1
|
Jeyaraman N, Jeyaraman M, Dhanpal P, Ramasubramanian S, Nallakumarasamy A, Muthu S, Santos GS, da Fonseca LF, Lana JF. Integrative review of the gut microbiome’s role in pain management for orthopaedic conditions. World J Exp Med 2025; 15:102969. [DOI: 10.5493/wjem.v15.i2.102969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 03/03/2025] [Accepted: 04/01/2025] [Indexed: 04/16/2025] Open
Abstract
The gut microbiome, a complex ecosystem of microorganisms, has a significant role in modulating pain, particularly within orthopaedic conditions. Its impact on immune and neurological functions is underscored by the gut-brain axis, which influences inflammation, pain perception, and systemic immune responses. This integrative review examines current research on how gut dysbiosis is associated with various pain pathways, notably nociceptive and neuroinflammatory mechanisms linked to central sensitization. We highlight advancements in meta-omics technologies, such as metagenomics and metaproteomics, which deepen our understanding of microbiome-host interactions and their implications in pain. Recent studies emphasize that gut-derived short-chain fatty acids and microbial metabolites play roles in modulating neuroinflammation and nociception, contributing to pain management. Probiotics, prebiotics, synbiotics, and faecal microbiome transplants are explored as potential therapeutic strategies to alleviate pain through gut microbiome modulation, offering an adjunct or alternative to opioids. However, variability in individual microbiomes poses challenges to standardizing these treatments, necessitating further rigorous clinical trials. A multidisciplinary approach combining microbiology, immunology, neurology, and orthopaedics is essential to develop innovative, personalized pain management strategies rooted in gut health, with potential to transform orthopaedic pain care.
Collapse
Affiliation(s)
- Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
- Department of Orthopaedics, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
- Department of Orthopaedics, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - Priya Dhanpal
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai 600002, Tamil Nadu, India
| | - Swaminathan Ramasubramanian
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai 600002, Tamil Nadu, India
| | - Arulkumar Nallakumarasamy
- Department of Orthopaedics, Jawaharlal Institute of Postgraduate Medical Education and Research–Karaikal, Puducherry 609602, India
| | - Sathish Muthu
- Department of Orthopaedics, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Central Research Laboratory, Meenakshi Medical College Hospital and Research Institute, Meenakshi Academy of Higher Education and Research, Chennai 631552, Tamil Nadu, India
| | - Gabriel Silva Santos
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - Lucas Furtado da Fonseca
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - José Fábio Lana
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| |
Collapse
|
2
|
Boldyreva LV, Evtushenko AA, Lvova MN, Morozova KN, Kiseleva EV. Underneath the Gut-Brain Axis in IBD-Evidence of the Non-Obvious. Int J Mol Sci 2024; 25:12125. [PMID: 39596193 PMCID: PMC11594934 DOI: 10.3390/ijms252212125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
The gut-brain axis (GBA) plays a pivotal role in human health and wellness by orchestrating complex bidirectional regulation and influencing numerous critical processes within the body. Over the past decade, research has increasingly focused on the GBA in the context of inflammatory bowel disease (IBD). Beyond its well-documented effects on the GBA-enteric nervous system and vagus nerve dysregulation, and gut microbiota misbalance-IBD also leads to impairments in the metabolic and cellular functions: metabolic dysregulation, mitochondrial dysfunction, cationic transport, and cytoskeleton dysregulation. These systemic effects are currently underexplored in relation to the GBA; however, they are crucial for the nervous system cells' functioning. This review summarizes the studies on the particular mechanisms of metabolic dysregulation, mitochondrial dysfunction, cationic transport, and cytoskeleton impairments in IBD. Understanding the involvement of these processes in the GBA may help find new therapeutic targets and develop systemic approaches to improve the quality of life in IBD patients.
Collapse
Affiliation(s)
- Lidiya V. Boldyreva
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia;
| | - Anna A. Evtushenko
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia;
| | - Maria N. Lvova
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| | - Ksenia N. Morozova
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| | - Elena V. Kiseleva
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| |
Collapse
|
3
|
Hashemi N, Tondro Anamag F, Javan Balegh Marand A, Rahnama'i MS, Herizchi Ghadim H, Salehi-Pourmehr H, Hajebrahimi S. A systematic and comprehensive review of the role of microbiota in urinary chronic pelvic pain syndrome. Neurourol Urodyn 2024; 43:1859-1882. [PMID: 38994675 DOI: 10.1002/nau.25550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/21/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Many genitourinary tract disorders could be attributed partly to the microbiota. This study sought to conduct a systematic review of the role of the microbiota in urinary chronic pelvic pain syndrome (UCPPS). METHODS We searched Embase, Scopus, Web of Science, and PubMed with no time, language, or study type restrictions until December 1, 2023. The JBI Appraisal Tool was used to assess the quality of the studies. Study selection followed the PRISMA statement. Studies addressing microbiome variations among patients suffering from interstitial cystitis/bladder pain syndrome (IC/BPS) or chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) and a control group were considered eligible. RESULTS A total of 21 studies (1 UCPPS, 12 IC/BPS, and 8 CP/CPPS) comprising 1125 patients were enrolled in our final data synthesis. It has been shown that the reduced diversity and discrepant composition of the gut microbiota may partly be attributed to the UCPPS pathogenesis. In terms of urine microbiota, some operational taxonomic units were shown to be elevated, while others became less abundant. Furthermore, various bacteria and fungi are linked to specific clinical features. Few investigations denied UCPPS as a dysbiotic condition. CONCLUSIONS Urinary and intestinal microbiota appear to be linked with UCPPS, comprising IC/BPS and CP/CPPS. However, given the substantial disparity of published studies, a battery of prospective trials is required to corroborate these findings.
