1
|
Liu Y, Su M, Zhao X, Liu M, Wu J, Wu X, Lu Z, Han Z. Combined transcriptomic and metabolomic analysis revealed the salt tolerance mechanism of Populus talassica × Populus euphratica. BMC PLANT BIOLOGY 2025; 25:361. [PMID: 40114044 PMCID: PMC11924769 DOI: 10.1186/s12870-025-06288-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/21/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND To investigate the salt tolerance of Populus talassica × Populus euphratica, morphological and physiological parameters were measured on the second day after the 15th, 30th and 45th days of NaCl treatment, revealing significant effects of NaCl on growth. To further elucidate the mechanisms underlying salt tolerance, transcriptomic and metabolomic analysis were conducted under different NaCl treatments. RESULTS The results of morphological and physiological indexes showed that under low salt treatment, P. talassica × P. euphratica was able to coordinate the growth of aboveground and belowground parts. Under high salt concentration, the growth and water balance of P. talassica × P. euphratica were markedly inhibited. The most significant differences between treatments were observed on the second day after the 45th day of NaCl treatment. Transcriptomic analysis showed that the pathways of gene enrichment in the roots and stems of P. talassica × P. euphratica were different in the salt resistance response. And it involves several core pathways such as plant hormone signal transduction, phenylpropanoid biosynthesis, MAPK signaling pathway-plant, plant- pathogen interaction, carbon metabolism, biosynthesis of amino acids, and several key Transcription factors (TFs) such as AP2/ERF, NAC, WRKY and bZIP. Metabolomic analysis revealed that KEGG pathway enrichment analysis showed unique metabolic pathways were enriched in P. talassica × P. euphratica under both 200 mM and 400 mM NaCl treatments. Additionally, while there were some differences in the metabolic pathways enriched in the roots and stems, both tissues commonly enriched pathways related to the biosynthesis of secondary metabolites, biosynthesis of cofactors, biosynthesis of amino acids, flavonoid biosynthesis, and ABC transporters. Association analysis further indicated that biosynthesis of amino acids and plant hormone signal transduction pathway play key roles in the response of P. talassica × P. euphratica to salt stress. The interactions between the differentially expressed genes (DEGs) and several differentially accumulated metabolites (DAMs), especially the strong association between LOC105124002 and Jasmonoyl-L-Isoleucine (pme2074), were again revealed by the interactions analysis. CONCLUSIONS In this study, we resolved the changes of metabolic pathways in roots and stems of P. talassica × P. euphratica under different NaCl treatments and explored the associations between characteristic DEGs and DAMs, which provided insights into the mechanisms of P. talassica × P. euphratica in response to salt stress.
Collapse
Affiliation(s)
- Ying Liu
- College of Life Science and Technology, Tarim University, State Key Laboratory Incubation Base for Conservation and Utilization of Bio-Resource in Tarim Basin, Alar, 843300, China
- School of Life Science, Inner Mongolia University, Hohhot, 010020, China
| | - Mengxu Su
- College of Life Science and Technology, Tarim University, State Key Laboratory Incubation Base for Conservation and Utilization of Bio-Resource in Tarim Basin, Alar, 843300, China
| | - Xiaoqing Zhao
- School of Life Science, Inner Mongolia University, Hohhot, 010020, China
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Meilin Liu
- College of Life Science and Technology, Tarim University, State Key Laboratory Incubation Base for Conservation and Utilization of Bio-Resource in Tarim Basin, Alar, 843300, China
| | - Jiaju Wu
- College of Life Science and Technology, Tarim University, State Key Laboratory Incubation Base for Conservation and Utilization of Bio-Resource in Tarim Basin, Alar, 843300, China
| | - Xiaofeng Wu
- College of Life Science and Technology, Tarim University, State Key Laboratory Incubation Base for Conservation and Utilization of Bio-Resource in Tarim Basin, Alar, 843300, China
| | - Zhanyuan Lu
- School of Life Science, Inner Mongolia University, Hohhot, 010020, China.
