1
|
Orange F, Pagnotta S, Pierre O, de Almeida Engler J. Application of array tomography to elucidate nuclear clustering architecture in giant-feeding cells induced by root-knot nematodes. THE NEW PHYTOLOGIST 2025. [PMID: 40186428 DOI: 10.1111/nph.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/13/2025] [Indexed: 04/07/2025]
Abstract
Plant-parasitic nematodes like root-knot nematodes (RKN; Meloidogyne spp.) cause great losses in agriculture by inducing root swellings, named galls, in host roots disturbing plant growth and development. Previous two-dimensional studies using different microscopy techniques revealed the presence of numerous nuclear clusters in nematode-induced giant cells within galls. Here, we show in three dimensions (3D) that nuclear clustering occurring in giant cells is revealed to be much more complex, illustrating subclusters built of multiple nuclear lobes. These nuclear subclusters are unveiled to be interconnected and likely communicate via nucleotubes, highlighting the potential relevance of this nuclear transfer for disease. In addition, microtubules and microtubule organizing centers are profusely present between the densely packed nuclear lobes, suggesting that the cytoskeleton might be involved in anchoring nuclear clusters in giant cells. This study illustrates that it is possible to apply volume electron microscopy (EM) approaches such as array tomography (AT) to roots infected by nematodes using basic equipment found in most EM facilities. The application of AT was valuable to observe the cellular ultrastructure in 3D, revealing the remarkable nuclear architecture of giant cells in the model host Arabidopsis thaliana. The discovery of nucleotubes, as a unique component of nuclear clusters present in giant cells, can be potentially exploited as a novel strategy to develop alternative approaches for RKN control in crop species.
Collapse
Affiliation(s)
- François Orange
- Centre Commun de Microscopie Appliquée (CCMA), Université Côte d'Azur, 06108, Nice, France
| | - Sophie Pagnotta
- Centre Commun de Microscopie Appliquée (CCMA), Université Côte d'Azur, 06108, Nice, France
| | - Olivier Pierre
- INRAE, Université Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France
| | | |
Collapse
|
2
|
Li Q, Wang L. Navigating the complex role of senescence in liver disease. Chin Med J (Engl) 2024; 137:3061-3072. [PMID: 39679454 PMCID: PMC11706581 DOI: 10.1097/cm9.0000000000003439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Indexed: 12/17/2024] Open
Abstract
ABSTRACT Cellular senescence, an irreversible state of cell cycle arrest characterized by phenotypic changes and a specific secretory profile, plays a dual role in liver health and disease. Under physiological conditions, senescence aids organ repair and regeneration, but its accumulation due to aging or pathological stress significantly contributes to chronic liver diseases, including alcoholic liver disease, metabolic dysfunction-associated steatohepatitis, liver fibrosis, and hepatocellular carcinoma. Senescence is identified by a range of cellular and molecular changes, such as morphological alterations, expression of cell cycle inhibitors, senescence-associated β-galactosidase activity, and nuclear membrane changes. The onset of senescence in organ cells can affect the entire organism, primarily through the senescence-associated secretory phenotype, which has autocrine, paracrine, and endocrine effects on tissue microenvironments. The objective of this review is to offer a contemporary overview of the pathophysiological events involving hepatic senescent cells and to elucidate their role in the onset and progression of liver diseases, particularly through mechanisms like telomere shortening, genomic and mitochondrial DNA damage, and inflammation. Additionally, this review discusses the emerging senolytic therapies aimed at targeting senescent cells to delay or mitigate liver disease progression. The therapeutic potential of these interventions, alongside their safety and effectiveness, highlights the need for further research to refine these approaches and address unresolved problems in the field of hepatic cellular senescence.