Collapse
Affiliation(s)
- Negin Hashemi
- Pharmaceutical Analysis Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Tondro Anamag
- Research Center for Evidence-based Medicine, Iranian EBM Centre: A JBI Centre of Excellence, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | - Hanieh Salehi-Pourmehr
- Research Center for Evidence-based Medicine, Iranian EBM Centre: A JBI Centre of Excellence, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Medical Philosophy and History Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sakineh Hajebrahimi
- Research Center for Evidence-based Medicine, Iranian EBM Centre: A JBI Centre of Excellence, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Urology Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Asiri YI, Moni SS, Ramar M, Chidambaram K. Advancing Pain Understanding and Drug Discovery: Insights from Preclinical Models and Recent Research Findings. Pharmaceuticals (Basel) 2024; 17:1439. [PMID: 39598351 PMCID: PMC11597627 DOI: 10.3390/ph17111439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Despite major advancements in our understanding of its fundamental causes, pain-both acute and chronic-remains a serious health concern. Various preclinical investigations utilizing diverse animal, cellular, and alternative models are required and frequently demanded by regulatory approval bodies to bridge the gap between the lab and the clinic. Investigating naturally occurring painful disorders can speed up medication development at the preclinical and clinical levels by illuminating molecular pathways. A wide range of animal models related to pain have been developed to elucidate pathophysiological mechanisms and aid in identifying novel targets for treatment. Pain sometimes drugs fail clinically, causing high translational costs due to poor selection and the use of preclinical tools and reporting. To improve the study of pain in a clinical context, researchers have been creating innovative models over the past few decades that better represent pathological pain conditions. In this paper, we provide a summary of traditional animal models, including rodents, cellular models, human volunteers, and alternative models, as well as the specific characteristics of pain diseases they model. However, a more rigorous approach to preclinical research and cutting-edge analgesic technologies may be necessary to successfully create novel analgesics. The research highlights from this review emphasize new opportunities to develop research that includes animals and non-animals using proven methods pertinent to comprehending and treating human suffering. This review highlights the value of using a variety of modern pain models in animals before human trials. These models can help us understand the different mechanisms behind various pain types. This will ultimately lead to the development of more effective pain medications.
Collapse
Affiliation(s)
- Yahya I. Asiri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia;
| | - Sivakumar S. Moni
- Health Research Centre, Jazan University, Jazan 45142, Saudi Arabia;
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohankumar Ramar
- Department of Pharmaceutical Sciences, UConn School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA;
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia;
| |
Collapse
|
5
|
Bautista A, Lee J, Delfino S, LaPreze D, Abd-Elsayed A. The Impact of Nutrition on Pain: A Narrative Review of Recent Literature. Curr Pain Headache Rep 2024; 28:1059-1066. [PMID: 38874851 DOI: 10.1007/s11916-024-01275-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE OF REVIEW Pain is a complex phenomenon that affects millions of individuals worldwide and poses a significant burden on public health. While pain management typically focuses on pharmacological and physical interventions, emerging research suggests that nutrition plays a crucial role in pain modulation. This narrative review aims to explore the relationship between nutrition and pain, providing a comprehensive overview of recent literature. The review covers various dietary factors, including macronutrients, micronutrients, dietary patterns, and specific dietary interventions. Additionally, the potential mechanisms underlying the impact of nutrition on pain are discussed. The findings highlight the potential for dietary interventions to complement traditional pain management approaches and provide valuable insights for future research and clinical practice. RECENT FINDINGS Literature suggested the impact of healthy nutrition on improvement in pain and that certain types of food may increase and worsen different pain conditions. Nutrition plays an important role in modulating pain. It is important to counsel patients in pain on best diet for their pain condition to alleviate pain. Our article summarizes very well the issue of nutrition and pain and provides a guide to all practitioners caring for patients with chronic pain.
Collapse
Affiliation(s)
- Alexander Bautista
- Department of Anesthesiology and Perioperative Medicine, University of Louisville, 530 S Jackson St, Louisville, KY, 40202, USA.
| | - Jordan Lee
- Department of Anesthesiology and Perioperative Medicine, University of Louisville, 530 S Jackson St, Louisville, KY, 40202, USA
| | - Spender Delfino
- Department of Anesthesiology and Perioperative Medicine, University of Louisville, 530 S Jackson St, Louisville, KY, 40202, USA
| | - Dani LaPreze
- Kornhauser Health Sciences Library, University of Louisville, Louisville, KY, USA
| | | |
Collapse
|
6
|
Gazerani P, Papetti L, Dalkara T, Cook CL, Webster C, Bai J. The Brain, the Eating Plate, and the Gut Microbiome: Partners in Migraine Pathogenesis. Nutrients 2024; 16:2222. [PMID: 39064664 PMCID: PMC11280178 DOI: 10.3390/nu16142222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
This review summarizes the relationship between diet, the gut microbiome, and migraine. Key findings reveal that certain dietary factors, such as caffeine and alcohol, can trigger migraine, while nutrients like magnesium and riboflavin may help alleviate migraine symptoms. The gut microbiome, through its influence on neuroinflammation (e.g., vagus nerve and cytokines), gut-brain signaling (e.g., gamma-aminobutyric acid), and metabolic function (e.g., short-chain fatty acids), plays a crucial role in migraine susceptibility. Migraine can also alter eating behaviors, leading to poor nutritional choices and further exacerbating the condition. Individual variability in diet and microbiome composition highlights the need for personalized dietary and prebiotic interventions. Epidemiological and clinical data support the effectiveness of tailored nutritional approaches, such as elimination diets and the inclusion of beneficial nutrients, in managing migraine. More work is needed to confirm the role of prebiotics, probiotics, and potentially fecal microbiome translation in the management of migraine. Future research should focus on large-scale studies to elucidate the underlying mechanisms of bidirectional interaction between diet and migraine and develop evidence-based clinical guidelines. Integrating dietary management, gut health optimization, and lifestyle modifications can potentially offer a holistic approach to reducing migraine frequency and severity, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Parisa Gazerani
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, 0130 Oslo, Norway
- Department of Health Science & Technology, Faculty of Medicine, Aalborg University, 9260 Gistrup, Denmark
| | - Laura Papetti
- Developmental Neurology, Bambino Gesù Children’s Hospital, IRCCS, Piazza di Sant’Onofrio 4, 00165 Rome, Italy;
| | - Turgay Dalkara
- Departments of Neuroscience and Molecular Biology and Genetics, Bilkent University, Ankara 06800, Turkey;
| | - Calli Leighann Cook
- Emory Brain Health Center, General Neurology, Atlanta, GA 30329, USA;
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA; (C.W.); (J.B.)
