1
|
Imai T, Miyai M, Nemoto J, Tamai T, Ohta M, Yagi Y, Nakanishi O, Mochizuki H, Nakamori M. Pentatricopeptide repeat protein targeting CUG repeat RNA ameliorates RNA toxicity in a myotonic dystrophy type 1 mouse model. Sci Transl Med 2025; 17:eadq2005. [PMID: 40238915 DOI: 10.1126/scitranslmed.adq2005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/25/2024] [Accepted: 03/26/2025] [Indexed: 04/18/2025]
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant multisystemic disorder caused by the expansion of a CTG-triplet repeat in the 3' untranslated region of the dystrophia myotonica protein kinase (DMPK) gene. It results in the transcription of toxic RNAs that contain expanded CUG repeats (CUGexp). Splicing factors, such as muscleblind-like 1 (MBNL1), are sequestered by CUGexp, thereby disrupting the normal splicing program that is essential for various cellular functions. Pentatricopeptide repeat (PPR) proteins, originally found in plants, regulate RNA in organelles by binding in a sequence-specific manner. Here, we designed PPR proteins that specifically bind to the hexamer of CUG repeat RNAs (CUG-PPRs) and showed that CUG-PPR1 could ameliorate RNA toxicity induced by CUGexp in cell models of DM1. A single systemic recombinant adeno-associated virus (AAV9) vector-mediated gene delivery of CUG-PPR1 demonstrated long-term therapeutic effects on myotonia and restored splicing activity in a mouse model of DM1. These results highlight the potential of PPR molecules to target pathogenic RNA sequences in DM1 and potentially other RNA-mediated disorders.
Collapse
Affiliation(s)
| | - Maiko Miyai
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Joe Nemoto
- Department of Neurology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | | | | | - Yusuke Yagi
- EditForce Inc., Fukuoka 819-0395, Japan
- Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | | | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Neurology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| |
Collapse
|
2
|
Aborode AT, Abass OA, Nasiru S, Eigbobo MU, Nefishatu S, Idowu A, Tiamiyu Z, Awaji AA, Idowu N, Busayo BR, Mehmood Q, Onifade IA, Fakorede S, Akintola AA. RNA binding proteins (RBPs) on genetic stability and diseases. Glob Med Genet 2025; 12:100032. [PMID: 39925443 PMCID: PMC11803229 DOI: 10.1016/j.gmg.2024.100032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 02/11/2025] Open
Abstract
RNA-binding proteins (RBPs) are integral components of cellular machinery, playing crucial roles in the regulation of gene expression and maintaining genetic stability. Their interactions with RNA molecules govern critical processes such as mRNA splicing, stability, localization, and translation, which are essential for proper cellular function. These proteins interact with RNA molecules and other proteins to form ribonucleoprotein complexes (RNPs), hence controlling the fate of target RNAs. The interaction occurs via RNA recognition motif, the zinc finger domain, the KH domain and the double stranded RNA binding motif (all known as RNA-binding domains (RBDs). These domains are found within the coding sequences (intron and exon domains), 5' untranslated regions (5'UTR) and 3' untranslated regions (3'UTR). Dysregulation of RBPs can lead to genomic instability, contributing to various pathologies, including cancer neurodegenerative diseases, and metabolic disorders. This study comprehensively explores the multifaceted roles of RBPs in genetic stability, highlighting their involvement in maintaining genomic integrity through modulation of RNA processing and their implications in cellular signalling pathways. Furthermore, it discusses how aberrant RBP function can precipitate genetic instability and disease progression, emphasizing the therapeutic potential of targeting RBPs in restoring cellular homeostasis. Through an analysis of current literature, this study aims to delineate the critical role of RBPs in ensuring genetic stability and their promise as targets for innovative therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Shaibu Nasiru
- Department of Research and Development, Healthy Africans Platform, Ibadan, Nigeria