Collapse
Affiliation(s)
- Qiuting Li
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| |
Collapse
|
3
|
Dietz A, Subedi P, Azimzadeh O, Duchrow L, Kaestle F, Paetzold J, Katharina Payer S, Hornhardt S, von Toerne C, Hauck SM, Kempkes B, Kuklik-Roos C, Brandes D, Borkhardt A, Moertl S, Gomolka M. The Chromosome Passenger Complex (CPC) Components and Its Associated Pathways Are Promising Candidates to Differentiate Between Normosensitive and Radiosensitive ATM-Mutated Cells. Biomark Insights 2024; 19:11772719241274017. [PMID: 39493730 PMCID: PMC11528597 DOI: 10.1177/11772719241274017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/22/2024] [Indexed: 11/05/2024] Open
Abstract
Background Sensitivity to ionizing radiation differs between individuals, but there is a limited understanding of the biological mechanisms that account for these variations. One example of such mechanisms are the mutations in the ATM (mutated ataxia telangiectasia) gene, that cause the rare recessively inherited disease Ataxia telangiectasia (AT). Hallmark features include chromosomal instability and increased sensitivity to ionizing radiation (IR). Objectives To deepen the molecular understanding of radiosensitivity and to identify potential new markers to predict it, human ATM-mutated and proficient cells were compared on a proteomic level. Design In this study, we analyzed 3 cell lines from AT patients, with varying radiosensitivity, and 2 cell lines from healthy volunteers, 24 hours and 72 hours post-10 Gy irradiation. Methods We used label-free mass spectrometry to identify differences in signaling pathways after irradiation in normal and radiosensitive individuals. Cell viability was initially determined by water soluble tetrazolium (WST) assay and DNA damage response was analyzed with 53BP1 repair foci formation along with KRAB-associated protein 1 (KAP1) phosphorylation. Results Proteomic analysis identified 4028 proteins, which were used in subsequent in silico pathway enrichment analysis to predict affected biological pathways post-IR. In AT cells, networks were heterogeneous at both time points with no common pathway identified. Mitotic cell cycle progress was the most prominent pathway altered after IR in cells from healthy donors. In particular, components of the chromosome passenger complex (INCENP and CDCA8) were significantly downregulated after 72 hours. This could also be verified at the mRNA level. Conclusion Altogether, the most striking result was that proteins forming the chromosome passenger complex were downregulated after radiation exposure in healthy normosensitive control cells, but not in radiosensitive ATM-deficient cells. Thus, mitosis-associated proteins form an interesting compound to gain insights into the development and prediction of radiosensitivity.
Collapse
Affiliation(s)
- Anne Dietz
- Section Radiation Biology, Federal Office for Radiation Protection/Bundesamt für Strahlenschutz, Oberschleißheim, Germany
| | - Prabal Subedi
- Section Radiation Biology, Federal Office for Radiation Protection/Bundesamt für Strahlenschutz, Oberschleißheim, Germany
| | - Omid Azimzadeh
- Section Radiation Biology, Federal Office for Radiation Protection/Bundesamt für Strahlenschutz, Oberschleißheim, Germany
| | - Lukas Duchrow
- Section Radiation Biology, Federal Office for Radiation Protection/Bundesamt für Strahlenschutz, Oberschleißheim, Germany
| | - Felix Kaestle
- Section Radiation Biology, Federal Office for Radiation Protection/Bundesamt für Strahlenschutz, Oberschleißheim, Germany
| | - Juliane Paetzold
- Section Radiation Biology, Federal Office for Radiation Protection/Bundesamt für Strahlenschutz, Oberschleißheim, Germany
| | - Sarah Katharina Payer
- Section Radiation Biology, Federal Office for Radiation Protection/Bundesamt für Strahlenschutz, Oberschleißheim, Germany
| | - Sabine Hornhardt
- Section Radiation Biology, Federal Office for Radiation Protection/Bundesamt für Strahlenschutz, Oberschleißheim, Germany
| | - Christine von Toerne
- Helmholtz Zentrum München, German Research Centre for Environmental Health (GmbH) Core Facility Metabolomics and Proteomics, Munich, Germany
| | - Stefanie M Hauck
- Helmholtz Zentrum München, German Research Centre for Environmental Health (GmbH) Core Facility Metabolomics and Proteomics, Munich, Germany
| | - Bettina Kempkes
- Helmholtz Zentrum Munich, Research Unit Gene Vectors, Munich, Germany
| | | | - Danielle Brandes
