1
|
Rütsche D, Nanni M, Cheng P, Caflisch N, Tastanova A, Jenni C, Levesque MP, Moehrlen U, Klar AS, Biedermann T. Human Dermal Microvascular Arterial and Venous Blood Endothelial Cells and Their Use in Bioengineered Dermo-Epidermal Skin Substitutes. SMALL METHODS 2025:e2401588. [PMID: 39871784 DOI: 10.1002/smtd.202401588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/04/2025] [Indexed: 01/29/2025]
Abstract
The bioengineering of vascular networks is pivotal to create complex tissues and organs for regenerative medicine applications. However, bioengineered tissues comprising an arterial and venous plexus alongside a lymphatic capillary network have not been explored yet. Here, scRNA-seq is first employed to investigate the arterio-venous endothelial cell marker patterning in human fetal and juvenile skin. Transcriptomic analysis reveals that arterial and venous endothelial cell markers NRP1 (neuropilin 1) and NR2F2 (nuclear receptor subfamily 2 group F member 2) are broadly expressed in fetal and juvenile skin. In contrast, expression of NRP1 and NR2F2 on the protein level is cell-type specific and is retained in 2D (2-dimensional) cultures in vitro. Finally, distinct arterial and venous capillaries are bioengineered in 3D (3-dimensional) hydrogels and rapid anastomosis is demonstrated with the host vasculature in vivo. In summary, the bioengineering of human arterial, venous, and lymphatic capillaries is established, hence paving the way for these cells to be used in regenerative medicine and future clinical applications.
Collapse
Affiliation(s)
- Dominic Rütsche
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Lenggstrasse 30, Zurich, 8008, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Lenggstrasse 30, Zurich, 8008, Switzerland
| | - Monica Nanni
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Lenggstrasse 30, Zurich, 8008, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Lenggstrasse 30, Zurich, 8008, Switzerland
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, Zurich, 8092, Switzerland
| | - Phil Cheng
- Department of Dermatology, University Hospital Zurich, Wagistrasse 18, Schlieren, 8952, Switzerland
| | - Nicolà Caflisch
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Lenggstrasse 30, Zurich, 8008, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Lenggstrasse 30, Zurich, 8008, Switzerland
| | - Aizhan Tastanova
- Department of Dermatology, University Hospital Zurich, Wagistrasse 18, Schlieren, 8952, Switzerland
| | - Céline Jenni
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Lenggstrasse 30, Zurich, 8008, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Lenggstrasse 30, Zurich, 8008, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich, Wagistrasse 18, Schlieren, 8952, Switzerland
- Medical Faculty, University of Zurich, Rämistrasse 71, Zurich, 8006, Switzerland
| | - Ueli Moehrlen
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Lenggstrasse 30, Zurich, 8008, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Lenggstrasse 30, Zurich, 8008, Switzerland
- Medical Faculty, University of Zurich, Rämistrasse 71, Zurich, 8006, Switzerland
| | - Agnes S Klar
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Lenggstrasse 30, Zurich, 8008, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Lenggstrasse 30, Zurich, 8008, Switzerland
- Medical Faculty, University of Zurich, Rämistrasse 71, Zurich, 8006, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Lenggstrasse 30, Zurich, 8008, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Lenggstrasse 30, Zurich, 8008, Switzerland
- Medical Faculty, University of Zurich, Rämistrasse 71, Zurich, 8006, Switzerland
| |
Collapse
|
2
|
Pontiggia L, Yosef H, Biedermann T, Moehrlen U. Characterization of Human Skin Derived Cells by Raman Micro-Spectroscopy. Methods Mol Biol 2025; 2922:209-227. [PMID: 40208538 DOI: 10.1007/978-1-0716-4510-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Studying human skin biology can aid in understanding the pathophysiology of skin diseases and developing novel therapies, including tissue engineering approaches. Among various optical and spectroscopic techniques, Raman micro-spectroscopy stands out. This non-invasive method requires minimal sample preparation and provides molecular-level information on healthy and diseased cell types. The following chapter aims to provide a comprehensive guide to the basic methods of Raman micro-spectroscopy analysis of human epidermal samples from the perspective of their biochemical-molecular relationship, without the need for a deep and specialized knowledge in the field of spectroscopy. We do this based on two distinct examples: (1) Unstained cell subpopulations identified by hierarchical cluster analysis are compared with antibody treated sorted cell populations, and (2) skin cell type-specific molecular features are determined, and the composition of unknown cellular mixtures is revealed.
