1
|
Everson TM, Sehgal N, Campbell K, Barr DB, Panuwet P, Yakimavets V, Chen K, Perez C, Shankar K, Eick SM, Pearson KJ, Andres A. Placental PFAS concentrations are associated with perturbations of placental DNA methylation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125737. [PMID: 39862910 DOI: 10.1016/j.envpol.2025.125737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/12/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
The placenta is crucial for fetal development, is affected by PFAS toxicity, and evidence is accumulating that gestational PFAS perturb the epigenetic activity of the placenta. Gestational PFAS exposure can adversely affect offspring, yet individual and cumulative impacts of PFAS on the placental epigenome remain underexplored. Here, we conducted an epigenome-wide association study (EWAS) to examine the relationships between placental PFAS levels and DNA methylation in a cohort of mother-infant dyads in Arkansas (N = 151). We measured 17 PFAS in human placental tissues and quantified placental DNA methylation levels via the Illumina EPIC Microarray. We tested for differential DNA methylation with individual PFAS, and with mixtures of multiple PFAS. Our results demonstrated that numerous epigenetic loci were perturbed by PFAS, with PFHxS exhibiting the most abundant effects. Mixture analyses suggested cumulative effects of PFOA and PFOS, while PFHxS may act more independently. We additionally explored whether sex-specific effects may be present and concluded that future large studies should explicitly test for sex-specific effects. The genes that are annotated to our PFAS-associated epigenetic loci are primarily involved in growth processes and cardiometabolic health, while some genes are involved in neurodevelopment. These findings shed light on how prenatal PFAS exposures affect birth outcomes and children's health, emphasizing the importance of understanding PFAS mechanisms in the in-utero environment.
Collapse
Affiliation(s)
- Todd M Everson
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA; Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA.
| | - Neha Sehgal
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Kyle Campbell
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Volha Yakimavets
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Kelsey Chen
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Cynthia Perez
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Kartik Shankar
- USDA Agricultural Research Service, Responsive Agricultural Food Systems Research Unit, College Station, TX, USA
| | - Stephanie M Eick
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA; Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Kevin J Pearson
- Department of Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine, USA
| | - Aline Andres
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Arkansas Children's Nutrition Center, Little Rock, AR, USA
| |
Collapse
|
2
|
Izquierdo-Luengo C, Ponce-Renilla M, Ten-Blanco M, Arnanz MA, Tolón RM, Pereda-Pérez I, Berrendero F. Long-term consequences of adolescent exposure to the synthetic cannabinoid AB-FUBINACA in male and female mice. iScience 2025; 28:111857. [PMID: 39991544 PMCID: PMC11847088 DOI: 10.1016/j.isci.2025.111857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/09/2024] [Accepted: 01/17/2025] [Indexed: 02/25/2025] Open
Abstract
The consumption of synthetic cannabinoids during adolescence is reported to be a risk factor for the appearance of psychiatric disorders later in life. AB-FUBINACA is a member of the indazole carboxamide family of synthetic cannabinoids present in Spice/K2 preparations. The present study sought to investigate the long-term effects of AB-FUBINACA consumption during adolescence in both male and female mice. AB-FUBINACA revealed several sex-dependent behavioral alterations. In this sense, the administration of this synthetic cannabinoid in female, but not male, mice induced psychotic-like symptoms which were associated with changes in dendritic arborization and density of mature dendritic spines in pyramidal neurons of the prefrontal cortex, as well as with an up-regulation of differentially expressed genes in this brain area. This study helps to clarify the potential late detrimental effects of this potent synthetic cannabinoid that may derive from its use during adolescence.