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center for Child and Adolescent Health, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center for Child and Adolescent Health, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Simone Moertl
- Section Radiation Biology, Federal Office for Radiation Protection/Bundesamt für Strahlenschutz, Oberschleißheim, Germany
| | - Maria Gomolka
- Section Radiation Biology, Federal Office for Radiation Protection/Bundesamt für Strahlenschutz, Oberschleißheim, Germany
| |
Collapse
|
4
|
Kołacz K, Robaszkiewicz A. PARP1 at the crossroad of cellular senescence and nucleolar processes. Ageing Res Rev 2024; 94:102206. [PMID: 38278370 DOI: 10.1016/j.arr.2024.102206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Senescent cells that occur in response to telomere shortening, oncogenes, extracellular and intracellular stress factors are characterized by permanent cell cycle arrest, the morphological and structural changes of the cell that include the senescence-associated secretory phenotype (SASP) and nucleoli rearrangement. The associated DNA lesions induce DNA damage response (DDR), which activates the DNA repair protein - poly-ADP-ribose polymerase 1 (PARP1). This protein consumes NAD+ to synthesize ADP-ribose polymer (PAR) on its own protein chain and on other interacting proteins. The involvement of PARP1 in nucleoli processes, such as rRNA transcription and ribosome biogenesis, the maintenance of heterochromatin and nucleoli structure, as well as controlling the crucial DDR protein release from the nucleoli to nucleus, links PARP1 with cellular senescence and nucleoli functioning. In this review we describe and discuss the impact of PARP1-mediated ADP-ribosylation on early cell commitment to senescence with the possible role of senescence-induced PARP1 transcriptional repression and protein degradation on nucleoli structure and function. The cause-effect interplay between PARP1 activation/decline and nucleoli functioning during senescence needs to be studied in detail.
Collapse
Affiliation(s)
- Kinga Kołacz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, Banacha 12 /16, 90-237 Lodz, Poland.
| | - Agnieszka Robaszkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research (IFBR), 600 5th Street South, St. Petersburgh, FL 33701, USA.
| |
Collapse
|
5
|
Song C, Hu Z, Xu D, Bian H, Lv J, Zhu X, Zhang Q, Su L, Yin H, Lu T, Li Y. STING signaling in inflammaging: a new target against musculoskeletal diseases. Front Immunol 2023; 14:1227364. [PMID: 37492580 PMCID: PMC10363987 DOI: 10.3389/fimmu.2023.1227364] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/20/2023] [Indexed: 07/27/2023] Open
Abstract
Stimulator of Interferon Gene (STING) is a critical signaling linker protein that plays a crucial role in the intrinsic immune response, particularly in the cytoplasmic DNA-mediated immune response in both pathogens and hosts. It is also involved in various signaling processes in vivo. The musculoskeletal system provides humans with morphology, support, stability, and movement. However, its aging can result in various diseases and negatively impact people's lives. While many studies have reported that cellular aging is a leading cause of musculoskeletal disorders, it also offers insight into potential treatments. Under pathological conditions, senescent osteoblasts, chondrocytes, myeloid cells, and muscle fibers exhibit persistent senescence-associated secretory phenotype (SASP), metabolic disturbances, and cell cycle arrest, which are closely linked to abnormal STING activation. The accumulation of cytoplasmic DNA due to chromatin escape from the nucleus following DNA damage or telomere shortening activates the cGAS-STING signaling pathway. Moreover, STING activation is also linked to mitochondrial dysfunction, epigenetic modifications, and impaired cytoplasmic DNA degradation. STING activation upregulates SASP and autophagy directly and indirectly promotes cell cycle arrest. Thus, STING may be involved in the onset and development of various age-related musculoskeletal disorders and represents a potential therapeutic target. In recent years, many STING modulators have been developed and used in the study of musculoskeletal disorders. Therefore, this paper summarizes the effects of STING signaling on the musculoskeletal system at the molecular level and current understanding of the mechanisms of endogenous active ligand production and accumulation. We also discuss the relationship between some age-related musculoskeletal disorders and STING, as well as the current status of STING modulator development.
