1
|
Xu L, Qiu J, Ren Q, Wang D, Guo A, Wang L, Hou K, Wang R, Liu Y. Gold nanoparticles modulate macrophage polarization to promote skeletal muscle regeneration. Mater Today Bio 2025; 32:101653. [PMID: 40151803 PMCID: PMC11937682 DOI: 10.1016/j.mtbio.2025.101653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/20/2025] [Accepted: 03/09/2025] [Indexed: 03/29/2025] Open
Abstract
Skeletal muscle regeneration is a complex process that depends on the interplay between immune responses and muscle stem cell (MuSC) activity. Macrophages play a crucial role in this process, exhibiting distinct polarization states-M1 (pro-inflammatory) and M2 (anti-inflammatory)-that significantly affect tissue repair outcomes. Recent advancements in nanomedicine have positioned gold nanoparticles (Au NPs) as promising tools for modulating macrophage polarization and enhancing muscle regeneration. This review examines the role of Au NPs in influencing macrophage behavior, focusing on their physicochemical properties, biocompatibility, and mechanisms of action. We discuss how Au NPs can promote M2 polarization, facilitating tissue repair through modulation of cytokine production, interaction with cell surface receptors, and activation of intracellular signaling pathways. Additionally, we highlight the benefits of Au NPs on MuSC function, angiogenesis, and extracellular matrix remodeling. Despite the potential of Au NPs in skeletal muscle regeneration, challenges remain in optimizing nanoparticle design, developing targeted delivery systems, and understanding long-term effects. Future directions should focus on personalized medicine approaches and combination therapies to enhance therapeutic efficacy. Ultimately, this review emphasizes the transformative potential of Au NPs in regenerative medicine, offering hope for improved treatments for muscle injuries and diseases.
Collapse
Affiliation(s)
- Lining Xu
- JST Sarcopenia Research Centre, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Jiahuang Qiu
- Research Center of Nano Technology and Application Engineering, School of Public Health,Dongguan Innovation Institute, Guangdong Medical University, Dongguan, 523808, China
| | - Quanzhong Ren
- JST Sarcopenia Research Centre, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Dingding Wang
- JST Sarcopenia Research Centre, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Anyi Guo
- JST Sarcopenia Research Centre, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Ling Wang
- JST Sarcopenia Research Centre, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
- Department of Radiology, National Center for Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Kedong Hou
- Department of Orthopedics, Beijing Pinggu District Hospital, Beijing, 101200, China
| | - Renxian Wang
- JST Sarcopenia Research Centre, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Yajun Liu
- JST Sarcopenia Research Centre, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
- Department of Spine Surgery, National Center for Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| |
Collapse
|
2
|
Bolideei M, Barzigar R, Gahrouei RB, Mohebbi E, Haider KH, Paul S, Paul MK, Mehran MJ. Applications of Gene Editing and Nanotechnology in Stem Cell-Based Therapies for Human Diseases. Stem Cell Rev Rep 2025:10.1007/s12015-025-10857-0. [PMID: 40014250 DOI: 10.1007/s12015-025-10857-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
Stem cell research is a dynamic and fast-advancing discipline with great promise for the treatment of diverse human disorders. The incorporation of gene editing technologies, including ZFNs, TALENs, and the CRISPR/Cas system, in conjunction with progress in nanotechnology, is fundamentally transforming stem cell therapy and research. These innovations not only provide a glimmer of optimism for patients and healthcare practitioners but also possess the capacity to radically reshape medical treatment paradigms. Gene editing and nanotechnology synergistically enhance stem cell-based therapies' precision, efficiency, and applicability, offering transformative potential for treating complex diseases and advancing regenerative medicine. Nevertheless, it is important to acknowledge that these technologies also give rise to ethical considerations and possible hazards, such as inadvertent genetic modifications and the development of genetically modified organisms, therefore creating a new age of designer infants. This review emphasizes the crucial significance of gene editing technologies and nanotechnology in the progress of stem cell treatments, particularly for degenerative pathologies and injuries. It emphasizes their capacity to restructure and comprehensively revolutionize medical treatment paradigms, providing fresh hope and optimism for patients and healthcare practitioners.
