1
|
Rhea L, Reeb T, Adelizzi E, Garnica B, Stein A, Kollash A, Dunnwald E, Dunnwald M. ARHGAP29 promotes keratinocyte proliferation and migration in vitro and is dispensable for in vivo wound healing. Dev Dyn 2025; 254:310-329. [PMID: 39560169 PMCID: PMC11979318 DOI: 10.1002/dvdy.759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 10/23/2024] [Accepted: 10/31/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND RhoA GTPases play critical roles in actin cytoskeletal remodeling required for controlling a diverse range of cellular functions including cell proliferation, adhesion, migration and changes in cell shape, all required for cutaneous wound healing. RhoA cycles between an active GTP-bound and an inactive GDP-bound form, a process regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). ARHGAP29 is a GAP expressed in skin keratinocytes and is decreased in the absence of interferon regulator factor 6, a critical regulator of cell proliferation, migration, and wound healing. However, the role for ARHGAP29 in keratinocyte biology is unknown. RESULTS We generated ARHGAP29 knockdown keratinocyte cell lines and show they displayed increased filamentous actin, phospho-myosin regulatory light chain, cell area and population doubling time. Furthermore, we found that ARHGAP29 knockdown keratinocytes displayed significant delays in scratch wound closure in both single and collective cell migration conditions; these delays were rescued by both adding back ARHGAP29 or adding a ROCK inhibitor to ARHGAP29 knockdown cells. In vivo, however, Arhgap29 heterozygotes or keratinocyte-specific knockouts showed on-time wound healing. CONCLUSIONS These data demonstrate that ARHGAP29 is required for keratinocyte morphology, proliferation and migration in vitro but is dispensable during wound healing in vivo.
Collapse
Affiliation(s)
- Lindsey Rhea
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
| | - Tanner Reeb
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
| | - Emily Adelizzi
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
- Interdisciplinary Graduate Program in GeneticsThe University of IowaIowa CityIowaUSA
| | - Bailey Garnica
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
| | - Allison Stein
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
| | - Alexis Kollash
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
| | - Elliot Dunnwald
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
| | - Martine Dunnwald
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
| |
Collapse
|
2
|
Prifti DK, Lauzier A, Garand C, Calvo E, Devillers R, Roy S, Dos Santos A, Descombes L, Trudel B, Laplante M, Bordeleau F, Elowe S. ARHGEF17/TEM4 regulates the cell cycle through control of G1 progression. J Cell Biol 2025; 224:e202311194. [PMID: 39903211 PMCID: PMC11792891 DOI: 10.1083/jcb.202311194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/17/2024] [Accepted: 12/10/2024] [Indexed: 02/06/2025] Open
Abstract
The Ras homolog (Rho) small GTPases coordinate diverse cellular functions including cell morphology, adhesion and motility, cell cycle progression, survival, and apoptosis via their role in regulating the actin cytoskeleton. The upstream regulators for many of these functions are unknown. ARHGEF17 (also known as TEM4) is a Rho family guanine nucleotide exchange factor (GEF) implicated in cell migration, cell-cell junction formation, and the mitotic checkpoint. In this study, we characterize the regulation of the cell cycle by TEM4. We demonstrate that TEM4-depleted cells exhibit multiple defects in mitotic entry and duration, spindle morphology, and spindle orientation. In addition, TEM4 insufficiency leads to excessive cortical actin polymerization and cell rounding defects. Mechanistically, we demonstrate that TEM4-depleted cells delay in G1 as a consequence of decreased expression of the proproliferative transcriptional co-activator YAP. TEM4-depleted cells that progress through to mitosis do so with decreased levels of cyclin B as a result of attenuated expression of CCNB1. Importantly, cyclin B overexpression in TEM4-depleted cells largely rescues mitotic progression and chromosome segregation defects in anaphase. Our study thus illustrates the consequences of Rho signaling imbalance on cell cycle progression and identifies TEM4 as the first GEF governing Rho GTPase-mediated regulation of G1/S.