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China.
| | - Zhanjiang Han
- College of Life Science and Technology, Tarim University, State Key Laboratory Incubation Base for Conservation and Utilization of Bio-Resource in Tarim Basin, Alar, 843300, China.
| |
Collapse
|
2
|
Li M, Li W, Wang C, Ji L, Han K, Gong J, Dong S, Wang H, Zhu X, Du B, Liu K, Jiang J, Wang C. Growth-promoting effects of self-selected microbial community on wheat seedlings in saline-alkali soil environments. Front Bioeng Biotechnol 2024; 12:1464195. [PMID: 39734744 PMCID: PMC11671506 DOI: 10.3389/fbioe.2024.1464195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/02/2024] [Indexed: 12/31/2024] Open
Abstract
Saline-alkali land is a type of soil environment that causes poor crop growth and low yields. Its management and utilization are, therefore of great significance for increasing arable land resources, ensuring food security, and enhancing agricultural production capacity. The application of plant growth-promoting rhizobacteria (PGPR) is an effective way to promote the establishment of symbiotic relationships between plants and the rhizosphere microenvironment, plant growth and development, and plant resistance to saline-alkali stress. In this study, multiple saline-alkali-resistant bacteria were screened from a saline-alkali land environment and some of them were found to have significantly promotive effects on the growth of wheat seedlings under saline-alkali stress. Using these PGPR, a compound microbial community was selectively obtained from the root-zone soil environment of wheat seedlings, and the metagenomic sequencing analysis of wheat root-zone soil microbiomes was performed. As a result, a compound microbial agent with a Kocuria dechangensis 5-33:Rossellomorea aquimaris S-3:Bacillus subtilis BJYX:Bacillus velezensis G51-1 ratio of 275:63:5:1 was obtained through the self-selection of wheat seedlings. The synthetic compound microbial agent significantly improved the growth of wheat seedlings in saline-alkali soil, as the physiological plant height, aboveground and underground fresh weights, and aboveground and underground dry weights of 21-day-old wheat seedlings were increased by 27.39% (p < 0.01), 147.33% (p < 0.01), 282.98% (p < 0.01), 194.86% (p < 0.01), and 218.60% (p < 0.01), respectively. The promoting effect of this compound microbial agent was also greater than that of each strain on the growth of wheat seedlings. This microbial agent could also regulate some enzyme activities of wheat seedlings and the saline-alkali soil, thereby, promoting the growth of these seedlings. In this study, we analyze an efficient microbial agent and the theoretical basis for promoting the growth of wheat seedlings under saline-alkali stress, thereby, suggesting an important solution for the management and utilization of saline-alkali land.
Collapse
Affiliation(s)
- Min Li
- Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Wenjie Li
- Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Chunxue Wang
- Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Lei Ji
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Kun Han
- Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Jiahui Gong
- Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Siyuan Dong
- Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Hailong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Xueming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Binghai Du
- Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Kai Liu
- Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Juquan Jiang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Chengqiang Wang
- Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
3
|
Eh TJ, Lei P, Phyon JM, Kim HI, Xiao Y, Ma L, Li J, Bai Y, Ji X, Jin G, Meng F. The AaERF64- AaTPPA module participates in cold acclimatization of Actinidia arguta (Sieb. et Zucc.) Planch ex Miq. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:43. [PMID: 38836186 PMCID: PMC11144688 DOI: 10.1007/s11032-024-01475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/04/2024] [Indexed: 06/06/2024]
Abstract
Actinidia arguta (A. arguta, kiwiberry) is a perennial deciduous vine with a strong overwintering ability. We hypothesized that trehalose metabolism, which plays a pivotal role in the stress tolerance of plants, may be involved in the cold acclimatization of A. arguta. Transcriptome analysis showed that the expression of AaTPPA, which encodes a trehalose-6-phosphate phosphatase (TPP), was upregulated in response to low temperatures. AaTPPA expression levels were much higher in lateral buds, roots, and stem cambia than in leaves in autumn. In AaTPPA-overexpressing (OE) Arabidopsis thaliana (A. thaliana), trehalose levels were 8-11 times higher than that of the wild type (WT) and showed different phenotypic characteristics from WT and OtsB (Escherichia coli TPP) overexpressing lines. AaTPPA-OE A. thaliana exhibited significantly higher freezing tolerance than WT and OtsB-OE lines. Transient overexpression of AaTPPA in A. arguta leaves increased the scavenging ability of reactive oxygen species (ROS) and the soluble sugar and proline contents. AaERF64, an ethylene-responsive transcription factor, was induced by ethylene treatment and bound to the GCC-box of the AaTPPA promoter to activate its expression. AaTPPA expression was also induced by abscisic acid. In summary, the temperature decrease in autumn is likely to induce AaERF64 expression through an ethylene-dependent pathway, which consequently upregulates AaTPPA expression, leading to the accumulation of osmotic protectants such as soluble sugars and proline in the overwintering tissues of A. arguta. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01475-8.