Collapse
Affiliation(s)
- Mansoor Bolideei
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Rambod Barzigar
- Department of Biotechnology, SJCE Technical Campus, JSS Research Foundation, University of Mysore, Mysore, 570006, Karnataka, India
| | - Razieh Bahrami Gahrouei
- Department of Pharmacy PES College, Rajiv Gandhi University of Health Sciences, Bangalore, Karnataka, India
| | - Elham Mohebbi
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois School of Medicine, Springfield, IL, USA
| | - Khawaja Husnain Haider
- Sulaiman AlRajhi Medical School, Al Bukayriyah, AlQaseem, 52726, Kingdom of Saudi Arabia
| | - Sayan Paul
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA.
| | - Manash K Paul
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Mohammad Javad Mehran
- Department of Biotechnology, SJCE Technical Campus, JSS Research Foundation, University of Mysore, Mysore, 570006, Karnataka, India.
| |
Collapse
|
3
|
Kim CD, Koo KM, Kim HJ, Kim TH. Recent Advances in Nanomaterials for Modulation of Stem Cell Differentiation and Its Therapeutic Applications. BIOSENSORS 2024; 14:407. [PMID: 39194636 DOI: 10.3390/bios14080407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
Challenges in directed differentiation and survival limit the clinical use of stem cells despite their promising therapeutic potential in regenerative medicine. Nanotechnology has emerged as a powerful tool to address these challenges and enable precise control over stem cell fate. In particular, nanomaterials can mimic an extracellular matrix and provide specific cues to guide stem cell differentiation and proliferation in the field of nanotechnology. For instance, recent studies have demonstrated that nanostructured surfaces and scaffolds can enhance stem cell lineage commitment modulated by intracellular regulation and external stimulation, such as reactive oxygen species (ROS) scavenging, autophagy, or electrical stimulation. Furthermore, nanoframework-based and upconversion nanoparticles can be used to deliver bioactive molecules, growth factors, and genetic materials to facilitate stem cell differentiation and tissue regeneration. The increasing use of nanostructures in stem cell research has led to the development of new therapeutic approaches. Therefore, this review provides an overview of recent advances in nanomaterials for modulating stem cell differentiation, including metal-, carbon-, and peptide-based strategies. In addition, we highlight the potential of these nano-enabled technologies for clinical applications of stem cell therapy by focusing on improving the differentiation efficiency and therapeutics. We believe that this review will inspire researchers to intensify their efforts and deepen their understanding, thereby accelerating the development of stem cell differentiation modulation, therapeutic applications in the pharmaceutical industry, and stem cell therapeutics.
Collapse
Affiliation(s)
- Chang-Dae Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Kyeong-Mo Koo
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Hyung-Joo Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
4
|
Pramanik S, Aggarwal A, Kadi A, Alhomrani M, Alamri AS, Alsanie WF, Koul K, Deepak A, Bellucci S. Chitosan alchemy: transforming tissue engineering and wound healing. RSC Adv 2024; 14:19219-19256. [PMID: 38887635 PMCID: PMC11180996 DOI: 10.1039/d4ra01594k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Chitosan, a biopolymer acquired from chitin, has emerged as a versatile and favorable material in the domain of tissue engineering and wound healing. Its biocompatibility, biodegradability, and antimicrobial characteristics make it a suitable candidate for these applications. In tissue engineering, chitosan-based formulations have garnered substantial attention as they have the ability to mimic the extracellular matrix, furnishing an optimal microenvironment for cell adhesion, proliferation, and differentiation. In the realm of wound healing, chitosan-based dressings have revealed exceptional characteristics. They maintain a moist wound environment, expedite wound closure, and prevent infections. These formulations provide controlled release mechanisms, assuring sustained delivery of bioactive molecules to the wound area. Chitosan's immunomodulatory properties have also been investigated to govern the inflammatory reaction during wound healing, fostering a balanced healing procedure. In summary, recent progress in chitosan-based formulations portrays a substantial stride in tissue engineering and wound healing. These innovative approaches hold great promise for enhancing patient outcomes, diminishing healing times, and minimizing complications in clinical settings. Continued research and development in this field are anticipated to lead to even more sophisticated chitosan-based formulations for tissue repair and wound management. The integration of chitosan with emergent technologies emphasizes its potential as a cornerstone in the future of regenerative medicine and wound care. Initially, this review provides an outline of sources and unique properties of chitosan, followed by recent signs of progress in chitosan-based formulations for tissue engineering and wound healing, underscoring their potential and innovative strategies.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras Chennai 600036 Tamil Nadu India
