1
|
Li W, Luo Y, Zhu S, Wang M, Zhao X, Ning Z. Integrated metabolome and transcriptome analysis reveals key genes and pathways associated with egg yolk percentage in chicken. Poult Sci 2025; 104:104815. [PMID: 39914020 PMCID: PMC11848451 DOI: 10.1016/j.psj.2025.104815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 02/27/2025] Open
Abstract
Yolk percentage is a critical index in the egg product industry, reflecting both nutritional value and economic benefits. To elucidate the underlying mechanisms that contribute to variations in egg yolk percentage, we performed integrated transcriptome and metabolome analyses on the liver, ovary, and magnum tissues of Rhode Island Red chickens with high and low yolk percentages. A total of 322 differentially expressed genes (DEGs) and 128 significantly differential metabolites (SDMs) (VIP>1, P < 0.05) were identified in the liver, whereas 419 DEGs and 215 SDMs were detected in the ovary, and 238 DEGs along with 47 SDMs were found in the magnum. In the liver, genes such as HMGCR, DHCR7, MSMO1, and CYP7A1 were linked to cholesterol metabolism, essential for steroid hormone synthesis and yolk formation, while ACACB, ACSL1, ACSL4, LPL, and SGPP2 were involved in fatty acid biosynthesis, a key process for supplying energy and structural components of the yolk. In the ovary, COL6A6, COMP, CHAD, ITGA7, THBS2, and TNC contributed to extracellular matrix-receptor interactions, which are fundamental for follicle development and oocyte maturation. In the magnum, UGT1A1, MAOB, and ALDH3B2 participated in drug metabolism-cytochrome P450 and amino acid metabolism, ensuring a proper environment for egg white formation and potentially influencing nutrient allocation to the yolk. Metabolic pathway enrichment revealed that steroid hormone biosynthesis, glycerophospholipid metabolism, and betaine metabolism were predominant in the liver; pyruvate, taurine, and hypotaurine metabolism in the ovary; and phenylalanine metabolism in the magnum. Moreover, integrated analysis highlighted key metabolites and genes potentially regulating yolk deposition, including 7,8-dihydroneopterin and Pg 38:4 in the liver (related to immune modulation and lipid metabolism, respectively), thalsimine in the ovary, as well as DL-glutamine in the magnum, all of which may be crucial for maintaining metabolic homeostasis and supporting egg formation. Collectively, these findings deepen our understanding of how distinct molecular and metabolic pathways in the liver, ovary, and magnum orchestrate yolk proportion and deposition. Such insights may advance future strategies to improve egg quality and productivity in poultry breeding programs.
Collapse
Affiliation(s)
- Wen Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuxing Luo
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shoujia Zhu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Mengyuan Wang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xuli Zhao
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Arefnezhad R, Roghani-Shahraki H, Motedayyen H, Rezaei Tazangi F. Function of MicroRNAs in Normal and Abnormal Ovarian Activities: A Review Focus on MicroRNA-21. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2024; 18:94-99. [PMID: 38368510 PMCID: PMC10875309 DOI: 10.22074/ijfs.2023.1985792.1415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/28/2023] [Accepted: 07/22/2023] [Indexed: 02/19/2024]
Abstract
Some failures in ovary function, like folliculogenesis and oogenesis, can give rise to various infertility-associated problems, including polycystic ovary syndrome (PCOS) and premature ovarian insufficiency (POI). PCOS influences 8 to 20% of women; while POI occurs in at least 1% of all women. Regrettably, the current therapies for these diseases have not sufficiently been effective, and finding a suitable strategy is still a puzzle. One of the helpful strategies for managing and treating these disorders is understanding the contributing pathogenesis and mechanisms. Recently, it has been declared that abnormal expression of microRNAs (miRNAs), as a subset of non-coding RNAs, is involved in the pathogenesis of reproductive diseases. Among the miRNAs, the roles of miRNA-21 in the pathogenesis of PCOS and POI have been highlighted in some documents; hence, the purpose of this mini-review was to summarize the evidences in conjunction with the functions of this miRNA and other effective microRNAs in the normal or abnormal functions of the ovary (i.e., PCOS and POI) with a mechanistic insight.
