1
|
Luo F, Slayden O. Attenuation of Ampullary Anoctamin 1 by the peritoneal fluid in rhesus macaques with spontaneous endometriosis†. Biol Reprod 2025; 112:286-296. [PMID: 39569727 PMCID: PMC11833491 DOI: 10.1093/biolre/ioae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/31/2024] [Accepted: 11/20/2024] [Indexed: 11/22/2024] Open
Abstract
Altered peristaltic and ciliary dysfunction is a feature of females with endometriosis. To further explore this premise, we examined the ampulla of rhesus macaques (Macaca mulatta) with and without spontaneous endometriosis for the expression of adenylate kinase 7 (AK7), a mitochondrial-dwelling nucleotide converting enzyme with critical roles in cellular kinesis, forkhead protein box J1 (FOXJ1), a marker of cilia abundance, and Anoctamin 1 (ANO1) as a marker of both smooth muscle contraction and ciliogenesis. We further performed an in vitro experiment that treated ampullary segments with peritoneal fluid from animals with and without endometriosis. We report significantly downregulated expression of ANO1 in the ampulla of monkeys with endometriosis (in vivo), and in the ampullary segments exposed to peritoneal fluid of animals with endometriosis. We did not observe statistically significant differences in the expression of AK7 or FOXJ1 both in vivo and in vitro. This highlights potentially essential roles of ANO1 in the oviduct, the dampening of which may lead to a specific subtype of endometriosis-caused subfertility.
Collapse
Affiliation(s)
- Fangzhou Luo
- Slayden Lab, Oregon National Primate Research Center, Division of Reproductive and Developmental Sciences, Oregon Health and Science University, 505 NW 185th Ave, Beaverton, Oregon 97006, USA
| | - Ov Slayden
- Slayden Lab, Oregon National Primate Research Center, Division of Reproductive and Developmental Sciences, Oregon Health and Science University, 505 NW 185th Ave, Beaverton, Oregon 97006, USA
| |
Collapse
|
2
|
He L, Xu H, Liu M, Tan Y, Huang S, Yin X, Luo X, Chung HY, Gao M, Li Y, Ding W, Zhou H, Huang Y. The ignored structure in female fertility: cilia in the fallopian tubes. Reprod Biomed Online 2025; 50:104346. [PMID: 39740369 DOI: 10.1016/j.rbmo.2024.104346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 01/02/2025]
Abstract
Cilia in the fallopian tubes (CFT) play an important role in female infertility, but have not been explored comprehensively. This review reveals the detection techniques for CFT function and morphology, and the related analysis of female infertility and other gynaecological disorders. CFT differentiate from progenitor cells, and develop into primary cilia and motile cilia. Primary cilia coordinate multiple signalling pathways, and motile cilia produce laminar flow through bidirectional intraflagellar transport, which drives the movement of oocytes and gametes. Several methods for quantitative detection and protein analysis have been used to explore the factors contributing to the decrease in ciliary beat frequency (CBF), and the cellular mechanism of ciliary cell death and shedding. In both primary and secondary ciliary disorders associated with reproductive diseases, abnormal alterations in ciliary quantity, ciliary structure, CBF and ciliary signalling pathways result in abnormal tubal laminar flow, and diminished oocyte retrieval and transport capabilities.