Collapse
Affiliation(s)
- Cristina Izquierdo-Luengo
- Institute of Life Sciences, Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - María Ponce-Renilla
- Institute of Life Sciences, Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Marc Ten-Blanco
- Institute of Life Sciences, Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - María Andrea Arnanz
- Institute of Life Sciences, Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Rosa María Tolón
- Institute of Life Sciences, Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Inmaculada Pereda-Pérez
- Department of Psychobiology, Faculty of Psychology, Universidad Complutense, 28224 Pozuelo de Alarcón, Madrid, Spain
| | - Fernando Berrendero
- Institute of Life Sciences, Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
3
|
Nishikawa M, Hayashi S, Nakayama A, Nishio Y, Shiraki A, Ito H, Maruyama K, Muramatsu Y, Ogi T, Mizuno S, Nagata KI. Pathophysiological significance of the p.E31G variant in RAC1 responsible for a neurodevelopmental disorder with microcephaly. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167520. [PMID: 39307291 DOI: 10.1016/j.bbadis.2024.167520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
RAC1 encodes a Rho family small GTPase that regulates actin cytoskeletal reorganization and intracellular signaling pathways. Pathogenic RAC1 variants lead to a neurodevelopmental disorder with diverse phenotypic manifestations, including abnormalities in brain size and facial dysmorphism. However, the underlying pathophysiological mechanisms have yet to be elucidated. Here, we present the case of a school-aged male who exhibited global developmental delay, intellectual disability, and acquired microcephaly. Through whole exome sequencing, we identified a novel de novo variant in RAC1, (NM_006908.5): c.92 A > G,p.(E31G). We then examined the pathophysiological significance of the p.E31G variant by focusing on brain development. Biochemical analyses revealed that the recombinant RAC1-E31G had no discernible impact on the intrinsic GDP/GTP exchange activity. However, it exhibited a slight inhibitory effect on GTP hydrolysis. Conversely, it demonstrated a typical response to both a guanine-nucleotide exchange factor and a GTPase-activating protein. In transient expression analyses using COS7 cells, RAC1-E31G exhibited minimal interaction with the downstream effector PAK1, even in its GTP-bound state. Additionally, overexpression of RAC1-E31G was observed to exert a weak inhibitory effect on the differentiation of primary cultured hippocampal neurons. Moreover, in vivo studies employing in utero electroporation revealed that acute expression of RAC1-E31G resulted in impairments in axonal elongation and dendritic arborization in the young adult stage. These findings suggest that the p.E31G variant functions as a dominant-negative version in the PAK1-mediated signaling pathway and is responsible for the clinical features observed in the patient under investigation, namely microcephaly and intellectual disability.
Collapse
Affiliation(s)
- Masashi Nishikawa
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Shin Hayashi
- Department of Genetics, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Atsushi Nakayama
- Department of Pediatrics, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, 3-35 Michishita-cho, Nagoya 453-8511, Japan
| | - Yosuke Nishio
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Furo-Cho, Nagoya 464-8602, Japan
| | - Anna Shiraki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Nagoya 466-8550, Japan
| | - Hidenori Ito
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Kouichi Maruyama
- Central Hospital, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Yukako Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Nagoya 466-8550, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Furo-Cho, Nagoya 464-8602, Japan
| | - Seiji Mizuno
- Central Hospital, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan; Department of Neurochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Nagoya 466-8550, Japan.
| |
Collapse
|
4
|
Everson TM, Sehgal N, Barr DB, Panuwet P, Yakimavets V, Perez C, Shankar K, Eick SM, Pearson KJ, Andres A. Placental PFAS concentrations are associated with perturbations of placental DNA methylation at loci with important roles on cardiometabolic health. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.06.24306905. [PMID: 38766233 PMCID: PMC11100840 DOI: 10.1101/2024.05.06.24306905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The placenta is crucial for fetal development, is affected by PFAS toxicity, and evidence is accumulating that gestational PFAS perturb the epigenetic activity of the placenta. Gestational PFAS exposure is can adversely affect offspring, yet individual and cumulative impacts of PFAS on the placental epigenome remain underexplored. Here, we conducted an epigenome-wide association study (EWAS) to examine the relationships between placental PFAS levels and DNA methylation in a cohort of mother-infant dyads in Arkansas. We measured 17 PFAS in human placental tissues and quantified placental DNA methylation levels via the Illumina EPIC Microarray. We tested for differential DNA methylation with individual PFAS, and with mixtures of multiple PFAS. Our results demonstrated that numerous epigenetic loci were perturbed by PFAS, with PFHxS exhibiting the most abundant effects. Mixture analyses suggested cumulative effects of PFOA and PFOS, while PFHxS may act more independently. We additionally explored whether sex-specific effects may be present and concluded that future large studies should explicitly test for sex-specific effects. The genes that are annotated to our PFAS-associated epigenetic loci are primarily involved in growth processes and cardiometabolic health, while some genes are involved in neurodevelopment. These findings shed light on how prenatal PFAS exposures affect birth outcomes and children's health, emphasizing the importance of understanding PFAS mechanisms in the in-utero environment.