Collapse
Affiliation(s)
- Luca Pontiggia
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children's Hospital Zurich, Zurich, Switzerland.
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
| | | | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Ueli Moehrlen
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
- Spina Bifida Center, University Children's Hospital Zurich, Zurich, Switzerland
- Zurich Center for Fetal Diagnosis and Treatment, Zurich, Switzerland
| |
Collapse
|
3
|
Shabanian K, Shabanian T, Karsai G, Pontiggia L, Paneni F, Ruschitzka F, Beer JH, Saeedi Saravi SS. AQP1 differentially orchestrates endothelial cell senescence. Redox Biol 2024; 76:103317. [PMID: 39180980 PMCID: PMC11388013 DOI: 10.1016/j.redox.2024.103317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/05/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
Accumulation of senescent endothelial cells (ECs) with age is a pivotal driver of cardiovascular diseases in aging. However, little is known about the mechanisms and signaling pathways that regulate EC senescence. In this report, we delineate a previously unrecognized role of aquaporin 1 (AQP1) in orchestrating extracellular hydrogen peroxide (H2O2)-induced cellular senescence in aortic ECs. Our findings underscore AQP1's differential impact on senescence hallmarks, including cell-cycle arrest, senescence-associated secretory phenotype (SASP), and DNA damage responses, intricately regulating angiogenesis. In proliferating ECs, AQP1 is crucial for maintaining angiogenic capacity, whereas disruption of AQP1 induces morphological and mitochondrial alterations, culminating in senescence and impaired angiogenesis. Conversely, Aqp1 knockdown or selective blockade of AQP1 in senescent ECs rescues the excess H2O2-induced cellular senescence phenotype and metabolic dysfunction, thereby ameliorating intrinsic angiogenic incompetence. Mechanistically, AQP1 facilitates H2O2 transmembrane transport, exacerbating oxidant-sensitive kinases CaMKII-AMPK. This process suppresses HDAC4 translocation, consequently de-repressing Mef2A-eNOS signaling in proliferating ECs. However, in senescent ECs, AQP1 overexpression is linked to preserved HDAC4-Mef2A complex and downregulation of eNOS signaling. Together, our studies identify AQP1 as a novel epigenetic regulator of HDAC4-Mef2A-dependent EC senescence and angiogenic potential, highlighting its potential as a therapeutic target for antagonizing age-related cardiovascular diseases.
Collapse
Affiliation(s)
- Khatereh Shabanian
- Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, 8952, Schlieren, Switzerland; University Heart Center, Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Taraneh Shabanian
- Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, 8952, Schlieren, Switzerland; University Heart Center, Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Gergely Karsai
- Institute of Clinical Chemistry, University Hospital Zurich, 8952, Schlieren, Switzerland
| | - Luca Pontiggia
- Tissue Biology Research Unit, University Children's Hospital Zurich, 8952, Schlieren, Switzerland; Children's Research Center, University Children's Hospital Zurich, 8032, Zurich, Switzerland; Faculty of Medicine, University of Zurich, 8032, Zurich, Switzerland
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, 8952, Schlieren, Switzerland; University Heart Center, Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Frank Ruschitzka
- Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, 8952, Schlieren, Switzerland; University Heart Center, Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Jürg H Beer
- Center for Molecular Cardiology, University of Zurich, 8952, Schlieren, Switzerland; Department of Internal Medicine, Cantonal Hospital Baden, 5404, Baden, Switzerland.