Collapse
Affiliation(s)
- Liuqing He
- Department of Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haofei Xu
- Department of Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Liu
- Department of Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Tan
- Department of Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiyu Huang
- Department of Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoxiao Yin
- Department of Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Luo
- Department of Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Yee Chung
- Department of Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ming Gao
- Department of Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yujie Li
- Department of Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Weijun Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hang Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yefang Huang
- Department of Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
3
|
Rapp K, Wei S, Roberts M, Yao S, Fei SS, Gao L, Ray K, Wang A, Godiah R, Han L. Transcriptional profiling of mucus production in rhesus macaque endocervical cells under hormonal regulation†. Biol Reprod 2024; 111:1045-1055. [PMID: 39115371 DOI: 10.1093/biolre/ioae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/25/2024] [Accepted: 08/07/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE Endocervical mucus production is a key regulator of fertility throughout the menstrual cycle. With cycle-dependent variability in mucus quality and quantity, cervical mucus can either facilitate or block sperm ascension into the upper female reproductive tract. This study seeks to identify genes involved in the hormonal regulation of mucus production, modification, and regulation through profiling the transcriptome of endocervical cells from the non-human primate, the rhesus macaque (Macaca mulatta). INTERVENTION We treated differentiated primary endocervical cultures with estradiol (E2) and progesterone (P4) to mimic peri-ovulatory and luteal-phase hormonal changes. Using RNA-sequencing, we identified differential expression of gene pathways and mucus-producing and mucus-modifying genes in cells treated with E2 compared to hormone-free conditions and E2 compared to E2-primed cells treated with P4. MAIN OUTCOME MEASURES We pursued differential gene expression analysis on RNA-sequenced cells. Sequence validation was done using quantitative PCR (qPCR). RESULTS Our study identified 158 genes that show significant differential expression in E2-only conditions compared to hormone-free control and 250 genes that show significant differential expression in P4-treated conditions compared to E2-only conditions. From this list, we found hormone-induced changes in transcriptional profiles for genes across several classes of mucus production, including ion channels and enzymes involved in post-translational mucin modification that have not previously been described as hormonally regulated. CONCLUSION Our study is the first to use an in vitro culture system to create an epithelial cell-specific transcriptome of the endocervix. As a result, our study identifies new genes and pathways altered by sex steroids in cervical mucus production. SUMMARY SENTENCE In vitro hormonal regulation of mucus production, modification, and secretion was profiled using primary epithelial endocervical cells.
Collapse
Affiliation(s)
- Katrina Rapp
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Portland, OR, USA
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Shuhao Wei
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Portland, OR, USA
| | - Mackenzie Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Portland, OR, USA
| | - Shan Yao
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Portland, OR, USA
| | - Suzanne S Fei
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Portland, OR, USA
| | - Lina Gao
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Portland, OR, USA
| | - Karina Ray
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Portland, OR, USA
| | - Alexander Wang
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Portland, OR, USA
| | - Rachelle Godiah
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Portland, OR, USA
| | - Leo Han
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Portland, OR, USA
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
4
|
Abdul Halim MS, Dyson JM, Gong MM, O'Bryan MK, Nosrati R. Fallopian tube rheology regulates epithelial cell differentiation and function to enhance cilia formation and coordination. Nat Commun 2024; 15:7411. [PMID: 39198453 PMCID: PMC11358425 DOI: 10.1038/s41467-024-51481-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
The rheological properties of the extracellular fluid in the female reproductive tract vary spatiotemporally, however, the effect on the behaviour of epithelial cells that line the tract is unexplored. Here, we reveal that epithelial cells respond to the elevated viscosity of culture media by modulating their development and functionality to enhance cilia formation and coordination. Specifically, ciliation increases by 4-fold and cilia beating frequency decreases by 30% when cells are cultured at 100 mPa·s. Further, cilia manifest a coordinated beating pattern that can facilitate the formation of metachronal waves. At the cellular level, viscous loading activates the TRPV4 channel in the epithelial cells to increase intracellular Ca2+, subsequently decreasing the mitochondrial membrane potential level for ATP production to maintain cell viability and function. Our findings provide additional insights into the role of elevated tubal fluid viscosity in promoting ciliation and coordinating their beating-a potential mechanism to facilitate the transport of egg and embryo, suggesting possible therapeutic opportunities for infertility treatment.