Collapse
Affiliation(s)
- Chenyu Song
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Zhuoyi Hu
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Dingjun Xu
- Department of Orthopaedics, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Zhejiang, China
| | - Huihui Bian
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Juan Lv
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Xuanxuan Zhu
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Qiang Zhang
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Li Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Heng Yin
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Tong Lu
- Department of Critical Care Medicine, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Yinghua Li
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
6
|
Kirsch-Volders M, Fenech M. Towards prevention of aneuploidy-associated cellular senescence and aging: more questions than answers? MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108474. [PMID: 37866738 DOI: 10.1016/j.mrrev.2023.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
The aim of this review is to discuss how aneuploidy contributes to the aging process, and to identify plausible strategies for its prevention. After an overview of mechanisms leading to aneuploidy and the major features of cellular senescence, we discuss the link between (i) aneuploidy and cellular senescence; (ii) aneuploidy and aging; and (iii) cellular senescence and aging. We also consider (i) interactions between aneuploidy, micronuclei, cellular senescence and aging, (ii) the potential of nutritional treatments to prevent aneuploidy-associated senescence and aging, and (iii) knowledge and technological gaps. Evidence for a causal link between aneuploidy, senescence and aging is emerging. In vitro, aneuploidy accompanies the entry into cellular senescence and can itself induce senescence. How aneuploidy contributes in vivo to cellular senescence is less clear. Several routes depending on aneuploidy and/or senescence converge towards chronic inflammation, the major driver of unhealthy aging. Aneuploidy can induce the pro-inflammatory Senescence Associated Secretory Phenotype (SASP), either directly or as a result of micronucleus (MN) induction leading to leakage of DNA into the cytoplasm and triggering of the cGAS-STING pathway of innate immune response. A major difficulty in understanding the impact of aneuploidy on senescence and aging in vivo, results from the heterogeneity of cellular senescence in different tissues at the cytological and molecular level. Due to this complexity, there is at the present time no biomarker or biomarker combination characteristic for all types of senescent cells. In conclusion, a deeper understanding of the critical role aneuploidy plays in cellular senescence and aging is essential to devise practical strategies to protect human populations from aneuploidy-associated pathologies. We discuss emerging evidence, based on in vitro and in vivo studies, that adequate amounts of specific micronutrients are essential for prevention of aneuploidy in humans and that precise nutritional intervention may be essential to help avoid the scourge of aneuploidy-driven diseases.
Collapse
Affiliation(s)
- Micheline Kirsch-Volders
- Laboratory for Cell Genetics, Department Biology, Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Michael Fenech
- Clinical and Health Sciences, University of South Australia, SA 5000, Australia; Genome Health Foundation, North Brighton, SA 5048, Australia.
| |
Collapse
|
7
|
Ma Y, Farny NG. Connecting the dots: Neuronal senescence, stress granules, and neurodegeneration. Gene 2023; 871:147437. [PMID: 37084987 PMCID: PMC10205695 DOI: 10.1016/j.gene.2023.147437] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/09/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
Cellular senescence increases with aging. While senescence is associated with an exit of the cell cycle, there is ample evidence that post-mitotic cells including neurons can undergo senescence as the brain ages, and that senescence likely contributes significantly to the progression of neurodegenerative diseases (ND) such as Alzheimer's Disease (AD) and Amyotrophic Lateral Sclerosis (ALS). Stress granules (SGs) are stress-induced cytoplasmic biomolecular condensates of RNA and proteins, which have been linked to the development of AD and ALS. The SG seeding hypothesis of NDs proposes that chronic stress in aging neurons results in static SGs that progress into pathological aggregates Alterations in SG dynamics have also been linked to senescence, though studies that link SGs and senescence in the context of NDs and the aging brain have not yet been performed. In this Review, we summarize the literature on senescence, and explore the contribution of senescence to the aging brain. We describe senescence phenotypes in aging neurons and glia, and their links to neuroinflammation and the development of AD and ALS. We further examine the relationships of SGs to senescence and to ND. We propose a new hypothesis that neuronal senescence may contribute to the mechanism of SG seeding in ND by altering SG dynamics in aged cells, thereby providing additional aggregation opportunities within aged neurons.