| | - Seyed Soheil Saeedi Saravi
- Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, 8952, Schlieren, Switzerland; University Heart Center, Department of Cardiology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Alghazali R, Nugud A, El-Serafi A. Glycan Modifications as Regulators of Stem Cell Fate. BIOLOGY 2024; 13:76. [PMID: 38392295 PMCID: PMC10886185 DOI: 10.3390/biology13020076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024]
Abstract
Glycosylation is a process where proteins or lipids are modified with glycans. The presence of glycans determines the structure, stability, and localization of glycoproteins, thereby impacting various biological processes, including embryogenesis, intercellular communication, and disease progression. Glycans can influence stem cell behavior by modulating signaling molecules that govern the critical aspects of self-renewal and differentiation. Furthermore, being located at the cell surface, glycans are utilized as markers for stem cell pluripotency and differentiation state determination. This review aims to provide a comprehensive overview of the current literature, focusing on the effect of glycans on stem cells with a reflection on the application of synthetic glycans in directing stem cell differentiation. Additionally, this review will serve as a primer for researchers seeking a deeper understanding of how synthetic glycans can be used to control stem cell differentiation, which may help establish new approaches to guide stem cell differentiation into specific lineages. Ultimately, this knowledge can facilitate the identification of efficient strategies for advancing stem cell-based therapeutic interventions.
Collapse
Affiliation(s)
- Raghad Alghazali
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 58183 Linköping, Sweden
| | - Ahmed Nugud
- Clinical Sciences, University of Edinburgh, Edinburgh EH4 2XU, UK
- Gastroenterology, Hepatology & Nutrition, Sheikh Khalifa Medical City, Abu Dhabi 51900, United Arab Emirates
| | - Ahmed El-Serafi
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 58183 Linköping, Sweden
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, 58185 Linköping, Sweden
| |
Collapse
|
5
|
Pontiggia L, Klar AS, Michalak-Micka K, Moehrlen U, Biedermann T. Isolation, Characterization, and Utilization of Human Skin Basal and Suprabasal Epidermal Stem Cells. Methods Mol Biol 2024; 2849:1-15. [PMID: 38904915 DOI: 10.1007/7651_2024_551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Studying human skin biology can aid in comprehending the pathophysiology of skin diseases and developing novel cell-based therapies, including tissue engineering approaches. This chapter provides a comprehensive guide of methods to determine human skin samples from the perspective of their cellular compositions. We describe as useful technique the histological analysis of tissue sections. We further illustrate the biological characterization of isolated and cultured basal and suprabasal interfollicular keratinocytes by cell sorting, cytospin immunostaining, colony forming efficiency, and long-term dermo-epidermal organotypic cultures.
Collapse
Affiliation(s)
- Luca Pontiggia
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children's Hospital Zurich, Schlieren, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Agnes S Klar
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children's Hospital Zurich, Schlieren, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Katarzyna Michalak-Micka
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children's Hospital Zurich, Schlieren, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Ueli Moehrlen
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children's Hospital Zurich, Schlieren, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
- Spina Bifida Center, University Children's Hospital Zurich, Zurich, Switzerland
- Zurich Center for Fetal Diagnosis and Treatment, Zurich, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children's Hospital Zurich, Schlieren, Switzerland.
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
- University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Ademi H, Michalak-Micka K, Moehrlen U, Biedermann T, Klar AS. Effects of an Adipose Mesenchymal Stem Cell-Derived Conditioned medium and TGF-β1 on Human Keratinocytes In Vitro. Int J Mol Sci 2023; 24:14726. [PMID: 37834173 PMCID: PMC10572767 DOI: 10.3390/ijms241914726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/06/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Human keratinocytes play a crucial role during skin wound healing and in skin replacement therapies. The secretome of adipose-derived stem cells (ASCs) has been shown to secrete pro-healing factors, among which include TGF-β1, which is essential for keratinocyte migration and the re-epithelialization of cutaneous wounds during skin wound healing. The benefits of an ASC conditioned medium (ASC-CM) are primarily orchestrated by trophic factors that mediate autocrine and paracrine effects in keratinocytes. Here, we evaluated the composition and the innate characteristics of the ASC secretome and its biological effects on keratinocyte maturation and wound healing in vitro. In particular, we detected high levels of different growth factors, such as HGF, FGFb, and VEGF, and other factors, such as TIMP1 and 4, IL8, PAI-1, uPA, and IGFBP-3, in the ASC-CM. Further, we investigated, using immunofluorescence and flow cytometry, the distinct effects of a human ASC-CM and/or synthetic TGF-β1 on human keratinocyte proliferation, migration, and cell apoptosis suppression. We demonstrated that the ASC-CM increased keratinocyte proliferation as compared to TGF-β1 treatment. Further, we found that the ASC-CM exerted cell cycle progression in keratinocytes via regulating the phases G1, S, and G2/M. In particular, cells subjected to the ASC-CM demonstrated increased DNA synthesis (S phase) compared to the TGF-β1-treated KCs, which showed a pronounced G0/G1 phase. Furthermore, both the ASC-CM and TGF-β1 conditions resulted in a decreased expression of the late differentiation marker CK10 in human keratinocytes in vitro, whereas both treatments enhanced transglutaminase 3 and loricrin expression. Interestingly, the ASC-CM promoted significantly increased numbers of keratinocytes expressing epidermal basal keratinocyte markers, such DLL1 and Jagged2 Notch ligands, whereas those ligands were significantly decreased in TGF-β1-treated keratinocytes. In conclusion, our findings suggest that the ASC-CM is a potent stimulator of human keratinocyte proliferation in vitro, particularly supporting basal keratinocytes, which are crucial for a successful skin coverage after transplantation. In contrast, TGF-β1 treatment decreased keratinocyte proliferation and specifically increased the expression of differentiation markers in vitro.