| | - Akanksha Aggarwal
- Department of Biotechnology, Indian Institute of Technology Hyderabad Kandi Sangareddy Telangana 502284 India
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University New Delhi 110017 India
| | - Ammar Kadi
- Department of Food and Biotechnology, South Ural State University Chelyabinsk 454080 Russia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University Taif Saudi Arabia
- Research Centre for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University Taif Saudi Arabia
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University Taif Saudi Arabia
- Research Centre for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University Taif Saudi Arabia
| | - Walaa F Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University Taif Saudi Arabia
- Research Centre for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University Taif Saudi Arabia
| | - Kanchan Koul
- Department of Physiotherapy, Jain School of Sports Education and Research, Jain University Bangalore Karnataka 560069 India
| | - A Deepak
- Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering Chennai Tamil Nadu 600128 India
| | - Stefano Bellucci
- 7INFN-Laboratori Nazionali di Frascati Via E. Fermi 54 00044 Frascati Italy
| |
Collapse
|
5
|
Punetha VD, Pathak R, Bhatt S, Punetha M. Spectroscopic and microscopic investigations of functionalized polymer nanocomposites. ADVANCES IN FUNCTIONALIZED POLYMER NANOCOMPOSITES 2024:145-194. [DOI: 10.1016/b978-0-443-18860-2.00025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Abuarqoub D, Mahmoud N, Alshaer W, Mohammad M, Ibrahim AA, Al-Mrahleh M, Alnatour M, Alqudah DA, Esawi E, Awidi A. Biological Performance of Primary Dental Pulp Stem Cells Treated with Gold Nanoparticles. Biomedicines 2023; 11:2490. [PMID: 37760931 PMCID: PMC10525781 DOI: 10.3390/biomedicines11092490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/27/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Gold nanoparticles (AuNPs) are one of the most stable nanoparticles that have been prevalently used as examples for biological and biomedical applications. Herein, we evaluate the effect of AuNPs on the biological processes of dental pulp stem cells derived from exfoliated deciduous teeth (SHED). Two different shapes of PEGylated AuNPs, rods (AuNR-PEG) and spheres (AuNS-PEG), were prepared and characterized. SHED cells were treated with different concentrations of AuNR-PEG and AuNS-PEG to determine their effect on the stemness profile of stem cells (SCs), proliferation, cytotoxicity, cellular uptake, and reactive oxygen species (ROS), for cells cultured in media containing-fetal bovine serum (FBS) and serum-free media (SFM). Our results showed that both nanoparticle shapes maintained the expression profile of MSC surface markers. Moreover, AuNS-PEG showed a stimulatory effect on the proliferation rate and lower toxicity on SHED, compared to AuNR-PEG. Higher concentrations of 0.5-0.125 nM of AuNR-PEG have been demonstrated to cause more toxicity in cells. Additionally, cells treated with AuNPs and cultured in FBS showed a higher proliferative rate and lower toxicity when compared to the SFM. For cellular uptake, both AuNS-PEG and AuNR-PEG were uptaken by treated cells efficiently. However, cells cultured in SFM media showed a higher percentage of cellular uptake. For ROS, AuNR-PEG showed a significant reduction in ROS at lower concentrations (<0.03 nM), while AuNS-PEG did not show any significant difference compared to the control untreated cells. Thus, our results give evidence about the optimum concentration and shape of AuNPs that can be used for the differentiation of stem cells into specific cell lineages in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Duaa Abuarqoub
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan;
- Cell Therapy Center, University of Jordan, Amman 11942, Jordan; (W.A.); (M.A.-M.); (D.A.A.); (E.E.)
| | - Nouf Mahmoud
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan;
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Walhan Alshaer
- Cell Therapy Center, University of Jordan, Amman 11942, Jordan; (W.A.); (M.A.-M.); (D.A.A.); (E.E.)
| | - Marwa Mohammad
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan;
| | - Abed Alqader Ibrahim
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, 2907 E. Gate City Blvd., Greensboro, NC 27401, USA;
| | - Mairvat Al-Mrahleh
- Cell Therapy Center, University of Jordan, Amman 11942, Jordan; (W.A.); (M.A.-M.); (D.A.A.); (E.E.)
| | - Mohammad Alnatour
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan;
| | - Dana A. Alqudah
- Cell Therapy Center, University of Jordan, Amman 11942, Jordan; (W.A.); (M.A.-M.); (D.A.A.); (E.E.)
| | - Ezaldeen Esawi
- Cell Therapy Center, University of Jordan, Amman 11942, Jordan; (W.A.); (M.A.-M.); (D.A.A.); (E.E.)
| | - Abdalla Awidi
- Cell Therapy Center, University of Jordan, Amman 11942, Jordan; (W.A.); (M.A.-M.); (D.A.A.); (E.E.)