Collapse
Affiliation(s)
- Melati S Abdul Halim
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia
| | - Jennifer M Dyson
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Max M Gong
- Department of Biomedical Engineering, Trine University, Angola, IN, USA
| | - Moira K O'Bryan
- School of BioSciences and Bio21 Molecular Science and Biotechnology Institute, Faculty of Science, University of Melbourne, Parkville, Victoria, Australia
| | - Reza Nosrati
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
5
|
Almeida GHDR, da Silva RS, Gibin MS, Gonzaga VHDS, dos Santos H, Igleisa RP, Fernandes LA, Fernandes IC, Nesiyama TNG, Sato F, Baesso ML, Hernandes L, Rinaldi JDC, Meirelles FV, Astolfi-Ferreira CS, Ferreira AJP, Carreira ACO. Region-Specific Decellularization of Porcine Uterine Tube Extracellular Matrix: A New Approach for Reproductive Tissue-Engineering Applications. Biomimetics (Basel) 2024; 9:382. [PMID: 39056823 PMCID: PMC11274565 DOI: 10.3390/biomimetics9070382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The uterine tube extracellular matrix is a key component that regulates tubal tissue physiology, and it has a region-specific structural distribution, which is directly associated to its functions. Considering this, the application of biological matrices in culture systems is an interesting strategy to develop biomimetic tubal microenvironments and enhance their complexity. However, there are no established protocols to produce tubal biological matrices that consider the organ morphophysiology for such applications. Therefore, this study aimed to establish region-specific protocols to obtain decellularized scaffolds derived from porcine infundibulum, ampulla, and isthmus to provide suitable sources of biomaterials for tissue-engineering approaches. Porcine uterine tubes were decellularized in solutions of 0.1% SDS and 0.5% Triton X-100. The decellularization efficiency was evaluated by DAPI staining and DNA quantification. We analyzed the ECM composition and structure by optical and scanning electronic microscopy, FTIR, and Raman spectroscopy. DNA and DAPI assays validated the decellularization, presenting a significative reduction in cellular content. Structural and spectroscopy analyses revealed that the produced scaffolds remained well structured and with the ECM composition preserved. YS and HEK293 cells were used to attest cytocompatibility, allowing high cell viability rates and successful interaction with the scaffolds. These results suggest that such matrices are applicable for future biotechnological approaches in the reproductive field.
Collapse
Affiliation(s)
- Gustavo Henrique Doná Rodrigues Almeida
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 03828-000, Brazil; (R.S.d.S.); (L.A.F.); (I.C.F.); (A.C.O.C.)
| | - Raquel Souza da Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 03828-000, Brazil; (R.S.d.S.); (L.A.F.); (I.C.F.); (A.C.O.C.)
| | - Mariana Sversut Gibin
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil; (M.S.G.); (V.H.d.S.G.); (H.d.S.); (F.S.); (M.L.B.)
| | - Victória Hellen de Souza Gonzaga
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil; (M.S.G.); (V.H.d.S.G.); (H.d.S.); (F.S.); (M.L.B.)
| | - Henrique dos Santos
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil; (M.S.G.); (V.H.d.S.G.); (H.d.S.); (F.S.); (M.L.B.)
| | - Rebeca Piatniczka Igleisa
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
| | - Leticia Alves Fernandes
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 03828-000, Brazil; (R.S.d.S.); (L.A.F.); (I.C.F.); (A.C.O.C.)
| | - Iorrane Couto Fernandes
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 03828-000, Brazil; (R.S.d.S.); (L.A.F.); (I.C.F.); (A.C.O.C.)
| | - Thais Naomi Gonçalves Nesiyama
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo 05508-270, Brazil; (T.N.G.N.); (F.V.M.)
| | - Francielle Sato
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil; (M.S.G.); (V.H.d.S.G.); (H.d.S.); (F.S.); (M.L.B.)
| | - Mauro Luciano Baesso
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil; (M.S.G.); (V.H.d.S.G.); (H.d.S.); (F.S.); (M.L.B.)
| | - Luzmarina Hernandes
- Department of Morphological Sciences, State University of Maringá, Maringá 87020-900, Brazil; (L.H.); (J.d.C.R.)
| | | | - Flávio Vieira Meirelles
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo 05508-270, Brazil; (T.N.G.N.); (F.V.M.)
| | - Claudete S. Astolfi-Ferreira
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (C.S.A.-F.); (A.J.P.F.)
| | - Antonio José Piantino Ferreira
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (C.S.A.-F.); (A.J.P.F.)
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 03828-000, Brazil; (R.S.d.S.); (L.A.F.); (I.C.F.); (A.C.O.C.)