- Department of Biochemistry, Ambrose Alli University Ekpoma, Nigeria
| | | | - Sumana Nefishatu
- Department of Biochemistry, Ambrose Alli University Ekpoma, Nigeria
| | - Abdullahi Idowu
- Department of Biological Sciences, Purdue University Fort Wayne, USA
| | - Zainab Tiamiyu
- Department of Biochemistry and Cancer Biology, Medical College of Georgia, Augusta University, USA
| | - Aeshah A. Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Nike Idowu
- Department of Chemistry, University of Nebraska-Lincoln, USA
| | | | - Qasim Mehmood
- Shifa Clinical Research Center, Shifa International Hospital, Islamabad, Pakistan
| | - Isreal Ayobami Onifade
- Department of Division of Family Health, Health Research Incorporated, New York State Department of Health, USA
| | - Sodiq Fakorede
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ashraf Akintayo Akintola
- Department of Biology Education, Teachers College & Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
3
|
Schmok JC, Yeo GW. Strategies for programmable manipulation of alternative splicing. Curr Opin Genet Dev 2024; 89:102272. [PMID: 39471777 DOI: 10.1016/j.gde.2024.102272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 11/01/2024]
Abstract
Alternative splicing (AS) plays a pivotal role in protein diversity and mRNA maturation. Programmable control of targeted AS events is of longstanding interest in RNA biology, promising correction of dysregulated splicing in disease and discovery of AS events. This review explores four main strategies for programmable splicing manipulation: (1) inhibiting splicing signals with antisense oligonucleotides (ASOs), exemplified by therapies approved by the U.S. Food and Drug Administration, (2) applying DNA-targeting clustered regularly interspaced short palindromic repeats systems to edit splicing signals, (3) using synthetic splicing factors, including synthetic proteins and ribonucleoproteins, inspired by natural RNA-binding proteins, and (4) guiding endogenous splicing machinery with bifunctional ASOs and engineered small nuclear RNAs. While ASOs remain clinically prominent, emerging technologies aim for broad, scalable, durable, and precise splicing modulation, holding promise for transformative advancements in RNA biology and therapeutic interventions.
Collapse
Affiliation(s)
- Jonathan C Schmok
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA; UCSD Center for RNA Technologies and Therapeutics, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Arrías PN, Osmanli Z, Peralta E, Chinestrad PM, Monzon AM, Tosatto SCE. Diversity and structural-functional insights of alpha-solenoid proteins. Protein Sci 2024; 33:e5189. [PMID: 39465903 PMCID: PMC11514114 DOI: 10.1002/pro.5189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/29/2024]
Abstract
Alpha-solenoids are a significant and diverse subset of structured tandem repeat proteins (STRPs) that are important in various domains of life. This review examines their structural and functional diversity and highlights their role in critical cellular processes such as signaling, apoptosis, and transcriptional regulation. Alpha-solenoids can be classified into three geometric folds: low curvature, high curvature, and corkscrew, as well as eight subfolds: ankyrin repeats; Huntingtin, elongation factor 3, protein phosphatase 2A, and target of rapamycin; armadillo repeats; tetratricopeptide repeats; pentatricopeptide repeats; Pumilio repeats; transcription activator-like; and Sel-1 and Sel-1-like repeats. These subfolds represent distinct protein families with unique structural properties and functions, highlighting the versatility of alpha-solenoids. The review also discusses their association with disease, highlighting their potential as therapeutic targets and their role in protein design. Advances in state-of-the-art structure prediction methods provide new opportunities and challenges in the functional characterization and classification of this kind of fold, emphasizing the need for continued development of methods for their identification and proper data curation and deposition in the main databases.