- School of Medicine, University of Jordan, Amman 11942, Jordan
- Department of Internal Medicine, Hospital of Jordan University, Amman University, Amman 11942, Jordan
| |
Collapse
|
7
|
Harley-Troxell ME, Steiner R, Advincula RC, Anderson DE, Dhar M. Interactions of Cells and Biomaterials for Nerve Tissue Engineering: Polymers and Fabrication. Polymers (Basel) 2023; 15:3685. [PMID: 37765540 PMCID: PMC10536046 DOI: 10.3390/polym15183685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Neural injuries affect millions globally, significantly impacting their quality of life. The inability of these injuries to heal, limited ability to regenerate, and the lack of available treatments make regenerative medicine and tissue engineering a promising field of research for developing methods for nerve repair. This review evaluates the use of natural and synthetic polymers, and the fabrication methods applied that influence a cell's behavior. Methods include cross-linking hydrogels, incorporation of nanoparticles, and 3D printing with and without live cells. The endogenous cells within the injured area and any exogenous cells seeded on the polymer construct play a vital role in regulating healthy neural activity. This review evaluates the body's local and systemic reactions to the implanted materials. Although numerous variables are involved, many of these materials and methods have exhibited the potential to provide a biomaterial environment that promotes biocompatibility and the regeneration of a physical and functional nerve. Future studies may evaluate advanced methods for modifying material properties and characterizing the tissue-biomaterial interface for clinical applications.
Collapse
Affiliation(s)
- Meaghan E. Harley-Troxell
- Tissue Engineering and Regenerative Medicine, Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (M.E.H.-T.); (R.S.); (D.E.A.)
| | - Richard Steiner
- Tissue Engineering and Regenerative Medicine, Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (M.E.H.-T.); (R.S.); (D.E.A.)
| | - Rigoberto C. Advincula
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA;
- Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, TN 37831, USA
| | - David E. Anderson
- Tissue Engineering and Regenerative Medicine, Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (M.E.H.-T.); (R.S.); (D.E.A.)
| | - Madhu Dhar
- Tissue Engineering and Regenerative Medicine, Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (M.E.H.-T.); (R.S.); (D.E.A.)
| |
Collapse
|
8
|
Yousof S, Erfan H, Shehata S, Hosny M, El-Sayed K. Assessment of the potential cerebellar toxicity of gold nanoparticles on the structure and function of adult male albino rats. Biosci Rep 2023; 43:BSR20222255. [PMID: 37527500 PMCID: PMC10472208 DOI: 10.1042/bsr20222255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND The regular use of gold nanoparticles (Au-NPs) may increase the likelihood of human exposure to these nanoparticles (NPs) and raises concerns about toxicity. AIM This study investigated the short-term impact of exposure to Au-NPs on inducing cerebellar pathology in rats, and whether the dose or duration of exposure was more important. METHODOLOGY The study used two concentrations of Au-NPs (25 and 50 particles per million) and 18 rats were randomly assigned to three groups. Assessments of the animals were done via behavioral, gene expression, histological, and immunohistochemistry analyses. RESULTS Both concentrations of Au-NPs caused cerebellar pathology, as assessed through the investigation test battery. The Au-NPs50 group displayed more injury and decreased mobility compared with the control and the Au-NPs25 group. The Au-NPs25 group showed an increase in supported rearing and significant up-regulation of the Rgc32 gene compared with the control. The Trkb gene was insignificantly up-regulated in both Au-NPs groups compared with the control. CONCLUSION The study indicates that exposure to Au-NPs can cause cerebellar pathology in rats and that the toxicity is more dependent on dose than the duration of exposure. These findings have significant implications for the safe use of Au-NPs in various applications.
