1
|
Mattar M, Umutoni F, Hassan MA, Wamburu MW, Turner R, Patton JS, Chen X, Lei W. Chemotherapy-Induced Peripheral Neuropathy: A Recent Update on Pathophysiology and Treatment. Life (Basel) 2024; 14:991. [PMID: 39202733 PMCID: PMC11355765 DOI: 10.3390/life14080991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major long-lasting side effect of some chemotherapy drugs, which threatens cancer survival rate. CIPN mostly affects sensory neurons and occasionally motor neurons, causing numbness, tingling, discomfort, and burning pain in the upper and lower extremities. The pathophysiology of CIPN is not completely understood; however, it is believed that chemotherapies induce peripheral neuropathy via directly damaging mitochondria, impairing the function of ion channels, triggering immunological mechanisms, and disrupting microtubules. The treatment of CIPN is a medical challenge, and there are no approved pharmacological options. Currently, duloxetine and other antidepressants, antioxidant, anti-inflammatory, and ion-channel targeted therapies are commonly used in clinics to relieve the symptoms of CIPN. Several other types of drugs, such as cannabinoids, sigma-1 receptor antagonists, and nicotinamides ribose, are being evaluated in preclinical and clinical studies. This paper summarizes the information related to the physiology of CIPN and medicines that could be used for treating this condition.
Collapse
Affiliation(s)
- Marina Mattar
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC 29325, USA; (M.M.); (M.A.H.)
| | - Florence Umutoni
- Department of Pharmaceutical and Graduate Life Sciences, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA; (F.U.); (J.S.P.)
| | - Marwa A. Hassan
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC 29325, USA; (M.M.); (M.A.H.)
| | - M. Wambui Wamburu
- Department of Pharmacy Practice, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA;
| | - Reagan Turner
- Department of Biology, Presbyterian College, Clinton, SC 29325, USA;
| | - James S. Patton
- Department of Pharmaceutical and Graduate Life Sciences, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA; (F.U.); (J.S.P.)
| | - Xin Chen
- Department of Pharmaceutical and Clinical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA;
| | - Wei Lei
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC 29325, USA; (M.M.); (M.A.H.)
- Department of Pharmaceutical and Graduate Life Sciences, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA; (F.U.); (J.S.P.)
| |
Collapse
|
2
|
Khan SU, Fatima K, Aisha S, Malik F. Unveiling the mechanisms and challenges of cancer drug resistance. Cell Commun Signal 2024; 22:109. [PMID: 38347575 PMCID: PMC10860306 DOI: 10.1186/s12964-023-01302-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/30/2023] [Indexed: 02/15/2024] Open
Abstract
Cancer treatment faces many hurdles and resistance is one among them. Anti-cancer treatment strategies are evolving due to innate and acquired resistance capacity, governed by genetic, epigenetic, proteomic, metabolic, or microenvironmental cues that ultimately enable selected cancer cells to survive and progress under unfavorable conditions. Although the mechanism of drug resistance is being widely studied to generate new target-based drugs with better potency than existing ones. However, due to the broader flexibility in acquired drug resistance, advanced therapeutic options with better efficacy need to be explored. Combination therapy is an alternative with a better success rate though the risk of amplified side effects is commonplace. Moreover, recent groundbreaking precision immune therapy is one of the ways to overcome drug resistance and has revolutionized anticancer therapy to a greater extent with the only limitation of being individual-specific and needs further attention. This review will focus on the challenges and strategies opted by cancer cells to withstand the current therapies at the molecular level and also highlights the emerging therapeutic options -like immunological, and stem cell-based options that may prove to have better potential to challenge the existing problem of therapy resistance. Video Abstract.
Collapse
Affiliation(s)
- Sameer Ullah Khan
- Division of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Holcombe Blvd, Houston, TX, 77030, USA.