- Centre for Natural and Human Sciences, Federal University of ABC, Santo André 09040-902, Brazil
| |
Collapse
|
6
|
Daly MB, Wong-Sam A, Li L, Krovi A, Gatto GJ, Norton C, Luecke EH, Mrotz V, Forero C, Cottrell ML, Schauer AP, Gary J, Nascimento-Seixas J, Mitchell J, van der Straten A, Heneine W, Garcίa-Lerma JG, Dobard CW, Johnson LM. Pharmacokinetic Study of Islatravir and Etonogestrel Implants in Macaques. Pharmaceutics 2023; 15:2676. [PMID: 38140017 PMCID: PMC10747562 DOI: 10.3390/pharmaceutics15122676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
The prevention of HIV and unintended pregnancies is a public health priority. Multi-purpose prevention technologies capable of long-acting HIV and pregnancy prevention are desirable for women. Here, we utilized a preclinical macaque model to evaluate the pharmacokinetics of biodegradable ε-polycaprolactone implants delivering the antiretroviral islatravir (ISL) and the contraceptive etonogestrel (ENG). Three implants were tested: ISL-62 mg, ISL-98 mg, and ENG-33 mg. Animals received one or two ISL-eluting implants, with doses of 42, 66, or 108 µg of ISL/day with or without an additional ENG-33 mg implant (31 µg/day). Drug release increased linearly with dose with median [range] plasma ISL levels of 1.3 [1.0-2.5], 1.9 [1.2-6.3] and 2.8 [2.3-11.6], respectively. The ISL-62 and 98 mg implants demonstrated stable drug release over three months with ISL-triphosphate (ISL-TP) concentr54ations in PBMCs above levels predicted to be efficacious for PrEP. Similarly, ENG implants demonstrated sustained drug release with median [range] plasma ENG levels of 495 [229-1110] pg/mL, which suppressed progesterone within two weeks and showed no evidence of altering ISL pharmacokinetics. Two of the six ISL-98 mg implants broke during the study and induced implant-site reactions, whereas no reactions were observed with intact implants. We show that ISL and ENG biodegradable implants are safe and yield sufficient drug levels to achieve prevention targets. The evaluation of optimized implants with increased mechanical robustness is underway for improved durability and vaginal efficacy in a SHIV challenge model.
Collapse
Affiliation(s)
- Michele B. Daly
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Andres Wong-Sam
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Linying Li
- RTI International, Durham, NC 27709, USA
| | | | | | | | | | - Victoria Mrotz
- Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Catalina Forero
- Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Mackenzie L. Cottrell
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Amanda P. Schauer
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joy Gary
- Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Josilene Nascimento-Seixas
- Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - James Mitchell
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Ariane van der Straten
- ASTRA Consulting, Kensington, CA 94708, USA
- Center for AIDS Prevention Studies, Department of Medicine, University of California San Francisco, San Francisco, CA 94104, USA
| | - Walid Heneine
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - J. Gerardo Garcίa-Lerma
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Charles W. Dobard
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | | |
Collapse
|
7
|
Aickareth J, Hawwar M, Sanchez N, Gnanasekaran R, Zhang J. Membrane Progesterone Receptors (mPRs/PAQRs) Are Going beyond Its Initial Definitions. MEMBRANES 2023; 13:membranes13030260. [PMID: 36984647 PMCID: PMC10056622 DOI: 10.3390/membranes13030260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/10/2023] [Accepted: 02/19/2023] [Indexed: 05/13/2023]
Abstract
Progesterone (PRG) is a key cyclical reproductive hormone that has a significant impact on female organs in vertebrates. It is mainly produced by the corpus luteum of the ovaries, but can also be generated from other sources such as the adrenal cortex, Leydig cells of the testes and neuronal and glial cells. PRG has wide-ranging physiological effects, including impacts on metabolic systems, central nervous systems and reproductive systems in both genders. It was first purified as an ovarian steroid with hormonal function for pregnancy, and is known to play a role in pro-gestational proliferation during pregnancy. The main function of PRG is exerted through its binding to progesterone receptors (nPRs, mPRs/PAQRs) to evoke cellular responses through genomic or non-genomic signaling cascades. Most of the existing research on PRG focuses on classic PRG-nPR-paired actions such as nuclear transcriptional factors, but new evidence suggests that PRG also exerts a wide range of PRG actions through non-classic membrane PRG receptors, which can be divided into two sub-classes: mPRs/PAQRs and PGRMCs. The review will concentrate on recently found non-classical membrane progesterone receptors (mainly mPRs/PAQRs) and speculate their connections, utilizing the present comprehension of progesterone receptors.