Collapse
Affiliation(s)
- Diogjena Katerina Prifti
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Annie Lauzier
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Chantal Garand
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Eva Calvo
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Romain Devillers
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, Canada
| | - Suparba Roy
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Alexsandro Dos Santos
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Laurence Descombes
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Cancer, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| | - Benjamin Trudel
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Cancer, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval (LOEX), Québec, Canada
| | - Mathieu Laplante
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, Canada
| | - François Bordeleau
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Cancer, Québec, Canada
- Département de biologie moléculaire, biochimie médicale et pathologie, Faculté de Médecine, Université Laval, Québec City, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval (LOEX), Québec, Canada
| | - Sabine Elowe
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Réproduction, Santé de la Mère et de l’Enfant, Québec, Canada
- PROTEO-Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des protéines, Québec, Canada
- Département de Pédiatrie, Faculté de Médicine, Université Laval, Québec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, Canada
| |
Collapse
|
3
|
Taroc EZM, Amato E, Semon A, Dolphin N, Beck B, Belin S, Poitelon Y, Forni PE. Shared Lineage, Distinct Outcomes: Yap and Taz Loss Differentially Impact Schwann and Olfactory Ensheathing Cell Development Without Disrupting GnRH-1 Migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638196. [PMID: 40027653 PMCID: PMC11870449 DOI: 10.1101/2025.02.13.638196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Olfactory Ensheathing Cells (OECs) are glial cells originating from the neural crest, critical for bundling olfactory axons to the brain. Their development is crucial for the migration of Gonadotropin-Releasing Hormone-1 (GnRH-1) neurons, which are essential for puberty and fertility. OECs have garnered interest as potential therapeutic targets for central nervous system lesions, although their development is not fully understood. Our single-cell RNA sequencing of mouse embryonic nasal tissues suggests that OECs and Schwann cells share a common origin from Schwann cell precursors yet exhibit significant genetic differences. The transcription factors Yap and Taz have previously been shown to play a crucial role in Schwann cell development. We used Sox10 -Cre mice to conditionally ablate Yap and Taz in migrating the neural crest and its derivatives. Our analyses showed reduced Sox10+ glial cells along nerves in the nasal region, altered gene expression of SCs, melanocytes, and OECs, and a significant reduction in olfactory sensory neurons and vascularization in the vomeronasal organ. However, despite these changes, GnRH-1 neuronal migration remained unaffected. Our findings highlight the importance of the Hippo pathway in OEC development and how changes in cranial neural crest derivatives indirectly impact the development of olfactory epithelia.
Collapse
|
4
|
Sun Y, Kronenberg NM, Sethi SK, Dash SN, Kovalik ME, Sempowski B, Strickland S, Raina R, Sperati CJ, Tian X, Ishibe S, Hall G, Gather MC. CRB2 Depletion Induces YAP Signaling and Disrupts Mechanosensing in Podocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619513. [PMID: 39484460 PMCID: PMC11527017 DOI: 10.1101/2024.10.22.619513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Focal Segmental Glomerulosclerosis (FSGS) is a histologic lesion caused by a variety of injurious stimuli that lead to dysfunction/loss of glomerular visceral epithelial cells (i.e. podocytes). Pathogenic mutations in CRB2, encoding the type 1 transmembrane protein Crumb 2 Homolog Protein, have been shown to cause early-onset corticosteroid-resistant nephrotic syndrome (SRNS)/FSGS. Here, we identified a 2-generation East Asian kindred (DUK40595) with biopsy-proven SRNS/FSGS caused by a compound heterozygous mutation in CRB2 comprised of the previously described truncating mutation p.Gly1036_Alafs*43 and a rare 9-bp deletion mutation p.Leu1074_Asp1076del. Because compound heterozygous mutations involving the truncating p.Gly1036_Alafs*43 variant have been associated with reduced CRB2 expression in podocytes and autosomal recessive SRNS/FSGS, we sought to define the pathogenic effects of CRB2 deficiency in podocytes. We show that CRB2 knockdown induces YAP activity and target gene expression in podocytes. It upregulates YAP-mediated mechanosignaling and increases the density of focal adhesion and F-actin. Using Elastic Resonator Interference Stress Microscopy (ERISM), we demonstrate that CRB2 knockdown also enhances podocyte contractility in a substrate stiffness-dependent manner. The knockdown effect decreases with increasing substrate stiffness, indicating impaired mechanosensing in CRB2 knockdown cells at low substrate stiffness. While the mechanical activation of CRB2 knockdown cells is associated with increased YAP activity, the enhanced cell contractility is not significantly reduced by the selective YAP inhibitors K-975 and verteporfin, suggesting that multiple pathways may be involved in mechanosignaling downstream of CRB2. Taken together, these studies provide the first evidence that CRB2 deficiency may impair podocyte mechanotransduction via disruption of YAP signaling in podocytes.