| | - Caitlin Webster
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA; (C.W.); (J.B.)
| | - Jinbing Bai
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA; (C.W.); (J.B.)
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
7
|
Cuomo A, Parascandolo I. Role of Nutrition in the Management of Patients with Chronic Musculoskeletal Pain. J Pain Res 2024; 17:2223-2238. [PMID: 38947129 PMCID: PMC11214565 DOI: 10.2147/jpr.s456202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/13/2024] [Indexed: 07/02/2024] Open
Abstract
Chronic musculoskeletal pain (CMP), defined as persistent discomfort in musculoskeletal tissues persisting for over 3 months, afflicts an estimated 1.71 billion people globally, leading to significant functional impairments and psychological distress, thereby detrimentally affecting individuals' quality of life. The objective of this narrative review is to elucidate the complex relationship among dietary habits, sarcopenia, and gut microbiota composition, with an eye toward enhancing patient management and outcomes. Given the burgeoning interest in the influence of diet on CMP, a detailed examination of the current literature is warranted. Nutritional intake is a critical determinant of the gut microbiota profile, which, in turn, is linked to musculature integrity and performance, potentially leading to sarcopenia. The development of sarcopenia can aggravate CMP owing to diminished muscular strength and functionality. Additionally, disruptions in the gut microbiota may directly modulate nociception, intensifying CMP manifestations. Thus, nutritional optimization emerges as a viable approach to CMP management. Emphasizing a diet conducive to a healthy gut microbiome could forestall or mitigate sarcopenia, thereby attenuating CMP intensity. Nevertheless, the domain calls for further empirical exploration to unravel the nuances of these interactions and to forge efficacious dietary strategies for individuals with CMP. Beyond mere analgesia, comprehensive patient care for CMP requires acknowledgment of the complex and multifactorial nature of pain and its foundational elements. Embracing an integrative treatment model allows healthcare practitioners to promise better patient prognoses, enriched life quality, and a decrease in the sustained healthcare costs associated with CMP.
Collapse
Affiliation(s)
- Arturo Cuomo
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori, IRCCS - Fondazione G Pascale, Naples, Italy
| | | |
Collapse
|
8
|
Corriero A, Giglio M, Soloperto R, Inchingolo F, Varrassi G, Puntillo F. Microbial Symphony: Exploring the Role of the Gut in Osteoarthritis-Related Pain. A Narrative Review. Pain Ther 2024; 13:409-433. [PMID: 38678155 PMCID: PMC11111653 DOI: 10.1007/s40122-024-00602-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024] Open
Abstract
One of the most common musculoskeletal disorders, osteoarthritis (OA), causes worldwide disability, morbidity, and poor quality of life by degenerating articular cartilage, modifying subchondral bone, and inflaming synovial membranes. OA pathogenesis pathways must be understood to generate new preventative and disease-modifying therapies. In recent years, it has been acknowledged that gut microbiota (GM) can significantly contribute to the development of OA. Dysbiosis of GM can disrupt the "symphony" between the host and the GM, leading to a host immunological response that activates the "gut-joint" axis, ultimately worsening OA. This narrative review summarizes research supporting the "gut-joint axis" hypothesis, focusing on the interactions between GM and the immune system in its two main components, innate and adaptive immunity. Furthermore, the pathophysiological sequence of events that link GM imbalance to OA and OA-related pain is broken down and further investigated. We also suggest that diet and prebiotics, probiotics, nutraceuticals, exercise, and fecal microbiota transplantation could improve OA management and represent a new potential therapeutic tool in the light of the scarce panorama of disease-modifying osteoarthritis drugs (DMOADs). Future research is needed to elucidate these complex interactions, prioritizing how a particular change in GM, i.e., a rise or a drop of a specific bacterial strain, correlates with a certain OA subset to pinpoint the associated signaling pathway that leads to OA.
Collapse
Affiliation(s)
- Alberto Corriero
- Department of Interdisciplinary Medicine - ICU Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Mariateresa Giglio
- Department of Interdisciplinary Medicine - ICU Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Rossana Soloperto
- Department of Intensive Care, Brussels' University Hospital (HUB), Rue de Lennik 808, 1070, Brussels, Belgium
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124, Bari, Italy
| | | | - Filomena Puntillo
- Department of Interdisciplinary Medicine - ICU Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy.