Collapse
|
8
|
Modification of Morphology and Glycan Pattern of the Oviductal Epithelium of Baboon Papio hamadryas during the Menstrual Cycle. Animals (Basel) 2022; 12:ani12202769. [PMID: 36290159 PMCID: PMC9597729 DOI: 10.3390/ani12202769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 11/12/2022] Open
Abstract
The mammalian oviduct is a highly specialized structure where fertilization and early embryonic development occur. Its mucosal epithelium is involved in maintaining and modulating a dynamic intraluminal fluid. The oviductal epithelium consists of ciliated and non-ciliated (secretory) cells whose differentiation and activity are sex hormone-dependent. In this study, we investigated for the first time both the morphology and the glycan composition of baboon oviductal epithelium during the menstrual cycle. Oviducts were laparoscopically removed from 14 healthy adult female Papio hamadryas whose menstrual cycle phase was assessed based on the sex hormone levels and the vaginal cytology features. Histological investigations were carried out on fimbriae, infundibulum, ampulla, and isthmus separately fixed in 4% (v/v) paraformaldehyde, embedded in paraffin wax, and stained with hematoxylin-eosin for morphological analyses and using a panel of nine fluorescent lectins for glycoconjugate characterization. The histomorphological analysis revealed that in the entire oviduct (i) the ciliated and non-ciliated cells were indistinguishable during the follicular and luteal phases, whereas they were highly differentiated during the preovulatory phase when the non-ciliated cells exhibited apical protrusions, (ii) the epithelium height was significantly higher in the preovulatory phase compared to other menstrual phases, and (iii) the number of ciliated cells significantly (p ≤ 0.05) increased from the fimbriae to the infundibulum and progressively reduced in the other oviductal segments with the lower presence of ciliated cells in the isthmus. The glycan characterization revealed a complex and region-specific composition during the different phases of the menstrual cycle. It can be summarized as follows: (i) high-mannosylated N-linked glycans (Con A reactivity) were present throughout the oviductal epithelium during the entire menstrual cycle and characteristically in the apical protrusions of non-ciliated cells of the ampulla during the preovulatory phase; (ii) sialoglycans with α2,3-linked sialic acids (MAL II binding) were expressed along the entire oviductal surface only during the preovulatory phase, whereas α2,6-linked ones (SNA affinity) were also detected in the surface of the luteal phase, although during the preovulatory phase they were characteristically found in the glycocalyx of the isthmus cilia, and O-linked sialoglycans with sialic acids linked to Galβl,3GalNAc (T antigen) (KsPNA) and terminal N-acetylgalactosamine (Tn antigen) (KsSBA) were found in the entire oviductal surface during all phases of the menstrual cycle; (iii) GalNAc terminating O-linked glycans (HPA staining) were mainly expressed in the entire oviducts of the luteal and preovulatory phases, and characteristically in the apical protrusions of the isthmus non-ciliated cells of the preovulatory phase; and (iv) fucosylated glycans with α1,2-linked fucose (LTA reactivity) occurred in the apical surface of fimbriae during the luteal phase, whereas α1,3/4-linked fucose (UEA I binders) were present in the apical protrusions of the ampulla non-ciliated cells and in the apical surface of isthmus during the preovulatory phase as well as in the isthmus apical surface of follicular-phase oviducts. These results demonstrate for the first time that morphological and glycan changes occur in the baboon oviductal epithelium during the menstrual cycle. Particularly, the sex hormone fluctuation affects the glycan pattern in a region-specific manner, probably related to the function of the oviductal segments. The findings add new data concerning baboons which, due to their anatomical similarity to humans, make an excellent model for female reproduction studies.
Collapse
|