Collapse
Affiliation(s)
- Hyrije Ademi
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, 8952 Schlieren, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Katarzyna Michalak-Micka
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, 8952 Schlieren, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Ueli Moehrlen
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, 8952 Schlieren, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
- Department of Surgery, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, 8952 Schlieren, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Agnes S. Klar
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, 8952 Schlieren, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
| |
Collapse
|
7
|
Andelic M, Salvi E, Marcuzzo S, Marchi M, Lombardi R, Cartelli D, Cazzato D, Mehmeti E, Gelemanovic A, Paolini M, Pardo C, D’Amato I, Hoeijmakers JGJ, Dib-Hajj S, Waxman SG, Faber CG, Lauria G. Integrative miRNA-mRNA profiling of human epidermis: unique signature of SCN9A painful neuropathy. Brain 2023; 146:3049-3062. [PMID: 36730021 PMCID: PMC10316770 DOI: 10.1093/brain/awad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023] Open
Abstract
Personalized management of neuropathic pain is an unmet clinical need due to heterogeneity of the underlying aetiologies, incompletely understood pathophysiological mechanisms and limited efficacy of existing treatments. Recent studies on microRNA in pain preclinical models have begun to yield insights into pain-related mechanisms, identifying nociception-related species differences and pinpointing potential drug candidates. With the aim of bridging the translational gap towards the clinic, we generated a human pain-related integrative miRNA and mRNA molecular profile of the epidermis, the tissue hosting small nerve fibres, in a deeply phenotyped cohort of patients with sodium channel-related painful neuropathy not responding to currently available therapies. We identified four miRNAs strongly discriminating patients from healthy individuals, confirming their effect on differentially expressed gene targets driving peripheral sensory transduction, transmission, modulation and post-transcriptional modifications, with strong effects on gene targets including NEDD4. We identified a complex epidermal miRNA-mRNA network based on tissue-specific experimental data suggesting a cross-talk between epidermal cells and axons in neuropathy pain. Using immunofluorescence assay and confocal microscopy, we observed that Nav1.7 signal intensity in keratinocytes strongly inversely correlated with NEDD4 expression that was downregulated by miR-30 family, suggesting post-transcriptional fine tuning of pain-related protein expression. Our targeted molecular profiling advances the understanding of specific neuropathic pain fine signatures and may accelerate process towards personalized medicine in patients with neuropathic pain.
Collapse
Affiliation(s)
- Mirna Andelic
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
| | - Erika Salvi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Stefania Marcuzzo
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Margherita Marchi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Raffaella Lombardi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Daniele Cartelli
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Daniele Cazzato
- Neurophysiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Elkadia Mehmeti
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Andrea Gelemanovic
- Biology of Robustness Group, Mediterranean Institute for Life Sciences (MedILS), 21000 Split, Croatia
| | - Matilde Paolini
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Carlotta Pardo
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Ilaria D’Amato
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Janneke G J Hoeijmakers
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
| | - Sulayman Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Catharina G Faber
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
| | - Giuseppe Lauria
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| |
Collapse
|