| |
Collapse
|
9
|
Abu YF, Singh S, Tao J, Chupikova I, Singh P, Meng J, Roy S. Opioid-induced dysbiosis of maternal gut microbiota during gestation alters offspring gut microbiota and pain sensitivity. Gut Microbes 2024; 16:2292224. [PMID: 38108125 PMCID: PMC10730209 DOI: 10.1080/19490976.2023.2292224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
There has been a rapid increase in neonates born with a history of prenatal opioid exposure. How prenatal opioid exposure affects pain sensitivity in offspring is of interest, as this may perpetuate the opioid epidemic. While few studies have reported hypersensitivity to thermal pain, potential mechanisms have not been described. This study posits that alterations in the gut microbiome may underly hypersensitivity to pain in prenatally methadone-exposed 3-week-old male offspring, which were generated using a mouse model of prenatal methadone exposure. Fecal samples collected from dams and their offspring were subjected to 16s rRNA sequencing. Thermal and mechanical pain were assessed using the tail flick and Von Frey assays. Transcriptomic changes in whole brain samples of opioid or saline-exposed offspring were investigated using RNA-sequencing, and midbrain sections from these animals were subjected to qPCR profiling of genes related to neuropathic and inflammatory pain pathways. Prenatal methadone exposure increased sensitivity to thermal and mechanical pain and elevated serum levels of IL-17a. Taxonomical analysis revealed that prenatal methadone exposure resulted in significant alterations in fecal gut microbiota composition, including depletion of Lactobacillus, Bifidobacterium, and Lachnospiracea sp and increased relative abundance of Akkermansia, Clostridium sensu stricto 1, and Lachnoclostridium. Supplementation of the probiotic VSL#3 in dams rescued hypersensitivity to thermal and mechanical pain in prenatally methadone-exposed offspring. Similarly, cross-fostering prenatally methadone-exposed offspring to control dams also attenuated hypersensitivity to thermal pain in opioid-exposed offspring. Modulation of the maternal and neonatal gut microbiome with probiotics resulted in transcriptional changes in genes related to neuropathic and immune-related signaling in whole brain and midbrain samples of prenatally methadone-exposed offspring. Together, our work provides compelling evidence of the gut-brain-axis in mediating pain sensitivity in prenatally opioid-exposed offspring.
Collapse
Affiliation(s)
- Yaa F. Abu
- Department of Microbiology and Immunology, University of Miami, Miami, FL, USA
| | - Salma Singh
- Department of Surgery, University of Miami, Miami, FL, USA
| | - Junyi Tao
- Department of Surgery, University of Miami, Miami, FL, USA
| | | | - Praveen Singh
- Department of Surgery, University of Miami, Miami, FL, USA
| | - Jingjing Meng
- Department of Surgery, University of Miami, Miami, FL, USA
| | - Sabita Roy
- Department of Surgery, University of Miami, Miami, FL, USA
| |
Collapse
|
10
|
Dmytriv TR, Lushchak VI. Gut Microbiome as a Target for Anti-ageing Interventions. Subcell Biochem 2024; 107:307-325. [PMID: 39693030 DOI: 10.1007/978-3-031-66768-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Trillions of various microorganisms inhabit the human intestine whilst having myriads of effects on the body. They participate in the metabolism of nutrients, support the work of the immune system, regulate operation of the nervous system, and produce vitamins, short-chain fatty acids, and a number of other compounds necessary for the host. An imbalance or disruption in the normal microbial community is called dysbacteriosis or dysbiosis. This condition is often associated with the occurrence of various pathologies including chronic low-intensity inflammation. The latter is one of the key signs of ageing. In this chapter, we consider the gut microbiome as a target for anti-ageing interventions. In particular, we describe the main functions of the gut microbiome, its changes with ageing, and discuss dysbacteriosis as a trigger of accelerated ageing. We also present anti-ageing interventions such as a diet, nutritional supplements (probiotics, prebiotics, antioxidants), and exercise and how they may affect the microbiome and enable or impede healthy longevity.
Collapse
Affiliation(s)
- Tetiana R Dmytriv
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine.
- Research and Development University, Ivano-Frankivsk, Ukraine.
| |
Collapse
|
11
|
Rahman SO, Bariguian F, Mobasheri A. The Potential Role of Probiotics in the Management of Osteoarthritis Pain: Current Status and Future Prospects. Curr Rheumatol Rep 2023; 25:307-326. [PMID: 37656392 PMCID: PMC10754743 DOI: 10.1007/s11926-023-01108-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 09/02/2023]
Abstract
PURPOSE OF REVIEW This narrative review article comprehensively explains the pathophysiology of osteoarthritis (OA) pain perception, how the gut microbiota is correlated with it, possible molecular pathways involved in probiotics-mediated OA pain reduction, limitations in the current research approaches, and future perspectives. RECENT FINDINGS The initiation and progression of OA, including the development of chronic pain, is intricately associated with activation of the innate immune system and subsequent inflammatory responses. Trauma, lifestyle (e.g., obesity and metabolic disease), and chronic antibiotic treatment can disrupt commensal homeostasis of the human microbiome, thereby affecting intestinal integrity and promoting leakage of bacterial endotoxins and metabolites such as lipopolysaccharides (LPS) into circulation. Increased level of LPS is associated with knee osteophyte severity and joint pain. Both preclinical and clinical studies strongly suggest that probiotics may benefit patients with OA pain through positive gut microbiota modulation and attenuating low-grade inflammation via multiple pathways. Patent data also suggests increased interest in the development of new innovations that involve probiotic use for reducing OA and joint pain. Recent data suggest that probiotics are attracting more and more attention for OA pain management. The advancement of knowledge in this area may pave the way for developing different probiotic strains that can be used to support joint health, improve treatment outcomes in OA, and reduce the huge impact of the disease on healthcare systems worldwide.
Collapse
Affiliation(s)
| | - Frédérique Bariguian
- Haleon (Formerly GSK Consumer Healthcare), Route de L'Etraz 2, Case Postale 1279, 1260, Nyon 1, Switzerland.
| | - Ali Mobasheri
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, 90014, Oulu, FI, Finland.
