on the placenta and presumably on the offspring are sexually dimorphic.
Collapse
Affiliation(s)
- Meghan L. Ruebel
- Microbiome and Metabolism Research Unit, USDA-ARS, Southeast Area, Little Rock, AR 72202, USA;
- Arkansas Children’s Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA; (Y.Z.); (J.F.)
| | - Sarah J. Borengasser
- Tobacco Settlement Endowment Trust Health Promotion Research Center, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Pediatrics—Endocrinology & Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ying Zhong
- Arkansas Children’s Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA; (Y.Z.); (J.F.)
| | - Ping Kang
- Arkansas Children’s Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA; (Y.Z.); (J.F.)
| | - Jennifer Faske
- Arkansas Children’s Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA; (Y.Z.); (J.F.)
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Kartik Shankar
- Department of Pediatrics, Section of Nutrition, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Dalle Carbonare L, Minoia A, Zouari S, Piritore FC, Vareschi A, Romanelli MG, Valenti MT. Crosstalk between Bone and Muscles during Physical Activity. Cells 2023; 12:2088. [PMID: 37626898 PMCID: PMC10453939 DOI: 10.3390/cells12162088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/08/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Bone-muscle crosstalk is enabled thanks to the integration of different molecular signals, and it is essential for maintaining the homeostasis of skeletal and muscle tissue. Both the skeletal system and the muscular system perform endocrine activity by producing osteokines and myokines, respectively. These cytokines play a pivotal role in facilitating bone-muscle crosstalk. Moreover, recent studies have highlighted the role of non-coding RNAs in promoting crosstalk between bone and muscle in physiological or pathological conditions. Therefore, positive stimuli or pathologies that target one of the two systems can affect the other system as well, emphasizing the reciprocal influence of bone and muscle. Lifestyle and in particular physical activity influence both the bone and the muscular apparatus by acting on the single system but also by enhancing its crosstalk. Several studies have in fact demonstrated the modulation of circulating molecular factors during physical activity. These molecules are often produced by bone or muscle and are capable of activating signaling pathways involved in bone-muscle crosstalk but also of modulating the response of other cell types. Therefore, in this review we will discuss the effects of physical activity on bone and muscle cells, with particular reference to the biomolecular mechanisms that regulate their cellular interactions.
Collapse
Affiliation(s)
- Luca Dalle Carbonare
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (S.Z.); (A.V.)
| | - Arianna Minoia
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (S.Z.); (A.V.)
| | - Sharazed Zouari
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (S.Z.); (A.V.)
| | - Francesca Cristiana Piritore
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (F.C.P.); (M.G.R.)
| | - Anna Vareschi
- Department of Engineering for Innovative Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (S.Z.); (A.V.)
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (F.C.P.); (M.G.R.)
| | - Maria Teresa Valenti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (F.C.P.); (M.G.R.)
| |
Collapse
|
7
|
Huang S, Wu K, Li B, Liu Y. lncRNA UCA1 inhibits mitochondrial dysfunction of skeletal muscle in type 2 diabetes mellitus by sequestering miR-143-3p to release FGF21. Cell Tissue Res 2023; 391:561-575. [PMID: 36602629 DOI: 10.1007/s00441-022-03733-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023]
Abstract
Increasing evidence suggests that insulin resistance in type 2 diabetes mellitus (T2DM) is associated with mitochondrial dysfunction in skeletal muscle, while the underlying molecular mechanisms remain elusive. This study aims to construct a ceRNA regulatory network that is involved in mitochondrial dysfunction of skeletal muscle in T2DM. Based on GEO database analysis, differentially expressed lncRNA and mRNA profiles were identified in skeletal muscle tissues of T2DM. Next, LASSO regression analysis was conducted to predict the key lncRNAs related to T2DM, which was validated by receiver operating characteristic (ROC) analysis. Moreover, the miRNAs related to skeletal muscle in T2DM were identified by WGCNA, followed by construction of gene-gene interaction network and GO and KEGG enrichment analyses. It was found that 12 lncRNAs and 6 miRNAs were related to skeletal muscle in T2DM. Moreover, the lncRNA-miRNA-mRNA ceRNA network involving UCA1, miR-143-3p, and FGF21 was constructed. UCA1, and FGF21 were downregulated, while miR-143-3p was upregulated in skeletal muscle cells (SkMCs) exposed to palmitic acid. Additionally, ectopic expression experiments were performed in SkMCs to confirm the effects of UCA1/miR-143-3p/FGF21 on mitochondrial dysfunction by determining mitochondrial ROS, oxygen consumption rate (OCR), membrane potential, and ATP level. Overexpression of miR-143-3p increased ROS accumulation and reduced the OCR, fluorescence ratio of JC-1, and ATP level, which were reversed by upregulation of UCA1 or FGF21. Collectively, lncRNA UCA1 inhibited mitochondrial dysfunction of skeletal muscle in T2DM by sequestering miR-143-3p away from FGF21, therefore providing a potential therapeutic target for alleviating mitochondrial dysfunction of skeletal muscle in T2DM.