Collapse
Affiliation(s)
- Yizhe Ma
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Natalie G Farny
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA.
| |
Collapse
|
8
|
Ge T, Shao Y, Bao X, Xu W, Lu C. Cellular senescence in liver diseases: From mechanisms to therapies. Int Immunopharmacol 2023; 121:110522. [PMID: 37385123 DOI: 10.1016/j.intimp.2023.110522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Cellular senescence is an irreversible state of cell cycle arrest, characterized by a gradual decline in cell proliferation, differentiation, and biological functions. Cellular senescence is double-edged for that it can provoke organ repair and regeneration in physiological conditions but contribute to organ and tissue dysfunction and prime multiple chronic diseases in pathological conditions. The liver has a strong regenerative capacity, where cellular senescence and regeneration are closely involved. Herein, this review firstly introduces the morphological manifestations of senescent cells, the major regulators (p53, p21, and p16), and the core pathophysiologic mechanisms underlying senescence process, and then specifically generalizes the role and interventions of cellular senescence in multiple liver diseases, including alcoholic liver disease, nonalcoholic fatty liver disease, liver fibrosis, and hepatocellular carcinoma. In conclusion, this review focuses on interpreting the importance of cellular senescence in liver diseases and summarizes potential senescence-related regulatory targets, aiming to provide new insights for further researches on cellular senescence regulation and therapeutic developments for liver diseases.
Collapse
Affiliation(s)
- Ting Ge
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Yunyun Shao
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Xiaofeng Bao
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Wenxuan Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Chunfeng Lu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
9
|
Subedi P, Huber K, Sterr C, Dietz A, Strasser L, Kaestle F, Hauck SM, Duchrow L, Aldrian C, Monroy Ordonez EB, Luka B, Thomsen AR, Henke M, Gomolka M, Rößler U, Azimzadeh O, Moertl S, Hornhardt S. Towards unravelling biological mechanisms behind radiation-induced oral mucositis via mass spectrometry-based proteomics. Front Oncol 2023; 13:1180642. [PMID: 37384298 PMCID: PMC10298177 DOI: 10.3389/fonc.2023.1180642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Abstract
Objective Head and neck cancer (HNC) accounts for almost 890,000 new cases per year. Radiotherapy (RT) is used to treat the majority of these patients. A common side-effect of RT is the onset of oral mucositis, which decreases the quality of life and represents the major dose-limiting factor in RT. To understand the origin of oral mucositis, the biological mechanisms post-ionizing radiation (IR) need to be clarified. Such knowledge is valuable to develop new treatment targets for oral mucositis and markers for the early identification of "at-risk" patients. Methods Primary keratinocytes from healthy volunteers were biopsied, irradiated in vitro (0 and 6 Gy), and subjected to mass spectrometry-based analyses 96 h after irradiation. Web-based tools were used to predict triggered biological pathways. The results were validated in the OKF6 cell culture model. Immunoblotting and mRNA validation was performed and cytokines present in cell culture media post-IR were quantified. Results Mass spectrometry-based proteomics identified 5879 proteins in primary keratinocytes and 4597 proteins in OKF6 cells. Amongst them, 212 proteins in primary keratinocytes and 169 proteins in OKF6 cells were differentially abundant 96 h after 6 Gy irradiation compared to sham-irradiated controls. In silico pathway enrichment analysis predicted interferon (IFN) response and DNA strand elongation pathways as mostly affected pathways in both cell systems. Immunoblot validations showed a decrease in minichromosome maintenance (MCM) complex proteins 2-7 and an increase in IFN-associated proteins STAT1 and ISG15. In line with affected IFN signalling, mRNA levels of IFNβ and interleukin 6 (IL-6) increased significantly following irradiation and also levels of secreted IL-1β, IL-6, IP-10, and ISG15 were elevated. Conclusion This study has investigated biological mechanisms in keratinocytes post-in vitro ionizing radiation. A common radiation signature in keratinocytes was identified. The role of IFN response in keratinocytes along with increased levels of pro-inflammatory cytokines and proteins could hint towards a possible mechanism for oral mucositis.