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
- World Health Organization Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Liege, Belgium.
| |
Collapse
|
12
|
Fyntanidou B, Amaniti A, Soulioti E, Zagalioti SC, Gkarmiri S, Chorti A, Loukipoudi L, Ioannidis A, Dalakakis I, Menni AE, Shrewsbury AD, Kotzampassi K. Probiotics in Postoperative Pain Management. J Pers Med 2023; 13:1645. [PMID: 38138872 PMCID: PMC10745134 DOI: 10.3390/jpm13121645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Postoperative pain is the unpleasant sensory and emotional experience after surgery, its origin being both the inflammatory reaction induced by the surgical trauma on the abdominal wall and the splanchnic pain induced by the activation of nociceptors of the viscera, which are highly sensitive to distension, ischemia, and inflammation. Nowadays, it is well recognized that there is a close relationship between the gut microbiome and pain perception, and that microbiome is highly affected by both anesthesia and surgical manipulation. Thus, efforts to restore the disturbed microbiome via supplementation with beneficial bacteria, namely probiotics, seem to be effective. In this article, the knowledge gained mainly from experimental research on this topic is analyzed, the concluding message being that each probiotic strain works in its own way towards pain relief.
Collapse
Affiliation(s)
- Barbara Fyntanidou
- Department of Emergency Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (B.F.); (S.-C.Z.); (S.G.)
| | - Aikaterini Amaniti
- Department of Anesthesia & Intensive Care, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.A.); (L.L.); (I.D.)
| | - Eleftheria Soulioti
- Second Department of Anesthesiology, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece;
| | - Sofia-Chrysovalantou Zagalioti
- Department of Emergency Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (B.F.); (S.-C.Z.); (S.G.)
| | - Sofia Gkarmiri
- Department of Emergency Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (B.F.); (S.-C.Z.); (S.G.)
| | - Angeliki Chorti
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.C.); (A.I.); (A.-E.M.); (A.D.S.)
| | - Lamprini Loukipoudi
- Department of Anesthesia & Intensive Care, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.A.); (L.L.); (I.D.)
| | - Aris Ioannidis
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.C.); (A.I.); (A.-E.M.); (A.D.S.)
| | - Ioannis Dalakakis
- Department of Anesthesia & Intensive Care, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.A.); (L.L.); (I.D.)
| | - Alexandra-Eleftheria Menni
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.C.); (A.I.); (A.-E.M.); (A.D.S.)
| | - Anne D. Shrewsbury
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.C.); (A.I.); (A.-E.M.); (A.D.S.)
| | - Katerina Kotzampassi
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.C.); (A.I.); (A.-E.M.); (A.D.S.)
| |
Collapse
|
13
|
Singh A. Brain-derived neurotrophic factor - a key player in the gastrointestinal system. PRZEGLAD GASTROENTEROLOGICZNY 2023; 18:380-392. [PMID: 38572454 PMCID: PMC10985741 DOI: 10.5114/pg.2023.132957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/24/2023] [Indexed: 04/05/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) is highly expressed throughout the gastrointestinal (GI) tract and plays a critical role in the regulation of intestinal motility, secretion, sensation, immunity, and mucosal integrity. Dysregulation of BDNF signalling has been implicated in the pathophysiology of various GI disorders including inflammatory bowel disease, irritable bowel syndrome, functional dyspepsia, and diabetic gastroenteropathy. This review provides a comprehensive overview of BDNF localization, synthesis, receptors, and signalling mechanisms in the gut. In addition, current evidence on the diverse physiologic and pathophysiologic roles of BDNF in the control of intestinal peristalsis, mucosal transport processes, visceral sensation, neuroimmune interactions, gastrointestinal mucosal healing, and enteric nervous system homeostasis are discussed. Finally, the therapeutic potential of targeting BDNF for the treatment of functional GI diseases is explored. Advancing knowledge of BDNF biology and mechanisms of action may lead to new therapies based on harnessing the gut trophic effects of this neurotrophin.
Collapse
Affiliation(s)
- Arjun Singh
- Department of Medicine, Division of Gastroenterology and Hepatology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
- Molecular Pharmacology Program and Chemistry, Memorial Sloan Kettering Cancer Center, New York, United States
| |
Collapse
|
14
|
Gómez-Varela D, Xian F, Grundtner S, Sondermann JR, Carta G, Schmidt M. Increasing taxonomic and functional characterization of host-microbiome interactions by DIA-PASEF metaproteomics. Front Microbiol 2023; 14:1258703. [PMID: 37908546 PMCID: PMC10613666 DOI: 10.3389/fmicb.2023.1258703] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/20/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction Metaproteomics is a rapidly advancing field that offers unique insights into the taxonomic composition and the functional activity of microbial communities, and their effects on host physiology. Classically, data-dependent acquisition (DDA) mass spectrometry (MS) has been applied for peptide identification and quantification in metaproteomics. However, DDA-MS exhibits well-known limitations in terms of depth, sensitivity, and reproducibility. Consequently, methodological improvements are required to better characterize the protein landscape of microbiomes and their interactions with the host. Methods We present an optimized proteomic workflow that utilizes the information captured by Parallel Accumulation-Serial Fragmentation (PASEF) MS for comprehensive metaproteomic studies in complex fecal samples of mice. Results and discussion We show that implementing PASEF using a DDA acquisition scheme (DDA-PASEF) increased peptide quantification up to 5 times and reached higher accuracy and reproducibility compared to previously published classical DDA and data-independent acquisition (DIA) methods. Furthermore, we demonstrate that the combination of DIA, PASEF, and neuronal-network-based data analysis, was superior to DDA-PASEF in all mentioned parameters. Importantly, DIA-PASEF expanded the dynamic range towards low-abundant proteins and it doubled the quantification of proteins with unknown or uncharacterized functions. Compared to previous classical DDA metaproteomic studies, DIA-PASEF resulted in the quantification of up to 4 times more taxonomic units using 16 times less injected peptides and 4 times shorter chromatography gradients. Moreover, 131 additional functional pathways distributed across more and even uniquely identified taxa were profiled as revealed by a peptide-centric taxonomic-functional analysis. We tested our workflow on a validated preclinical mouse model of neuropathic pain to assess longitudinal changes in host-gut microbiome interactions associated with pain - an unexplored topic for metaproteomics. We uncovered the significant enrichment of two bacterial classes upon pain, and, in addition, the upregulation of metabolic activities previously linked to chronic pain as well as various hitherto unknown ones. Furthermore, our data revealed pain-associated dynamics of proteome complexes implicated in the crosstalk between the host immune system and the gut microbiome. In conclusion, the DIA-PASEF metaproteomic workflow presented here provides a stepping stone towards a deeper understanding of microbial ecosystems across the breadth of biomedical and biotechnological fields.