Collapse
Affiliation(s)
- Yingyu Sun
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Nils M. Kronenberg
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Sidharth K. Sethi
- Pediatric Nephrology and Pediatric Kidney Transplantation, Medanta Kidney and Urology Institute, The Medicity Hospital, Gurgaon, Haryana, India
| | - Surjya N. Dash
- Division of Nephrology, Department of Medicine, Duke University, Durham, North Carolina, U.S.A
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, U.S.A
| | - Maria E. Kovalik
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, U.S.A
| | - Benjamin Sempowski
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, U.S.A
| | - Shelby Strickland
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, U.S.A
| | - Rupresh Raina
- Division of Nephrology, Department of Medicine, Yale University, New Haven, Connecticut, U.S.A
- Cleveland Clinic Akron General Medical Center, Akron Nephrology Associates, Akron, Ohio, USA
| | - C. John Sperati
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, U.S.A
| | - Xuefei Tian
- Cleveland Clinic Akron General Medical Center, Akron Nephrology Associates, Akron, Ohio, USA
| | - Shuta Ishibe
- Cleveland Clinic Akron General Medical Center, Akron Nephrology Associates, Akron, Ohio, USA
| | - Gentzon Hall
- Division of Nephrology, Department of Medicine, Duke University, Durham, North Carolina, U.S.A
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, U.S.A
| | - Malte C. Gather
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of Cologne, Cologne, Germany
- Centre of Biophotonics, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, U.K
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Disease (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
5
|
Branch B, Yuan Y, Cascone M, Raimondi F, Iglesias-Bartolome R. An improved TEAD dominant-negative protein inhibitor to study Hippo YAP1/TAZ-dependent transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.03.615022. [PMID: 39502361 PMCID: PMC11537315 DOI: 10.1101/2024.10.03.615022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Hippo signaling is one of the top pathways altered in human cancer, and intensive focus has been devoted to developing therapies targeting Hippo-dependent transcription mediated by YAP1 and TAZ interaction with TEAD proteins. However, a significant challenge in evaluating the efficacy of these approaches is the lack of models that can precisely characterize the consequences of TEAD inhibition. To address this gap, our laboratory developed a strategy that utilizes a fluorescently traceable, dominant-negative protein named TEADi. TEADi specifically blocks the nuclear interactions of TEAD with YAP1 and TAZ, enabling precise dissection of Hippo TEAD-dependent and independent effects on cell fate. In this study, we aimed to enhance TEADi effectiveness by altering post-transcriptional modification sites within its TEAD-binding domains (TBDs). We demonstrate that a D93E mutation in the YAP1 TBD significantly increases TEADi inhibitory capacity. Additionally, we find that TBDs derived from VGLL4 and YAP1 are insufficient to block TAZ-induced TEAD activity, revealing crucial differences in YAP1 and TAZ displacement mechanisms by dominant-negative TBDs. Structural differences in YAP1 and TAZ TBDs were also identified, which may contribute to the distinct binding of these proteins to TEAD. Our findings expand our understanding of TEAD regulation and highlight the potential of an optimized TEADi as a more potent, specific, and versatile tool for studying TEAD-transcriptional activity.