Collapse
Affiliation(s)
- Prabal Subedi
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Neuherberg, Germany
| | - Katharina Huber
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Neuherberg, Germany
| | - Christoph Sterr
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Neuherberg, Germany
| | - Anne Dietz
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Neuherberg, Germany
| | - Lukas Strasser
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Neuherberg, Germany
| | - Felix Kaestle
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Neuherberg, Germany
| | - Stefanie M. Hauck
- Helmholtz Zentrum München, German Research Centre for Environmental Health, Metabolomics and Proteomics Core, Munich, Germany
| | - Lukas Duchrow
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Neuherberg, Germany
| | - Christine Aldrian
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) partner site Freiburg, Freiburg, Germany
| | - Elsa Beatriz Monroy Ordonez
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) partner site Freiburg, Freiburg, Germany
| | - Benedikt Luka
- Department of Conservative Dentistry Periodontology and Preventive Dentistry, Hannover Medical School (MHH), Hannover, Germany
| | - Andreas R. Thomsen
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) partner site Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Michael Henke
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) partner site Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Maria Gomolka
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Neuherberg, Germany
| | - Ute Rößler
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Neuherberg, Germany
| | - Omid Azimzadeh
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Neuherberg, Germany
| | - Simone Moertl
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Neuherberg, Germany
| | - Sabine Hornhardt
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Neuherberg, Germany
| |
Collapse
|
10
|
Ali T, Hussain F, Kayani HUR, Naeem M, Anjum F. The role of mitochondria and mitophagy in cell senescence. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023. [PMID: 37437987 DOI: 10.1016/bs.apcsb.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Mitochondrial malfunction and cell senescence have been defined as the hallmarks of aging. Cell senescence leads to the loss of health allied with aging. While deciphering the complex association between mitochondria and cellular senescence, it is observed that senescence has a two-faced nature being beneficial and hazardous. This duality of cellular senescence is associated with circumstantial aspects. During the process of cellular senescence, dysfunctional mitochondria are accumulated, the efficiency of the oxidative phosphorylation process declines along with the enhanced synthesis of reactive oxygen species. It is suggested that reduction in the negative consequences of senescence throughout old age might be accomplished by targeting the mitochondria as all roads lead towards mitochondria. It is unclear how perturbation of mitophagy in senescence results in the accumulation of mitochondria, impairment of mitochondrial biogenesis and onset of diseases. Understanding this complex interplay will bring about a long yet healthy lifespan. But definitely casual and specific players contribute in the initiation and conservation of the cell senescence. Variations in metabolism, quality control and dynamics of mitochondria are observed during cell aging process. Several On-target and Off-target mechanisms can also cause side effects in cellular senescence. Translational research of these mechanisms may lead to effective clinical interventions. This chapter reviews the role of mitochondria, homeostatic mechanisms and mitophagy as drivers and effectors of cell senescence along with multiple signalling pathways that lead to the initiation, maintenance, induction and suppression of cellular aging process during health and disease.
Collapse
|
11
|
Cao X, Weil MM, Wu JC. Clinical Trial in a Dish for Space Radiation Countermeasure Discovery. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:140-149. [PMID: 36336359 PMCID: PMC10947779 DOI: 10.1016/j.lssr.2022.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/30/2022] [Accepted: 05/25/2022] [Indexed: 06/16/2023]
Abstract
NASA aims to return humans to the moon within the next five years and to land humans on Mars in a few decades. Space radiation exposure represents a major challenge to astronauts' health during long-duration missions, as it is linked to increased risks of cancer, cardiovascular dysfunctions, central nervous system (CNS) impairment, and other negative outcomes. Characterization of radiation health effects and developing corresponding countermeasures are high priorities for the preparation of long duration space travel. Due to limitations of animal and cell models, the development of novel physiologically relevant radiation models is needed to better predict these individual risks and bridge gaps between preclinical testing and clinical trials in drug development. "Clinical Trial in a Dish" (CTiD) is now possible with the use of human induced pluripotent stem cells (hiPSCs), offering a powerful tool for drug safety or efficacy testing using patient-specific cell models. Here we review the development and applications of CTiD for space radiation biology and countermeasure studies, focusing on progress made in the past decade.
Collapse
Affiliation(s)
- Xu Cao
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA 94305, USA; Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael M Weil
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA 94305, USA; Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
12
|
Buoso E, Attanzio A, Biundo F. Cellular Senescence in Age-Related Diseases: Molecular Bases and Therapeutic Interventions. Cells 2022; 11:cells11132029. [PMID: 35805113 PMCID: PMC9266226 DOI: 10.3390/cells11132029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023] Open
Affiliation(s)
- Erica Buoso
- Department of Drug Sciences, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy;
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Alessandro Attanzio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy
- Correspondence: ; Tel.: +39-0912-3862-434
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA;
| |
Collapse
|