Collapse
|
15
|
Magni G, Riboldi B, Ceruti S. Modulation of Glial Cell Functions by the Gut-Brain Axis: A Role in Neurodegenerative Disorders and Pain Transmission. Cells 2023; 12:1612. [PMID: 37371082 DOI: 10.3390/cells12121612] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Studies on host microbiota and their interactions with the central nervous system (CNS) have grown considerably in the last decade. Indeed, it has been widely demonstrated that dysregulations of the bidirectional gut-brain crosstalk are involved in the development of several pathological conditions, including chronic pain. In addition, the activation of central and peripheral glial cells is also implicated in the pathogenesis and progression of pain and other neurodegenerative disorders. Recent preclinical findings suggest that the gut microbiota plays a pivotal role in regulating glial maturation, morphology and function, possibly through the action of different microbial metabolites, including the most studied short-chain fatty acids (SCFAs). Moreover, altered microbiota composition has been reported in CNS disorders characterized by glial cell activation. In this review, we discuss recent studies showing the role of the gut microbiota and the effects of its depletion in modulating the morphology and function of glial cells (microglia and astrocytes), and we hypothesize a possible role for glia-microbiota interactions in the development and maintenance of chronic pain.
Collapse
Affiliation(s)
- Giulia Magni
- Laboratory of Pain Therapy and Neuroimmunology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti, 9, 20133 Milan, Italy
| | - Benedetta Riboldi
- Laboratory of Pain Therapy and Neuroimmunology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti, 9, 20133 Milan, Italy
| | - Stefania Ceruti
- Laboratory of Pain Therapy and Neuroimmunology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti, 9, 20133 Milan, Italy
| |
Collapse
|
16
|
Salvatore S, Battigaglia MS, Murone E, Dozio E, Pensabene L, Agosti M. Dietary Fibers in Healthy Children and in Pediatric Gastrointestinal Disorders: A Practical Guide. Nutrients 2023; 15:2208. [PMID: 37432354 DOI: 10.3390/nu15092208] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 07/12/2023] Open
Abstract
Dietary fibers include non-digestible plant carbohydrates, lignin and resistant starch. Dietary fibers provide immune, cardiovascular, metabolic and intestinal beneficial effects in humans. Fibers naturally present in foods (fruits, vegetables, legumes, cereals) or used as supplements have different physical, chemical and functional profiles. This narrative review provides an update to the knowledge on the effects of dietary fibers in healthy subjects and in children with gastrointestinal disorders. Soluble fibers are digested by gut bacteria, producing short-chain fatty acids and energy for colonocytes, and may exert prebiotic effects that promote the growth of bifidobacteria and lactobacilli. Non-soluble fibers are bulking agents and may improve intestinal transit. The exact amount and characteristics of the fiber requirement in infants and children need to be further established. There are limited data evaluating fibers in children with gastrointestinal disorders. The low intake of fibers has been associated with constipation, but the intake of excessive fibers is not recommended as it may cause flatulence and abdominal discomfort. Certain fibers (particularly psyllium in irritable bowel syndrome) have shown beneficial effects in children with gastrointestinal disorders, but the limited and heterogenous data do not currently allow a specific recommendation.
Collapse
Affiliation(s)
- Silvia Salvatore
- Pediatric Department, Hospital "F. Del Ponte", Via F. Del Ponte 19, University of Insubria, 21100 Varese, Italy
| | - Maria Serena Battigaglia
- Department of Medical and Surgical Sciences, Pediatric Unit, University Magna Graecia of Catanzaro, Viale Europa, Germaneto, 88100 Catanzaro, Italy
| | - Elena Murone
- Department of Medical and Surgical Sciences, Pediatric Unit, University Magna Graecia of Catanzaro, Viale Europa, Germaneto, 88100 Catanzaro, Italy
| | - Eugenia Dozio
- Dipartimento di Medicina e Chirurgia, University of Insubria, 21100 Varese, Italy
| | - Licia Pensabene
- Department of Medical and Surgical Sciences, Pediatric Unit, University Magna Graecia of Catanzaro, Viale Europa, Germaneto, 88100 Catanzaro, Italy
| | - Massimo Agosti
- Pediatric Department, Hospital "F. Del Ponte", Via F. Del Ponte 19, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
17
|
Gut microbiota in chronic pain: Novel insights into mechanisms and promising therapeutic strategies. Int Immunopharmacol 2023. [DOI: 10.1016/j.intimp.2023.109685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
18
|
Guan L, Liu Y, Wu B, Chen A, Tao W, Lin C. Research hotspots and trends in visceral pain research: A global comprehensive bibliometric analysis. Front Mol Neurosci 2023; 15:1022463. [PMID: 36683850 PMCID: PMC9848657 DOI: 10.3389/fnmol.2022.1022463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
Background Visceral pain is a complex and heterogeneous disorder that is considered more prominent compared to somatic pain, due to its multiple and complex causes and accompanying emotional and mood disorders. Research has become increasingly extensive over the years, but a bibliometric analysis of this field is lacking. The aim of this study was to analyze global research trends in visceral pain over the past 40 years through visual analysis. Methods We conducted a comprehensive search of the literature from January 1981 to December 2021 using the Web of Science core database. The medical subject term 'visceral pain' was searched. We used CiteSpace and VOSviewer for bibliometric analysis and network visualization, including top-ranked authors, keywords, research collaborations, and literature co-occurrence network analysis. Results A total of 5,047 articles were included in the analysis. The number of articles on visceral pain has continued to grow steadily over the past 40 years. The United States (1,716 articles), University of California (159 articles), and Neurogastroenterology and Motility (276 articles) were the country, institution, and journal with the most publications, respectively. Keyword analysis showed that inflammation, visceral hypersensitivity, inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), anxiety, and quality of life were the research trends and priorities in this research field. Conclusion Visceral pain-related research has received increasing attention in recent decades. However, there are still many unresolved issues in the field of visceral pain, such as the specific molecular mechanisms and clinical treatments between visceral pain and inflammation, IBD, IBS, anxiety, and quality of life, which may require further exploration based on modern scientific and technological means and more basic research, especially for the therapeutic targets of visceral pain, which may become a hot spot for future research and provide guidance for the treatment of clinical diseases related to visceral pain.