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| | - Kaneez Fatima
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Shariqa Aisha
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
3
|
Ou Y, Chu GCY, Lyu J, Yin L, Lim A, Zhai N, Cui X, Lewis MS, Edderkaoui M, Pandol SJ, Wang R, Zhang Y. Overcoming Resistance in Prostate Cancer Therapy Using a DZ-Simvastatin Conjugate. Mol Pharm 2024; 21:873-882. [PMID: 38229228 PMCID: PMC11025579 DOI: 10.1021/acs.molpharmaceut.3c00993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Prostate cancer (PC), particularly its metastatic castration-resistant form (mCRPC), is a leading cause of cancer-related deaths among men in the Western world. Traditional systemic treatments, including hormonal therapy and chemotherapy, offer limited effectiveness due to tumors' inherent resistance to these therapies. Moreover, they often come with significant side effects. We have developed a delivery method using a tumor-cell-specific heptamethine carbocyanine dye (DZ) designed to transport therapeutic agents directly to tumor cells. This research evaluated simvastatin (SIM) as the antitumor payload because of its demonstrated chemopreventive effects on human cancers and its well-documented safety profile. We designed and synthesized a DZ-SIM conjugate for tumor cell targeting. PC cell lines and xenograft tumor models were used to assess tumor-cell targeting specificity and killing activity and to investigate the corresponding mechanisms. DZ-SIM treatment effectively killed PC cells regardless of their androgen receptor status or inherent therapeutic resistance. The conjugate targeted and suppressed xenograft tumor formation without harming normal cells of the host. In cancer cells, DZ-SIM was enriched in subcellular organelles, including mitochondria, where the conjugate formed adducts with multiple proteins and caused the loss of transmembrane potential, promoting cell death. The DZ-SIM specifically targets PC cells and their mitochondria, resulting in a loss of mitochondrial function and cell death. With a unique subcellular targeting strategy, the conjugate holds the potential to outperform existing chemotherapeutic drugs. It presents a novel strategy to circumvent therapeutic resistance, offering a more potent treatment for mCRPC.
Collapse
Affiliation(s)
- Yan Ou
- Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
| | - Gina Chia-Yi Chu
- Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
| | - Ji Lyu
- Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
| | - Liyuan Yin
- Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
| | - Adrian Lim
- Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
| | - Ning Zhai
- Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
| | - Xiaojiang Cui
- Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
- Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
| | - Michael S. Lewis
- Department of Pathology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
- VA Greater Los Angeles Healthcare System, 11301 Wilshire Blvd, Los Angeles, CA 90073, United States
| | - Mouad Edderkaoui
- Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
- Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
| | - Stephen J. Pandol
- Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
- Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
| | - Ruoxiang Wang
- Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
- Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
| | - Yi Zhang
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
| |
Collapse
|
4
|
Zhang Y, Sheng Z, Xiao J, Li Y, Huang J, Jia J, Zeng X, Li L. Advances in the roles of glycyrrhizic acid in cancer therapy. Front Pharmacol 2023; 14:1265172. [PMID: 37649893 PMCID: PMC10463042 DOI: 10.3389/fphar.2023.1265172] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023] Open
Abstract
Since the first 70 years of reporting cancer chemotherapy, malignant tumors have been the second most common cause of death in children and adults. Currently, the commonly used anti-cancer methods include surgery, chemotherapy, radiotherapy, and immunotherapy. Although these treatment methods could alleviate cancer, they lead to different forms of side effects and have no particularly significant effect on prolonging the patients' life span. Glycyrrhizic acid (GL), a native Chinese herbal extract, has a wide range of pharmacological effects, such as anti-cancer, anti-inflammatory, antioxidant, and immune regulation. In this review, the anti-cancer effects and mechanisms of GL are summarized in various cancers. The inhibition of GL on chemotherapy-induced side effects, including hepatotoxicity, nephrotoxicity, genotoxicity, neurotoxicity and pulmonary toxicity, is highlighted. Therefore, GL may be a promising and ideal drug for cancer therapy.
Collapse
Affiliation(s)
- Yuqian Zhang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
| | - Zixuan Sheng
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
| | - Jing Xiao
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
| | - Yang Li
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
| | - Jie Huang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
| | - Jinjing Jia
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
- Department of Physiology, Jiaxing University Medical College, Jiaxing, China
| | - Xiansi Zeng
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
- Department of Biochemistry and Molecular Biology, Jiaxing University Medical College, Jiaxing, China
| | - Li Li
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
- Department of Physiology, Jiaxing University Medical College, Jiaxing, China
| |
Collapse
|