Collapse
Affiliation(s)
- Reza Arefnezhad
- Coenzyme R Research Institute, Tehran, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran.
| | - Fatemeh Rezaei Tazangi
- Department of Anatomy, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
3
|
Hou Y, Hu J, Li J, Li H, Lu Y, Liu X. MFN2 regulates progesterone biosynthesis and proliferation of granulosa cells during follicle selection in hens. J Cell Physiol 2024; 239:51-66. [PMID: 37921053 DOI: 10.1002/jcp.31143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
Follicle selection in hens refers to a biological process that only one small yellow follicle (SYF) is selected daily or near-daily for following hierarchical development (from F5/F6 to F1) until ovulation. MFN2 is a kind of GTPases located on the mitochondrial outer membrane, which plays a crucial role in mitochondrial fusion. This study aimed to elucidate the role of MFN2 in proliferation and progesterone biosynthesis of granulosa cells (GCs) during follicle selection in hens. The results showed that GCs began to produce progesterone (P4) after follicle selection, accompanied with changes from multi-layer with flat cells to single layer with cubic cells. MFN2 was detected in GCs of follicles from SYF to F1. After follicle selection, the expression level of MFN2 in GCs upregulated significantly, accompanied with increases in P4 biosynthesis, ATP production, mitochondrial DNA (mtDNA) copy numbers of granulosa cells. FSH (80 ng/mL) facilitated the effects of P4 biosynthesis and secretion, ATP production, mtDNA copy numbers, cell proliferation and the MFN2 transcription of granulosa cells from F5 (F5G) in vitro. However, FSH treatment did not promote P4 secretion in granulosa cells from SYF (SYFG) in vitro. Meanwhile, we observed that change fold of MFN2 transcription, ATP production, mtDNA copy numbers and cell proliferation rate in F5G after treatment with FSH were greater than those in SYFG. Furthermore, expression levels of MFN2 protein and messenger RNA in F5G were significantly higher than those in SYFG after treatment with FSH. P4 biosynthesis, ATP production, mtDNA copy numbers as well as cell proliferation reduced significantly in F5G with MFN2 knockdown. Oppositely, P4 biosynthesis, ATP production, mtDNA copy numbers and cell proliferation increased significantly in SYFG after the overexpression of MFN2. Our results suggest that the upregulation of MFN2 may be involved in the initiation of P4 biosynthesis, and promotion of GCs proliferation during follicle selection.
Collapse
Affiliation(s)
- Yuanyuan Hou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jianing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jie Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hu Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xingting Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
4
|
Zhou X, Kang X, Chen J, Song Y, Jia C, Teng L, Tang Y, Jiang Z, Peng X, Tao X, Xu Y, Huang L, Xu X, Xu Y, Zhang T, Yu S, Gong J, Wang S, Liu Y, Zhu G, Kehrenberg C, Weill FX, Barrow P, Li Y, Zhao G, Yue M. Genome degradation promotes Salmonella pathoadaptation by remodeling fimbriae-mediated proinflammatory response. Natl Sci Rev 2023; 10:nwad228. [PMID: 37965675 PMCID: PMC10642762 DOI: 10.1093/nsr/nwad228] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/07/2023] [Accepted: 08/08/2023] [Indexed: 11/16/2023] Open
Abstract
Understanding changes in pathogen behavior (e.g. increased virulence, a shift in transmission channel) is critical for the public health management of emerging infectious diseases. Genome degradation via gene depletion or inactivation is recognized as a pathoadaptive feature of the pathogen evolving with the host. However, little is known about the exact role of genome degradation in affecting pathogenic behavior, and the underlying molecular detail has yet to be examined. Using large-scale global avian-restricted Salmonella genomes spanning more than a century, we projected the genetic diversity of Salmonella Pullorum (bvSP) by showing increasingly antimicrobial-resistant ST92 prevalent in Chinese flocks. The phylogenomic analysis identified three lineages in bvSP, with an enhancement of virulence in the two recently emerged lineages (L2/L3), as evidenced in chicken and embryo infection assays. Notably, the ancestor L1 lineage resembles the Salmonella serovars with higher metabolic flexibilities and more robust environmental tolerance, indicating stepwise evolutionary trajectories towards avian-restricted lineages. Pan-genome analysis pinpointed fimbrial degradation from a virulent lineage. The later engineered fim-deletion mutant, and all other five fimbrial systems, revealed behavior switching that restricted horizontal fecal-oral transmission but boosted virulence in chicks. By depleting fimbrial appendages, bvSP established persistent replication with less proinflammation in chick macrophages and adopted vertical transovarial transmission, accompanied by ever-increasing intensification in the poultry industry. Together, we uncovered a previously unseen paradigm for remodeling bacterial surface appendages that supplements virulence-enhanced evolution with increased vertical transmission.