Collapse
Affiliation(s)
- Tong-Ju Eh
- College of Life Sciences, Northeast Forestry University, Harbin, 150040 China
- School of Life Sciences, Kim Il Sung University, Pyongyang, 999093 Democratic People’s Republic of Korea
| | - Pei Lei
- College of Life Sciences, Northeast Forestry University, Harbin, 150040 China
| | - Jong-Min Phyon
- College of Life Sciences, Northeast Forestry University, Harbin, 150040 China
- School of Life Sciences, Kim Il Sung University, Pyongyang, 999093 Democratic People’s Republic of Korea
| | - Hyon-Il Kim
- College of Life Sciences, Northeast Forestry University, Harbin, 150040 China
- School of Life Sciences, Kim Il Sung University, Pyongyang, 999093 Democratic People’s Republic of Korea
| | - Yue Xiao
- College of Life Sciences, Northeast Forestry University, Harbin, 150040 China
| | - Le Ma
- College of Life Sciences, Northeast Forestry University, Harbin, 150040 China
| | - Jianxin Li
- College of Life Sciences, Northeast Forestry University, Harbin, 150040 China
| | - Yujing Bai
- College of Life Sciences, Northeast Forestry University, Harbin, 150040 China
| | - Ximei Ji
- College of Life Sciences, Northeast Forestry University, Harbin, 150040 China
| | - Guangze Jin
- Center for Ecological Research, Northeast Forestry University, Harbin, 150040 China
- Key Laboratory of Sustainable Forest Ecosystem Management Ministry of Education, Northeast Forestry University, Harbin, 150040 China
- Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin, 150040 China
| | - Fanjuan Meng
- College of Life Sciences, Northeast Forestry University, Harbin, 150040 China
| |
Collapse
|
4
|
Qiu J, Zhang J, Zhao H, Wu C, Jin C, Hu X, Li J, Cao X, Liu S, Jin X. Cellulose and JbKOBITO 1 mediate the resistance of NaHCO 3-tolerant chlorella to saline-alkali stress. Front Microbiol 2023; 14:1285796. [PMID: 38033574 PMCID: PMC10684911 DOI: 10.3389/fmicb.2023.1285796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Carbonate stress has profound impacts on both agricultural and industrial production. Although a number of salinity-tolerant genes have been reported and applied in plants, there is a lack of research on the role of cell wall-related genes in resistance to carbonate. Likewise, in industry, current strategies have not been able to more effectively address the conflict between stress-induced microalgal biofuel accumulation and microalgal growth inhibition. It is of great significance to study the adaptation mechanism of carbonate-tolerant organisms and to explore related genes for future genetic modification. In this study, the role of the cell wall in the NaHCO3-tolerant chlorella JB17 was investigated. We found that JB17 possesses a relatively thick cell wall with a thickness of 300-600 nm, which is much higher than that of the control chlorella with a thickness of about 100 nm. Determination of the cell wall polysaccharide fractions showed that the cellulose content in the JB17 cell wall increased by 10.48% after NaHCO3 treatment, and the decrease in cellulose levels by cellulase digestion inhibited its resistance to NaHCO3. Moreover, the saccharide metabolome revealed that glucose, rhamnose, and trehalose levels were higher in JB17, especially rhamnose and trehalose, which were almost 40 times higher than in control chlorella. Gene expression detection identified an up-regulated expressed gene after NaHCO3 treatment, JbKOBITO1, overexpression of which could improve the NaHCO3 tolerance of Chlamydomonas reinhardtii. As it encodes a glycosyltransferase-like protein that is involved in cellulose synthesis, the strong tolerance of JB17 to NaHCO3 may be partly due to the up-regulated expression of JbKOBITO 1 and JbKOBITO 1-mediated cellulose accumulation. The above results revealed a critical role of cellulose in the NaHCO3 resistance of JB17, and the identified NaHCO3-tolerance gene will provide genetic resources for crop breeding in saline-alkali soils and for genetic modification of microalgae for biofuel production.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