Collapse
Affiliation(s)
- Briana Branch
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
- Department of Cellular, Molecular, Developmental Biology and Biophysics Graduate Program, Johns Hopkins University, Baltimore, Maryland, United States
| | - Yao Yuan
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | | | | | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
6
|
Martin E, Girardello R, Dittmar G, Ludwig A. Time-resolved proximity proteomics uncovers a membrane tension-sensitive caveolin-1 interactome at the rear of migrating cells. eLife 2024; 13:e85601. [PMID: 39315773 PMCID: PMC11509677 DOI: 10.7554/elife.85601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 09/23/2024] [Indexed: 09/25/2024] Open
Abstract
Caveolae are small membrane pits with fundamental roles in mechanotransduction. Several studies have shown that caveolae flatten out in response to increased membrane tension, thereby acting as a mechanosensitive membrane reservoir that buffers acute mechanical stress. Caveolae have also been implicated in the control of RhoA/ROCK-mediated actomyosin contractility at the rear of migrating cells. However, how membrane tension controls the organisation of caveolae and their role in mechanotransduction remains unclear. To address this, we systematically quantified protein-protein interactions of caveolin-1 in migrating RPE1 cells at steady state and in response to an acute increase in membrane tension using biotin-based proximity labelling and quantitative mass spectrometry. Our data show that caveolae are highly enriched at the rear of migrating RPE1 cells and that membrane tension rapidly and reversibly disrupts the caveolar protein coat. Membrane tension also detaches caveolin-1 from focal adhesion proteins and several mechanosensitive regulators of cortical actin including filamins and cortactin. In addition, we present evidence that ROCK and the RhoGAP ARHGAP29 associate with caveolin-1 in a manner dependent on membrane tension, with ARHGAP29 influencing caveolin-1 Y14 phosphorylation, caveolae rear localisation, and RPE1 cell migration. Taken together, our work uncovers a membrane tension-sensitive coupling between caveolae and the rear-localised F-actin cytoskeleton. This provides a framework for dissecting the molecular mechanisms underlying caveolae-regulated mechanotransduction pathways.
Collapse
Affiliation(s)
- Eleanor Martin
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- NTU Institute of Structural Biology (NISB), Nanyang Technological University, Singapore, Singapore
| | - Rossana Girardello
- Proteomics of Cellular Signaling, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Gunnar Dittmar
- Proteomics of Cellular Signaling, Luxembourg Institute of Health, Strassen, Luxembourg
- Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alexander Ludwig
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- NTU Institute of Structural Biology (NISB), Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
7
|
Shi Q, Lu Y, Du Y, Yang R, Guan Y, Yan R, Yu Y, Wang Z, Li C. GRP94 promotes anoikis resistance and peritoneal metastasis through YAP/TEAD1 pathway in gastric cancer. iScience 2024; 27:110638. [PMID: 39252968 PMCID: PMC11381759 DOI: 10.1016/j.isci.2024.110638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/30/2024] [Accepted: 07/30/2024] [Indexed: 09/11/2024] Open
Abstract
Anoikis resistance allows cancer cells to avoid death caused by detachment from the extracellular matrix's adhesion, enabling these cells to infiltrate and migrate to regions such as the peritoneum. This study emphasizes GRP94's involvement in anoikis resistance and peritoneal metastasis in gastric cancer (GC). It's found that GRP94 overexpression, linked to poor prognosis, was potentially due to SP1 and GRP94 promoter interactions, confirmed through dual luciferase reporter (DLR), chromatin immunoprecipitation (ChIP), and quantitative real-time PCR (real-time qPCR). Increased GRP94 enhanced GC cells' anoikis resistance and metastasis. Decreasing GRP94 had opposite effects, potentially through yes-associated protein (YAP)/TEAD1 axis inhibition, with raised YAP phosphorylation and decreased TEAD1 levels detected by western blotting (WB). Inhibiting YAP counteracted GRP94's effects on anoikis resistance and metastasis, while activating YAP reversed the effects of GRP94 reduction. Animal experiments verified GRP94's contribution to GC's peritoneal metastasis. In conclusion, our work highlights the effect of GRP94 on anoikis resistance, showing potential value in treating peritoneal metastasis of GC.