Collapse
Affiliation(s)
- Xiao Zhou
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
- Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
| | - Xiamei Kang
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Jiaqi Chen
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Yan Song
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Chenghao Jia
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Lin Teng
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Yanting Tang
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Zhijie Jiang
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Xianqi Peng
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Xiaoxi Tao
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Yiwei Xu
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Linlin Huang
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Xuebin Xu
- Department of Microbiology Laboratory, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Yaohui Xu
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450053, China
| | - Tengfei Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shenye Yu
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| | - Shaohui Wang
- Department of Animal Public Health, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yuqing Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Corinna Kehrenberg
- Institute for Veterinary Food Science, Faculty of Veterinary Medicine, Justus-Liebig University Giessen, Giessen 35392, Germany
| | - François-Xavier Weill
- Institut Pasteur, Université Paris Cité, Unité des bactéries pathogènes entériques, Paris 75724, France
| | - Paul Barrow
- School of Veterinary Medicine, University of Surrey, Guildford GU2 7AL, UK
| | - Yan Li
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Guoping Zhao
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Min Yue
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| |
Collapse
|
5
|
Zhong C, Liu Z, Li D, Kang L, Jiang Y. Long-read sequencing reveals the effect of follicle-stimulating hormone on the mRNA profile of chicken granulosa cells from prehierarchical follicles. Poult Sci 2023; 102:102600. [PMID: 36913754 PMCID: PMC10023945 DOI: 10.1016/j.psj.2023.102600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Follicle selection is an important step in the laying process of chicken, which is closely related to the laying performance and fecundity of hens. Follicle selection mainly depends on the regulation of follicle-stimulating hormone (FSH) secreted by pituitary gland and the expression of follicle stimulation hormone receptor. To uncover the role of FSH in chicken follicle selection, in this study, we analyzed the changes in the mRNA transcriptome profiles of FSH-treated chicken granulosa cells from prehierarchical follicles by long-read sequencing Oxford Nanopore Technologies (ONT) approach. Among the 10,764 genes detected, 31 differentially expressed (DE) transcripts of 28 DE genes were significantly upregulated by FSH treatment. These DE transcripts (DETs) were mainly related to the steroid biosynthetic process by GO analysis and enriched in pathways of ovarian steroidogenesis and aldosterone synthesis and secretion by KEGG analysis. Among these genes, the mRNA and protein expression of TNF receptor associated factor 7 (TRAF7) was upregulated after FSH treatment. Further study revealed that TRAF7 stimulated the mRNA expression of steroidogenic enzymes steroidogenic acute regulatory protein (StAR) and cytochrome P450 family 11 subfamily A member 1 (CYP11A1) genes and the proliferation of granulosa cells. This is the first study to investigate differences in chicken prehierarchical follicular granulosa cells before and after FSH treatment by using ONT transcriptome sequencing, which provides a reference for a more comprehensive understanding of the molecular mechanism of follicle selection in chicken.
Collapse
Affiliation(s)
- Conghao Zhong
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China; College of Animal Science and Technology, China Agricultural University, Beijing 100194, China
| | - Zhansheng Liu
- Deparment of Animal Gerplasm Resources, Shandong General Station of Animal Husbandry, Jinan 250000, China
| | - Dandan Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Li Kang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
6
|
Ahmadi S, Ohkubo T. Leptin Promotes Primordial Follicle Activation by Regulating Ovarian Insulin-like Growth Factor System in Chicken. Endocrinology 2022; 163:6650339. [PMID: 35882602 DOI: 10.1210/endocr/bqac112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 11/19/2022]
Abstract
Leptin and insulin-like growth factor 1 (IGF-1) regulate follicle development and reproduction in vertebrates. This study investigated the role played by leptin and IGF-1 in primordial follicle activation in the ovary of 7-day-old chicks. Different doses of leptin were intraperitoneally administrated to female layer chicks, and further analyses were performed. While leptin administration did not affect hepatic leptin receptor (LEPR), growth hormone receptor (GHR), or IGF-1, the lower dose of leptin significantly increased the messenger RNA (mRNA) expression of IGF-1, IGF-1 receptor, and IGF-binding protein (IGFBP)-2 and attenuated anti-Müllerian hormone (AMH) gene expression in the ovary. Furthermore, the ovaries of the same age chicks were challenged with leptin and/or IGF-1 in vitro. Leptin at a lower dose increased the mRNA expression of IGF-1, LEPR, and leptin; 100 ng/mL leptin and 10 ng/mL IGF-1 alone or combined with leptin reduced IGFBP-2 mRNA expression. AMH gene expression was also reduced by all doses except 10 ng/mL leptin. Histological studies showed that a lower dose of leptin injection induced the primordial follicle growth in the ovary in vivo, and the number of primordial follicles was higher in all leptin treatments over control in vitro. Moreover, the luciferase assay revealed that leptin enhanced IGF-1 promoter activity in LEPR-expressing CHO-K1 cells. Collectively, these results indicate that leptin directly affects the IGF-1/IGFBP system and promotes primordial follicular growth in the ovary of early posthatch chicks. In addition, the follicular development by leptin-induced IGF-1 is, at least in part, caused by the suppression of AMH in the ovary.
Collapse
Affiliation(s)
- Sadequllah Ahmadi
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
- College of Agriculture, Ibaraki University, Ibaraki, Japan
| | - Takeshi Ohkubo
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
- College of Agriculture, Ibaraki University, Ibaraki, Japan
| |
Collapse
|