Collapse
Affiliation(s)
- Le Guan
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Pain Research Institute, Fujian Medical University, Fuzhou, Fujian, China,Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Yang Liu
- Department of Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Bin Wu
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Aiqin Chen
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Pain Research Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Wucheng Tao
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China,*Correspondence: Wucheng Tao, ; Chun Lin,
| | - Chun Lin
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Pain Research Institute, Fujian Medical University, Fuzhou, Fujian, China,*Correspondence: Wucheng Tao, ; Chun Lin,
| |
Collapse
|
19
|
Ustianowska K, Ustianowski Ł, Machaj F, Gorący A, Rosik J, Szostak B, Szostak J, Pawlik A. The Role of the Human Microbiome in the Pathogenesis of Pain. Int J Mol Sci 2022; 23:13267. [PMID: 36362056 PMCID: PMC9659276 DOI: 10.3390/ijms232113267] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 08/22/2023] Open
Abstract
Understanding of the gut microbiome's role in human physiology developed rapidly in recent years. Moreover, any alteration of this microenvironment could lead to a pathophysiological reaction of numerous organs. It results from the bidirectional communication of the gastrointestinal tract with the central nervous system, called the gut-brain axis. The signals in the gut-brain axis are mediated by immunological, hormonal, and neural pathways. However, it is also influenced by microorganisms in the gut. The disturbances in the gut-brain axis are associated with gastrointestinal syndromes, but recently their role in the development of different types of pain was reported. The gut microbiome could be the factor in the central sensitization of chronic pain by regulating microglia, astrocytes, and immune cells. Dysbiosis could lead to incorrect immune responses, resulting in the development of inflammatory pain such as endometriosis. Furthermore, chronic visceral pain, associated with functional gastrointestinal disorders, could result from a disruption in the gut microenvironment. Any alteration in the gut-brain axis could also trigger migraine attacks by affecting cytokine expression. Understanding the gut microbiome's role in pain pathophysiology leads to the development of analgetic therapies targeting microorganisms. Probiotics, FODMAP diet, and fecal microbiota transplantation are reported to be beneficial in treating visceral pain.
Collapse
Affiliation(s)
- Klaudia Ustianowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Łukasz Ustianowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Filip Machaj
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Medical Biology, Medical University of Warsaw, 00-575 Warsaw, Poland
| | - Anna Gorący
- Independent Laboratory of Invasive Cardiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Jakub Rosik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Bartosz Szostak
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Joanna Szostak
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
20
|
Yu L, Li Y. Involvement of Intestinal Enteroendocrine Cells in Neurological and Psychiatric Disorders. Biomedicines 2022; 10:biomedicines10102577. [PMID: 36289839 PMCID: PMC9599815 DOI: 10.3390/biomedicines10102577] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Neurological and psychiatric patients have increased dramatically in number in the past few decades. However, effective treatments for these diseases and disorders are limited due to heterogeneous and unclear pathogenic mechanisms. Therefore, further exploration of the biological aspects of the disease, and the identification of novel targets to develop alternative treatment strategies, is urgently required. Systems-level investigations have indicated the potential involvement of the brain–gut axis and intestinal microbiota in the pathogenesis and regulation of neurological and psychiatric disorders. While intestinal microbiota is crucial for maintaining host physiology, some important sensory and regulatory cells in the host should not be overlooked. Intestinal epithelial enteroendocrine cells (EECs) residing in the epithelium throughout intestine are the key regulators orchestrating the communication along the brain-gut-microbiota axis. On one hand, EECs sense changes in luminal microorganisms via microbial metabolites; on the other hand, they communicate with host body systems via neuroendocrine molecules. Therefore, EECs are believed to play important roles in neurological and psychiatric disorders. This review highlights the involvement of EECs and subtype cells, via secretion of endocrine molecules, in the development and regulation of neurological and psychiatric disorders, including Parkinson’s disease (PD), schizophrenia, visceral pain, neuropathic pain, and depression. Moreover, the current paper summarizes the potential mechanism of EECs in contributing to disease pathogenesis. Examination of these mechanisms may inspire and lead to the development of new aspects of treatment strategies for neurological and psychiatric disorders in the future.