5
|
Li P, Ma X, Wang J, Yao L, Li B, Meng Y, Si E, Yang K, Shang X, Zhang X, Wang H. Integrated Analysis of Metabolome and Transcriptome Reveals Insights for Low Phosphorus Tolerance in Wheat Seedling. Int J Mol Sci 2023; 24:14840. [PMID: 37834288 PMCID: PMC10573437 DOI: 10.3390/ijms241914840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Low phosphorus (LP) stress leads to a significant reduction in wheat yield, primarily in the reduction of biomass, the number of tillers and spike grains, the delay in heading and flowering, and the inhibition of starch synthesis and grouting. However, the differences in regulatory pathway responses to low phosphorus stress among different wheat genotypes are still largely unknown. In this study, metabolome and transcriptome analyses of G28 (LP-tolerant) and L143 (LP-sensitive) wheat varieties after 72 h of normal phosphorus (CK) and LP stress were performed. A total of 181 and 163 differentially accumulated metabolites (DAMs) were detected for G28CK vs. G28LP and L143CK vs. L143LP, respectively. Notably, the expression of pilocarpine (C07474) in G28CK vs. G28LP was significantly downregulated 4.77-fold, while the expression of neochlorogenic acid (C17147) in L143CK vs. L143LP was significantly upregulated 2.34-fold. A total of 4023 differentially expressed genes (DEGs) were acquired between G28 and L143, of which 1120 DEGs were considered as the core DEGs of LP tolerance of wheat after LP treatment. The integration of metabolomics and transcriptomic data further revealed that the LP tolerance of wheat was closely related to 15 metabolites and 18 key genes in the sugar and amino acid metabolism pathway. The oxidative phosphorylation pathway was enriched to four ATPases, two cytochrome c reductase genes, and fumaric acid under LP treatment. Moreover, PHT1;1, TFs (ARFA, WRKY40, MYB4, MYB85), and IAA20 genes were related to the Pi starvation stress of wheat roots. Therefore, the differences in LP tolerance of different wheat varieties were related to energy metabolism, amino acid metabolism, phytohormones, and PHT proteins, and precisely regulated by the levels of various molecular pathways to adapt to Pi starvation stress. Taken together, this study may help to reveal the complex regulatory process of wheat adaptation to Pi starvation and provide new genetic clues for further study on improving plant Pi utilization efficiency.
Collapse
Affiliation(s)
- Pengcheng Li
- State Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, 730070, China; (P.L.); (X.M.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaole Ma
- State Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, 730070, China; (P.L.); (X.M.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Juncheng Wang
- State Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, 730070, China; (P.L.); (X.M.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Lirong Yao
- State Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, 730070, China; (P.L.); (X.M.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Baochun Li
- State Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, 730070, China; (P.L.); (X.M.)
- Department of Botany, College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yaxiong Meng
- State Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, 730070, China; (P.L.); (X.M.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Erjing Si
- State Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, 730070, China; (P.L.); (X.M.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Ke Yang
- State Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, 730070, China; (P.L.); (X.M.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xunwu Shang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xueyong Zhang
- State Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, 730070, China; (P.L.); (X.M.)