Collapse
Affiliation(s)
- Qimeng Shi
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Yang Lu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Yutong Du
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Ruixin Yang
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Yingxin Guan
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Ranlin Yan
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Yingyan Yu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Zhenqiang Wang
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Chen Li
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| |
Collapse
|
8
|
Li H, Fu Y, Xu Y, Miao H, Wang H, Zhang T, Mei X, He Y, Zhang A, Ge X. Cuproptosis associated cytoskeletal destruction contributes to podocyte injury in chronic kidney disease. Am J Physiol Cell Physiol 2024; 327:C254-C269. [PMID: 38798269 DOI: 10.1152/ajpcell.00497.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
The podocyte cytoskeleton determines the stability of podocyte structure and function, and their imbalance plays a pathogenic role in podocyte diseases. However, the underlying mechanism of podocyte cytoskeleton damage is not fully understood. Here, we investigate the specific role of cuproptosis in inducing podocyte cytoskeleton injury. In in vitro and in vivo studies, exposure to high levels of copper and adriamycin (ADR) caused significant increases in copper concentration in intracellular and renal tissue. Moreover, excessive accumulation of copper induced cuproptosis, resulting in the destruction of the podocyte cytoskeleton. However, inhibition of copper accumulation to reduce cuproptosis also significantly alleviated the damage of podocyte cytoskeleton. In addition, inhibition of cuproptosis mitigated ADR-induced mitochondrial damage as well as the production of reactive oxygen species and depolarization of mitochondrial membrane potential, and restored adenosine triphosphate (ATP) synthesis. Among the transcriptome sequencing data, the difference of CXCL5 (C-X-C motif chemokine ligand 5) was the most significant. Both high copper and ADR exposure can cause upregulation of CXCL5, and CXCL5 deletion inhibits the occurrence of cuproptosis, thereby alleviating the podocyte cytoskeleton damage. This suggests that CXCL5 may act upstream of cuproptosis that mediates podocyte cytoskeleton damage. In conclusion, cuproptosis induced by excessive copper accumulation may induce podocyte cytoskeleton damage by promoting mitochondrial dysfunction, thereby causing podocyte injury. This indicates that cuproptosis plays an important role in the pathogenesis of podocyte injury and provides a basis for seeking potential targets for the treatment of chronic kidney disease.NEW & NOTEWORTHY Cuproptosis induced by excessive copper accumulation leads to podocyte cytoskeleton damage by promoting mitochondrial dysfunction, and CXCL5 acts as an upstream signal mediating the occurrence of cuproptosis.
Collapse
Affiliation(s)
- Han Li
- Department of Emergency/Critical Medicine, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
- Jiangsu Key Laboratory of Children's Major Disease Research, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yingjie Fu
- Department of Emergency/Critical Medicine, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yue Xu
- Department of Emergency/Critical Medicine, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Hongjun Miao
- Department of Emergency/Critical Medicine, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Haonan Wang
- Department of Emergency/Critical Medicine, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Tongtong Zhang
- Department of Emergency/Critical Medicine, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Xuejian Mei
- Department of Emergency/Critical Medicine, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yinglang He
- Department of Emergency/Critical Medicine, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Aihua Zhang
- Department of Emergency/Critical Medicine, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Xuhua Ge
- Department of Emergency/Critical Medicine, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
- Jiangsu Key Laboratory of Children's Major Disease Research, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
9
|
Haydak J, Azeloglu EU. Role of biophysics and mechanobiology in podocyte physiology. Nat Rev Nephrol 2024; 20:371-385. [PMID: 38443711 DOI: 10.1038/s41581-024-00815-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 03/07/2024]
Abstract
Podocytes form the backbone of the glomerular filtration barrier and are exposed to various mechanical forces throughout the lifetime of an individual. The highly dynamic biomechanical environment of the glomerular capillaries greatly influences the cell biology of podocytes and their pathophysiology. Throughout the past two decades, a holistic picture of podocyte cell biology has emerged, highlighting mechanobiological signalling pathways, cytoskeletal dynamics and cellular adhesion as key determinants of biomechanical resilience in podocytes. This biomechanical resilience is essential for the physiological function of podocytes, including the formation and maintenance of the glomerular filtration barrier. Podocytes integrate diverse biomechanical stimuli from their environment and adapt their biophysical properties accordingly. However, perturbations in biomechanical cues or the underlying podocyte mechanobiology can lead to glomerular dysfunction with severe clinical consequences, including proteinuria and glomerulosclerosis. As our mechanistic understanding of podocyte mechanobiology and its role in the pathogenesis of glomerular disease increases, new targets for podocyte-specific therapeutics will emerge. Treating glomerular diseases by targeting podocyte mechanobiology might improve therapeutic precision and efficacy, with potential to reduce the burden of chronic kidney disease on individuals and health-care systems alike.
Collapse
Affiliation(s)
- Jonathan Haydak
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evren U Azeloglu
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|