Collapse
Affiliation(s)
- Liangen Yu
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA
| | - Yihang Li
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Correspondence:
| |
Collapse
|
21
|
Magni G, Riboldi B, Petroni K, Ceruti S. Flavonoids bridging the gut and the brain: intestinal metabolic fate, and direct or indirect effects of natural supporters against neuroinflammation and neurodegeneration. Biochem Pharmacol 2022; 205:115257. [PMID: 36179933 DOI: 10.1016/j.bcp.2022.115257] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
Abstract
In recent years, experimental evidence suggested a possible role of the gut microbiota in the onset and development of several neurodegenerative disorders, such as AD and PD, MS and pain. Flavonoids, including anthocyanins, EGCG, the flavonol quercetin, and isoflavones, are plant polyphenolic secondary metabolites that have shown therapeutic potential for the treatment of various pathological conditions, including neurodegenerative diseases. This is due to their antioxidant and anti-inflammatory properties, despite their low bioavailability which often limits their use in clinical practice. In more recent years it has been demonstrated that flavonoids are metabolized by specific bacterial strains in the gut to produce their active metabolites. On the other way round, both naturally-occurring flavonoids and their metabolites promote or limit the proliferation of specific bacterial strains, thus profoundly affecting the composition of the gut microbiota which in turn modifies its ability to further metabolize flavonoids. Thus, understanding the best way of acting on this virtuous circle is of utmost importance to develop innovative approaches to many brain disorders. In this review, we summarize some of the most recent advances in preclinical and clinical research on the neuroinflammatory and neuroprotective effects of flavonoids on AD, PD, MS and pain, with a specific focus on their mechanisms of action including possible interactions with the gut microbiota, to emphasize the potential exploitation of dietary flavonoids as adjuvants in the treatment of these pathological conditions.
Collapse
Affiliation(s)
- Giulia Magni
- Department of Pharmacological and Biomolecular Sciences - Università degli Studi di Milano - via Balzaretti, 9 - 20133 MILAN (Italy)
| | - Benedetta Riboldi
- Department of Pharmacological and Biomolecular Sciences - Università degli Studi di Milano - via Balzaretti, 9 - 20133 MILAN (Italy)
| | - Katia Petroni
- Department of Biosciences - Università degli Studi di Milano - via Celoria, 26 - 20133 MILAN (Italy)
| | - Stefania Ceruti
- Department of Pharmacological and Biomolecular Sciences - Università degli Studi di Milano - via Balzaretti, 9 - 20133 MILAN (Italy).
| |
Collapse
|
22
|
Jiang T, Niu R, Liu Q, Fu Y, Luo X, Zhang T, Wu B, Han J, Yang Y, Su X, Chen JDZ, Song G, Wei W. Wenshen-Jianpi prescription, a Chinese herbal medicine, improves visceral hypersensitivity in a rat model of IBS-D by regulating the MEK/ERK signal pathway. Front Pharmacol 2022; 13:955421. [PMID: 36210803 PMCID: PMC9540386 DOI: 10.3389/fphar.2022.955421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
The goal of the study was to analyze whether WJP can alleviate visceral hypersensitivity in IBS-D model rats. In this study, 36 Sprague–Dawley (SD) rats aged 4 weeks old were randomly divided into two groups: the model group (n = 27) and the control group (n = 9). The rat model of IBS-D was established by modified compound methods for 4 weeks. After the modification, IBS-D rats were randomly divided into three groups, namely, the IBS-D model group (n = 9), the positive drug group (n = 9), and the WJP group (n = 9), with different interventions, respectively. The control group was fed and allowed to drink water routinely. The Bristol stool scale scores were used to assess the severity of diarrhea. Abdominal withdrawal reflex (AWR) scores were used to assess visceral sensitivity. Expression of TNF-α was measured, and histopathological examinations were performed to assess colon inflammation in IBS-D model rats. Key factors of the MEK/ERK signal pathway in the tissue of the colon and hippocampus were measured to analyze the mechanism of WJP. Compared with the control group, the Bristol stool scale scores in the model group were significantly increased (p < 0.0001). The scores of the WJP group were significantly decreased compared with the model group (p = 0.0001). Compared with the control group, AWR scores in the model group at each pressure level were significantly increased (p = 0.0003, p < 0.0001, p = 0.0007, and p = 0.0009). AWR scores of the WJP group were significantly decreased compared with the model group (p = 0.0003, p = 0.0007, p = 0.0007, and p = 0.0009). Compared with the control group, the model group had significantly higher expression of TNF-α in the colon tissue (p < 0.0001). However, the WJP group had significantly lower level of TNF-α compared with the model group (p < 0.0001). Meanwhile, compared with the control group, the relative expression of the proteins of p-MEK1/2, p-ERK1, and p-ERK2 in the colon tissue was significantly increased in the model group (p < 0.0001). Compared with the model group, the relative expression of the proteins in the colon tissue were significantly decreased in the WJP group (p < 0.0001, p = 0.0019, and p = 0.0013). Compared with the control group, the relative expression of the proteins of p-MEK1/2, p-ERK1, and p-ERK2 in the hippocampus tissue were significantly increased in the model group (p < 0.0001). Compared with the model group, the relative expression of the proteins in the hippocampus tissue were significantly decreased in the WJP group (p = 0.0126, p = 0.0291, and p = 0.0145). The results indicated that WJP can alleviate visceral hypersensitivity in IBS-D model rats, possibly mediated by downregulating the expression of TNF-α, p-MEK1/2, p-ERK1, and p-ERK2 in the colon tissue. At the same time, WJP also affects downregulating the expression of p-MEK1/2, p-ERK1, and p-ERK2 in the hippocampus tissue.
Collapse
Affiliation(s)
- Tianyuan Jiang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Beijing, China
| | - Ran Niu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Beijing, China
| | - Qian Liu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Beijing, China
| | - Yuhan Fu
- Department of Internal Medicine, MetroHealth Medical Center/Case Western Reserve University, Cleveland, OH, United States
| | - Xiaoying Luo
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Beijing, China
| | - Tao Zhang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Beijing, China
| | - Baoqi Wu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Beijing, China
| | - Juan Han
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Yang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Beijing, China
| | - Xiaolan Su
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Beijing, China
| | - Jiande D. Z. Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Gengqing Song
- Department of Gastroenterology and Hepatology, MetroHealth Medical Center/Case Western Reserve University, Cleveland, OH, United States
- *Correspondence: Gengqing Song, ; Wei Wei,
| | - Wei Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Beijing, China
- *Correspondence: Gengqing Song, ; Wei Wei,
| |
Collapse
|