| | - Huajun Wang
- State Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, 730070, China; (P.L.); (X.M.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
6
|
Yao Y, Yang Y, Pan Y, Liu Z, Hou X, Li Y, Zhang H, Wang C, Liao W. Crucial roles of trehalose and 5-azacytidine in alleviating salt stress in tomato: Both synergistically and independently. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108075. [PMID: 37801738 DOI: 10.1016/j.plaphy.2023.108075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/07/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023]
Abstract
Trehalose may improve plant stress tolerance by regulating gene expression under different abiotic stresses. DNA methylation is involved in plant growth and development, but also in response to abiotic stresses. 5-azacytidine is a widely used inhibitor of DNA methylation. In this study, tomato (Solanum lycopersicum L. 'Ailsa Craig') was used as experimental material to explore the effects of trehalose and DNA methylation on the growth and development in tomato seedlings under salt stress. 10 mM trehalose, 50 μM 5-azacytidine, and their combined treatments could significantly increase growth parameters in tomato under salt stress, indicating trehalose and 5-azacytidine might play crucial roles in alleviating salt stress both synergistically and independently. Additionally, trehalose significantly down-regulated the expression of DNA methylase genes (SlDRM5, SlDRM1L1, SlCMT3 and SlCMT2) and up-regulated the expression of DNA demethylases genes under salt stress, suggesting that trehalose might regulate DNA methylation under salt stress condition. Under salt stress, trehalose and 5-azacytidine treatments enhanced antioxidant enzyme activity and induced antioxidant enzyme gene expression in tomato seedlings. Meanwhile, trehalose and 5-azacytidine increased ABA content by regulating the expression of ABA metabolism-related genes, thereby enhancing salt tolerance in tomato. Altogether, these results suggest that trehalose conferred salt tolerance in tomato seedlings probably by DNA demethylation and enhancing antioxidant capability and ABA accumulation.
Collapse
Affiliation(s)
- Yandong Yao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Yan Yang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Ying Pan
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Zesheng Liu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Xuemei Hou
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Yihua Li
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Hongsheng Zhang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China.
| |
Collapse
|
7
|
Chen J, Mei S, Zheng P, Guo J, Zeng Z, Lu H, Sun B. A multi-omics view of the preservation effect on Camellia sinensis leaves during low temperature postharvest transportation. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
8
|
Malambane G, Madumane K, Sewelo LT, Batlang U. Drought stress tolerance mechanisms and their potential common indicators to salinity, insights from the wild watermelon (Citrullus lanatus): A review. FRONTIERS IN PLANT SCIENCE 2023; 13:1074395. [PMID: 36815012 PMCID: PMC9939662 DOI: 10.3389/fpls.2022.1074395] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/25/2022] [Indexed: 06/18/2023]
Abstract
Climate change has escalated the effect of drought on crop production as it has negatively altered the environmental condition. Wild watermelon grows abundantly in the Kgalagadi desert even though the environment is characterized by minimal rainfall, high temperatures and intense sunshine during growing season. This area is also characterized by sandy soils with low water holding capacity, thus bringing about drought stress. Drought stress affects crop productivity through its effects on development and physiological functions as dictated by molecular responses. Not only one or two physiological process or genes are responsible for drought tolerance, but a combination of various factors do work together to aid crop tolerance mechanism. Various studies have shown that wild watermelon possess superior qualities that aid its survival in unfavorable conditions. These mechanisms include resilient root growth, timely stomatal closure, chlorophyll fluorescence quenching under water deficit as key physiological responses. At biochemical and molecular level, the crop responds through citrulline accumulation and expression of genes associated with drought tolerance in this species and other plants. Previous salinity stress studies involving other plants have identified citrulline accumulation and expression of some of these genes (chloroplast APX, Type-2 metallothionein), to be associated with tolerance. Emerging evidence indicates that the upstream of functional genes are the transcription factor that regulates drought and salinity stress responses as well as adaptation. In this review we discuss the drought tolerance mechanisms in watermelons and some of its common indicators to salinity at physiological, biochemical and molecular level.