Collapse
Affiliation(s)
- Shimaa Mohammad Yousof
- Department of Medical Physiology, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Physiology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Horeya Erfan
- Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Shaimaa A. Shehata
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Marwa M. Hosny
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Oncology Diagnostic Unit Lab, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Karima El-Sayed
- Department of Medical Physiology, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
9
|
Zhou H, He Y, Xiong W, Jing S, Duan X, Huang Z, Nahal GS, Peng Y, Li M, Zhu Y, Ye Q. MSC based gene delivery methods and strategies improve the therapeutic efficacy of neurological diseases. Bioact Mater 2023; 23:409-437. [PMCID: PMC9713256 DOI: 10.1016/j.bioactmat.2022.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/08/2022] [Accepted: 11/13/2022] [Indexed: 12/05/2022] Open
|
10
|
Cheng WY, Yang MY, Yeh CA, Yang YC, Chang KB, Chen KY, Liu SY, Tang CL, Shen CC, Hung HS. Therapeutic Applications of Mesenchymal Stem Cell Loaded with Gold Nanoparticles for Regenerative Medicine. Pharmaceutics 2023; 15:1385. [PMID: 37242627 PMCID: PMC10222259 DOI: 10.3390/pharmaceutics15051385] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/14/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
In the present study, the various concentrations of AuNP (1.25, 2.5, 5, 10 ppm) were prepared to investigate the biocompatibility, biological performances and cell uptake efficiency via Wharton's jelly mesenchymal stem cells and rat model. The pure AuNP, AuNP combined with Col (AuNP-Col) and FITC conjugated AuNP-Col (AuNP-Col-FITC) were characterized by Ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR) and Dynamic Light Scattering (DLS) assays. For in vitro examinations, we explored whether the Wharton's jelly MSCs had better viability, higher CXCR4 expression, greater migration distance and lower apoptotic-related proteins expression with AuNP 1.25 and 2.5 ppm treatments. Furthermore, we considered whether the treatments of 1.25 and 2.5 ppm AuNP could induce the CXCR4 knocked down Wharton's jelly MSCs to express CXCR4 and reduce the expression level of apoptotic proteins. We also treated the Wharton's jelly MSCs with AuNP-Col to investigate the intracellular uptake mechanisms. The evidence demonstrated the cells uptake AuNP-Col through clathrin-mediated endocytosis and the vacuolar-type H+-ATPase pathway with good stability inside the cells to avoid lysosomal degradation as well as better uptake efficiency. Additionally, the results from in vivo examinations elucidated the 2.5 ppm of AuNP attenuated foreign body responses and had better retention efficacy with tissue integrity in animal model. In conclusion, the evidence demonstrates that AuNP shows promise as a biosafe nanodrug delivery system for development of regenerative medicine coupled with Wharton's jelly MSCs.
Collapse
Affiliation(s)
- Wen-Yu Cheng
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (M.-Y.Y.); (Y.-C.Y.); (K.-Y.C.); (S.-Y.L.); (C.-L.T.); (C.-C.S.)
- Department of Physical Therapy, Hung Kuang University, Taichung 433304, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402202, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402202, Taiwan
| | - Meng-Yin Yang
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (M.-Y.Y.); (Y.-C.Y.); (K.-Y.C.); (S.-Y.L.); (C.-L.T.); (C.-C.S.)
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402202, Taiwan
| | - Chun-An Yeh
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404333, Taiwan; (C.-A.Y.); (K.-B.C.)
| | - Yi-Chin Yang
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (M.-Y.Y.); (Y.-C.Y.); (K.-Y.C.); (S.-Y.L.); (C.-L.T.); (C.-C.S.)
| | - Kai-Bo Chang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404333, Taiwan; (C.-A.Y.); (K.-B.C.)
| | - Kai-Yuan Chen
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (M.-Y.Y.); (Y.-C.Y.); (K.-Y.C.); (S.-Y.L.); (C.-L.T.); (C.-C.S.)
| | - Szu-Yuan Liu
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (M.-Y.Y.); (Y.-C.Y.); (K.-Y.C.); (S.-Y.L.); (C.-L.T.); (C.-C.S.)
| | - Chien-Lun Tang
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (M.-Y.Y.); (Y.-C.Y.); (K.-Y.C.); (S.-Y.L.); (C.-L.T.); (C.-C.S.)
| | - Chiung-Chyi Shen
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (M.-Y.Y.); (Y.-C.Y.); (K.-Y.C.); (S.-Y.L.); (C.-L.T.); (C.-C.S.)
| | - Huey-Shan Hung
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404333, Taiwan; (C.-A.Y.); (K.-B.C.)