Collapse
Affiliation(s)
- Sha Huang
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, 410008, People's Republic of China
| | - Kai Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, 410008, People's Republic of China.,Department of Physical Medicine & Rehabilitation, Xiangya Hospital of Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, Hunan Province, 410008, People's Republic of China
| | - Bingfa Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, 410008, People's Republic of China.,Department of Physical Medicine & Rehabilitation, Xiangya Hospital of Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, Hunan Province, 410008, People's Republic of China
| | - Yuan Liu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, 410008, People's Republic of China. .,Department of Physical Medicine & Rehabilitation, Xiangya Hospital of Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, Hunan Province, 410008, People's Republic of China.
| |
Collapse
|
8
|
Mechanism of Extracellular Vesicle Secretion Associated with TGF-β-Dependent Inflammatory Response in the Tumor Microenvironment. Int J Mol Sci 2022; 23:ijms232315335. [PMID: 36499660 PMCID: PMC9740594 DOI: 10.3390/ijms232315335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/10/2022] Open
Abstract
Extracellular vesicles (EVs) serve as central mediators in communication between tumor and non-tumor cells. These interactions are largely dependent on the function of the endothelial barrier and the set of receptors present on its surface, as endothelial cells (ECs) are a plenteous source of EVs. The molecular basis for EV secretion and action in the tumor microenvironment (TME) has not been fully elucidated to date. Emerging evidence suggests a prominent role of inflammatory pathways in promoting tumor progression and metastasis. Although transforming growth factor β (TGF-β) is a cytokine with strong immunomodulatory and protective activity in benign and early-stage cancer cells, it plays a pro-tumorigenic role in advanced cancer cells, which is known as the "TGF-β paradox". Thus, the aim of this review is to describe the correlation between EV release, TGF-β-dependent inflammation, and dysregulation of downstream TGF-β signaling in the context of cancer development.
Collapse
|
9
|
Han SZ, Gao K, Chang SY, Choe HM, Paek HJ, Quan BH, Liu XY, Yang LH, Lv ST, Yin XJ, Quan LH, Kang JD. miR-455-3p Is Negatively Regulated by Myostatin in Skeletal Muscle and Promotes Myoblast Differentiation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10121-10133. [PMID: 35960196 DOI: 10.1021/acs.jafc.2c02474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Myostatin (MSTN) is a growth and differentiation factor that regulates proliferation and differentiation of myoblasts, which in turn controls skeletal muscle growth. It may regulate myoblast differentiation by influencing miRNA expression, and the present study aimed to clarify its precise mechanism of action. Here, we found that MSTN-/- pigs showed an overgrowth of skeletal muscle and upregulated miR-455-3p level. Intervention of MSTN expression using siMSTN in C2C12 myoblasts also showed that siMSTN significantly increased the expression of miR-455-3p. It was found that miR-455-3p directly targeted the 3'-untranslated region of Smad2 by dual-luciferase assay. qRT-PCR, Western blotting, and immunofluorescence analyses indicated that miR-455-3p overexpression or Smad2 silencing in C2C12 myoblasts significantly promoted myoblast differentiation. Furthermore, siMSTN significantly increased the expression of GATA3. The levels of miR-455-3p were considerably reduced in C2C12 myoblasts following GATA3 knockdown. Consistently, GATA3 knockdown also reduced the enhanced miR-455-3p expression caused by siMSTN. Finally, we illustrated that GATA3 has a role in myoblast differentiation regulation. Taken together, we identified the expression profiles of miRNAs in MSTN-/- pigs and found that miR-455-3p positively regulates myoblast differentiation. In addition, we revealed that MSTN acts through the GATA3/miR-455-3p/Smad2 cascade to regulate muscle development.
Collapse
Affiliation(s)
- Sheng-Zhong Han
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| | - Kai Gao
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| | - Shuang-Yan Chang
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| | - Hak-Myong Choe
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| | - Hyo-Jin Paek
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| | - Biao-Hu Quan
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| | - Xin-Yue Liu
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| | - Liu-Hui Yang
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| | - Si-Tong Lv
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| | - Xi-Jun Yin
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| | - Lin-Hu Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Jin-Dan Kang
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji, 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, 133002, China
| |
Collapse
|