Collapse
Affiliation(s)
- Paula Nazarena Arrías
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- Department of Protein ScienceKTH Royal Institute of TechnologyStockholmSweden
| | - Zarifa Osmanli
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Estefanía Peralta
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataBuenos AiresArgentina
| | | | | | - Silvio C. E. Tosatto
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- Institute of Biomembranes, Bioenergetics and Molecular BiotechnologiesNational Research Council (CNR‐IBIOM)BariItaly
| |
Collapse
|
5
|
Rojas M, Chotewutmontri P, Barkan A. Translational activation by a synthetic PPR protein elucidates control of psbA translation in Arabidopsis chloroplasts. THE PLANT CELL 2024; 36:4168-4178. [PMID: 38593198 PMCID: PMC11449048 DOI: 10.1093/plcell/koae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/11/2024]
Abstract
Translation initiation on chloroplast psbA mRNA in plants scales with light intensity, providing its gene product, D1, as needed to replace photodamaged D1 in Photosystem II. The psbA translational activator HIGH CHLOROPHYLL FLUORESCENCE 173 (HCF173) has been hypothesized to mediate this regulation. HCF173 belongs to the short-chain dehydrogenase/reductase superfamily, associates with the psbA 5'-untranslated region (5'-UTR), and has been hypothesized to enhance translation by binding an RNA segment that would otherwise pair with and mask the ribosome binding region. To test these hypotheses, we examined whether a synthetic pentatricopeptide repeat (sPPR) protein can substitute for HCF173 when bound to the HCF173 binding site. We show that an sPPR designed to bind HCF173's footprint in the psbA 5'-UTR bound the intended site in vivo and partially substituted for HCF173 to activate psbA translation. However, sPPR-activated translation did not respond to light. These results imply that HCF173 activates translation, at least in part, by sequestering the RNA it binds to maintain an accessible ribosome binding region, and that HCF173 is also required to regulate psbA translation in response to light. Translational activation can be added to the functions that can be programmed with sPPR proteins for synthetic biology applications in chloroplasts.
Collapse
Affiliation(s)
- Margarita Rojas
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97405, USA
| | | | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97405, USA
| |
Collapse
|
6
|
Kwok van der Giezen F, Honkanen S, Colas des Francs-Small C, Bond C, Small I. Applications of Synthetic Pentatricopeptide Repeat Proteins. PLANT & CELL PHYSIOLOGY 2024; 65:503-515. [PMID: 38035801 PMCID: PMC11094755 DOI: 10.1093/pcp/pcad150] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/02/2023]
Abstract
RNA-binding proteins play integral roles in the regulation of essential processes in cells and as such are attractive targets for engineering to manipulate gene expression at the RNA level. Expression of transcripts in chloroplasts and mitochondria is heavily regulated by pentatricopeptide repeat (PPR) proteins. The diverse roles of PPR proteins and their naturally modular architecture make them ideal candidates for engineering. Synthetic PPR proteins are showing great potential to become valuable tools for controlling the expression of plastid and mitochondrial transcripts. In this review, by 'synthetic', we mean both rationally modified natural PPR proteins and completely novel proteins designed using the principles learned from their natural counterparts. We focus on the many different applications of synthetic PPR proteins, covering both their use in basic research to learn more about protein-RNA interactions and their use to achieve specific outcomes in RNA processing and the control of gene expression. We describe the challenges associated with the design, construction and deployment of synthetic PPR proteins and provide perspectives on how they might be assembled and used in future biotechnology applications.
Collapse
Affiliation(s)
- Farley Kwok van der Giezen
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Suvi Honkanen
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Catherine Colas des Francs-Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Charles Bond
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| |
Collapse
|
7
|
Ping N, Hara-Kuge S, Yagi Y, Kazama T, Nakamura T. Translational enhancement of target endogenous mRNA in mammalian cells using programmable RNA-binding pentatricopeptide repeat proteins. Sci Rep 2024; 14:251. [PMID: 38167853 PMCID: PMC10762265 DOI: 10.1038/s41598-023-50776-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024] Open
Abstract
Programmable protein scaffolds are invaluable in the development of genome engineering tools. The pentatricopeptide repeat (PPR) protein is an attractive platform for RNA manipulation because of its programmable RNA-binding selectivity, which is determined by the combination of amino acid species at three specific sites in the PPR motif. Translation is a key RNA regulatory step that determines the final gene expression level and is involved in various human diseases. In this study, designer PPR protein was used to develop a translational enhancement technique by fusion with the translation initiation factor eIF4G. The results showed that the PPR-eIF4G fusion protein could activate the translation of endogenous c-Myc and p53 mRNAs and control cell fate, indicating that PPR-based translational enhancement is a versatile technique applicable to various endogenous mRNAs in mammalian cells. In addition, the translational enhancement was dependent on both the target position and presence of eIF4G, suggesting the presence of an unknown translation activation mechanism.
Collapse
Affiliation(s)
- Ning Ping
- Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan
| | - Sayuri Hara-Kuge
- Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan
| | | | - Tomohiko Kazama
- Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan
| | - Takahiro Nakamura
- Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan.
- EditForce, Inc., Fukuoka, 819-0395, Japan.
| |
Collapse
|