Collapse
|
9
|
Jia C, Guo B, Wang B, Li X, Yang T, Li N, Wang J, Yu Q. Integrated metabolomic and transcriptomic analysis reveals the role of phenylpropanoid biosynthesis pathway in tomato roots during salt stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1023696. [PMID: 36570882 PMCID: PMC9773889 DOI: 10.3389/fpls.2022.1023696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
As global soil salinization continues to intensify, there is a need to enhance salt tolerance in crops. Understanding the molecular mechanisms of tomato (Solanum lycopersicum) roots' adaptation to salt stress is of great significance to enhance its salt tolerance and promote its planting in saline soils. A combined analysis of the metabolome and transcriptome of S. lycopersicum roots under different periods of salt stress according to changes in phenotypic and root physiological indices revealed that different accumulated metabolites and differentially expressed genes (DEGs) associated with phenylpropanoid biosynthesis were significantly altered. The levels of phenylpropanoids increased and showed a dynamic trend with the duration of salt stress. Ferulic acid (FA) and spermidine (Spd) levels were substantially up-regulated at the initial and mid-late stages of salt stress, respectively, and were significantly correlated with the expression of the corresponding synthetic genes. The results of canonical correlation analysis screening of highly correlated DEGs and construction of regulatory relationship networks with transcription factors (TFs) for FA and Spd, respectively, showed that the obtained target genes were regulated by most of the TFs, and TFs such as MYB, Dof, BPC, GRAS, and AP2/ERF might contribute to the regulation of FA and Spd content levels. Ultimately, FA and Spd attenuated the harm caused by salt stress in S. lycopersicum, and they may be key regulators of its salt tolerance. These findings uncover the dynamics and possible molecular mechanisms of phenylpropanoids during different salt stress periods, providing a basis for future studies and crop improvement.
Collapse
Affiliation(s)
- Chunping Jia
- College of Life Science and Technology, Xinjiang University, Urumqi, China
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Bin Guo
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi, China
| | - Baike Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Xin Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi, China
| | - Tao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Ning Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Qinghui Yu
- College of Life Science and Technology, Xinjiang University, Urumqi, China
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| |
Collapse
|
10
|
Zhu Y, Yuan G, Wang Y, An G, Li W, Liu J, Sun D. Mapping and functional verification of leaf yellowing genes in watermelon during whole growth period. FRONTIERS IN PLANT SCIENCE 2022; 13:1049114. [PMID: 36340411 PMCID: PMC9627507 DOI: 10.3389/fpls.2022.1049114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Increasing light energy utilization efficiency is an effective way to increase yield and improve quality of watermelon. Leaf is the main place for photosynthesis, and the color of leaf is directly related to the change of photosynthesis. In addition, leaf yellowing can be used as a marker trait to play an important role in watermelon hybrid breeding and improve seed breeding. It can not only be used to eliminate hybrids at seedling stage, but also be used to determine seed purity. In this study, transcriptome analysis was first carried out using the whole growth period leaf yellowing watermelon mutant w-yl and inbred line ZK, and identified 2,471 differentially expressed genes (DEGs) in the comparison group w-yl-vs-ZK. Among the top 20 terms of the gene ontology (GO) enrichment pathway, 17 terms were related to photosynthesis. KEGG pathway enrichment analysis showed that the most abundant pathway was photosynthesis-antenna proteins. The F2 population was constructed by conventional hybridization with the inbred line ZK. Genetic analysis showed that leaf yellowing of the mutant was controlled by a single recessive gene. The leaf yellowing gene of watermelon located between Ind14,179,011 and InD16,396,362 on chromosome 2 by using indel-specific PCR markers, with a region of 2.217 Mb. In the interval, it was found that five genes may have gene fragment deletion in w-yl, among which Cla97C02G036010, Cla97C02G036030, Cla97C02G036040, Cla97C02G036050 were the whole fragment loss, and Cla97C02G0360 was the C-terminal partial base loss. Gene function verification results showed that Cla97C02G036040, Cla97C02G036050 and Cla97C02G036060 may be the key factors leading to yellowing of w-yl leaves.
Collapse
Affiliation(s)
- Yingchun Zhu
- The Key Laboratory of Genetic Resource Evaluation and Application of Horticultural Crops (Fruit), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, China
| | - Gaopeng Yuan
- The Key Laboratory of Genetic Resource Evaluation and Application of Horticultural Crops (Fruit), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Yifan Wang
- The Key Laboratory of Genetic Resource Evaluation and Application of Horticultural Crops (Fruit), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Guolin An
- The Key Laboratory of Genetic Resource Evaluation and Application of Horticultural Crops (Fruit), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Weihua Li
- The Key Laboratory of Genetic Resource Evaluation and Application of Horticultural Crops (Fruit), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Junpu Liu
- The Key Laboratory of Genetic Resource Evaluation and Application of Horticultural Crops (Fruit), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, China
| | - Dexi Sun
- The Key Laboratory of Genetic Resource Evaluation and Application of Horticultural Crops (Fruit), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|