Collapse
Affiliation(s)
- Todd M. Everson
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Neha Sehgal
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Volha Yakimavets
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Cynthia Perez
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Kartik Shankar
- Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine, Aurora, CO
| | - Stephanie M. Eick
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Kevin J. Pearson
- Department of Pharmacology & Nutritional Sciences, University of Kentucky College of Medicine
| | - Aline Andres
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
- Arkansas Children’s Nutrition Center, Little Rock, AR
| |
Collapse
|
5
|
Seyama R, Nishikawa M, Uchiyama Y, Hamada K, Yamamoto Y, Takeda M, Ochi T, Kishi M, Suzuki T, Hamanaka K, Fujita A, Tsuchida N, Koshimizu E, Misawa K, Miyatake S, Mizuguchi T, Makino S, Yao T, Ito H, Itakura A, Ogata K, Nagata KI, Matsumoto N. A missense variant at the RAC1-PAK1 binding site of RAC1 inactivates downstream signaling in VACTERL association. Sci Rep 2023; 13:9789. [PMID: 37328543 PMCID: PMC10275923 DOI: 10.1038/s41598-023-36381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023] Open
Abstract
RAC1 at 7p22.1 encodes a RAC family small GTPase that regulates actin cytoskeleton organization and intracellular signaling pathways. Pathogenic RAC1 variants result in developmental delay and multiple anomalies. Here, exome sequencing identified a rare de novo RAC1 variant [NM_018890.4:c.118T > C p.(Tyr40His)] in a male patient. Fetal ultrasonography indicated the patient to have multiple anomalies, including persistent left superior vena cava, total anomalous pulmonary venous return, esophageal atresia, scoliosis, and right-hand polydactyly. After birth, craniofacial dysmorphism and esophagobronchial fistula were confirmed and VACTERL association was suspected. One day after birth, the patient died of respiratory failure caused by tracheal aplasia type III. The molecular mechanisms of pathogenic RAC1 variants remain largely unclear; therefore, we biochemically examined the pathophysiological significance of RAC1-p.Tyr40His by focusing on the best characterized downstream effector of RAC1, PAK1, which activates Hedgehog signaling. RAC1-p.Tyr40His interacted minimally with PAK1, and did not enable PAK1 activation. Variants in the RAC1 Switch II region consistently activate downstream signals, whereas the p.Tyr40His variant at the RAC1-PAK1 binding site and adjacent to the Switch I region may deactivate the signals. It is important to accumulate data from individuals with different RAC1 variants to gain a full understanding of their varied clinical presentations.
Collapse
Affiliation(s)
- Rie Seyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Masashi Nishikawa
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, Aichi, 480-0392, Japan
- Department of Biological Sciences, Nagoya University, Nagoya, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Keisuke Hamada
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuka Yamamoto
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Masahiro Takeda
- Department of Pediatric Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Takanori Ochi
- Department of Pediatric Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Monami Kishi
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Toshifumi Suzuki
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Department of Obstetrics and Gynecology, Keiai Hospital, Saitama, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Kazuharu Misawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Shintaro Makino
- Department of Obstetrics and Gynecology, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Takashi Yao
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hidenori Ito
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, Aichi, 480-0392, Japan
| | - Atsuo Itakura
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Kazuhiro Ogata
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, Aichi, 480-0392, Japan.
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Nagoya, Japan, 466-8550.
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
6
|
GTPase Pathways in Health and Diseases. Cells 2022; 11:cells11244055. [PMID: 36552819 PMCID: PMC9777353 DOI: 10.3390/cells11244055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
GTPases, the molecular switches toggling between an inactive GDP-bound state and an active GTP-bound state, play a pivotal role in controlling complex cellular processes (e [...].
Collapse
|