- Translational Medicine Research, China Medical University Hospital, Taichung 404327, Taiwan
| |
Collapse
|
11
|
Wei M, Yang Z, Li S, Le W. Nanotherapeutic and Stem Cell Therapeutic Strategies in Neurodegenerative Diseases: A Promising Therapeutic Approach. Int J Nanomedicine 2023; 18:611-626. [PMID: 36760756 PMCID: PMC9904216 DOI: 10.2147/ijn.s395010] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
Neurodegeneration is characterized by progressive, disabling, and incurable neurological disorders with the massive loss of specific neurons. As one of the most promising potential therapeutic strategies for neurodegenerative diseases, stem cell therapy exerts beneficial effects through different mechanisms, such as direct replacement of damaged or lost cells, secretion of neurotrophic and growth factors, decreased neuroinflammation, and activation of endogenous stem cells. However, poor survival and differentiation rates of transplanted stem cells, insufficient homing ability, and difficulty tracking after transplantation limit their further clinical use. The rapid development of nanotechnology provides many promising nanomaterials for biomedical applications, which already have many applications in neurodegenerative disease treatment and seem to be able to compensate for some of the deficiencies in stem cell therapy, such as transport of stem cells/genes/drugs, regulating stem cell differentiation, and real-time tracking in stem cell therapy. Therefore, nanotherapeutic strategies combined with stem cell therapy is a promising therapeutic approach to treating neurodegenerative diseases. The present review systematically summarizes recent advances in stem cell therapeutics and nanotherapeutic strategies and highlights how they can be combined to improve therapeutic efficacy for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Min Wei
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, People’s Republic of China
| | - Zhaofei Yang
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, People’s Republic of China
| | - Song Li
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, People’s Republic of China
| | - Weidong Le
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, People’s Republic of China,Institute of Neurology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, Chengdu, 610072, People’s Republic of China,Correspondence: Weidong Le, Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, People’s Republic of China, Email
| |
Collapse
|
12
|
Favorable Biological Performance Regarding the Interaction between Gold Nanoparticles and Mesenchymal Stem Cells. Int J Mol Sci 2022; 24:ijms24010005. [PMID: 36613448 PMCID: PMC9819939 DOI: 10.3390/ijms24010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Gold nanoparticles (AuNPs) are well known to interact with cells, leading to different cell behaviors such as cell proliferation and differentiation capacity. Biocompatibility and biological functions enhanced by nanomedicine are the most concerning factors in clinical approaches. In the present research, AuNP solutions were prepared at concentrations of 1.25, 2.5, 5 and 10 ppm for biocompatibility investigations. Ultraviolet-visible spectroscopy was applied to identify the presence of AuNPs under the various concentrations. Dynamic Light Scattering assay was used for the characterization of the size of the AuNPs. The shape of the AuNPs was observed through a Scanning Electron Microscope. Afterward, the mesenchymal stem cells (MSCs) were treated with a differentiation concentration of AuNP solutions in order to measure the biocompatibility of the nanoparticles. Our results demonstrate that AuNPs at 1.25 and 2.5 ppm could significantly enhance MSC proliferation, decrease reactive oxygen species (ROS) generation and attenuate platelet/monocyte activation. Furthermore, the MSC morphology was observed in the presence of filopodia and lamellipodia while being incubated with 1.25 and 2.5 ppm AuNPs, indicating that the adhesion ability was enhanced by the nanoparticles. The expression of matrix metalloproteinase (MMP-2/9) in MSCs was found to be more highly expressed under 1.25 and 2.5 ppm AuNP treatment, relating to better cell migrating ability. Additionally, the cell apoptosis of MSCs investigated with Annexin-V/PI double staining assay and the Fluorescence Activated Cell Sorting (FACS) method demonstrated the lower population of apoptotic cells in 1.25 and 2.5 ppm AuNP treatments, as compared to high concentrations of AuNPs. Additionally, results from a Western blotting assay explored the possibility that the anti-apoptotic proteins Cyclin-D1 and Bcl-2 were remarkably expressed. Meanwhile, real-time PCR analysis demonstrated that the 1.25 and 2.5 ppm AuNP solutions induced a lower expression of inflammatory cytokines (TNF-α, IL-1β, IFN-γ, IL-6 and IL-8). According to the tests performed on an animal model, AuNP 1.25 and 2.5 ppm treatments exhibited the better biocompatibility performance, including anti-inflammation and endothelialization. In brief, 1.25 and 2.5 ppm of AuNP solution was verified to strengthen the biological functions of MSCs, and thus suggests that AuNPs become the biocompatibility nanomedicine for regeneration research.
Collapse
|