1
|
Marszalek-Grabska M, Turska-Kozlowska M, Kaczorek-Lukowska E, Wicha-Komsta K, Turski WA, Siwicki AK, Gawel K. The Effects of Kynurenic Acid in Zebrafish Embryos and Adult Rainbow Trout. Biomolecules 2024; 14:1148. [PMID: 39334914 PMCID: PMC11429597 DOI: 10.3390/biom14091148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/16/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Kynurenic acid (KYNA) is a metabolite of tryptophan formed on the kynurenine pathway. Its pharmacological effects are relatively well characterized in mammals, whereas its role in fish is poorly understood. Therefore, the aim of the study was to expand the knowledge of KYNA's presence inside a fish's body and its impact on fish development and function. The study was performed on zebrafish larvae and adult rainbow trout. We provide evidence that KYNA is present in the embryo, larva and mature fish and that its distribution in organs varies considerably. A study of KYNA's effect on early larval development suggests that it can accelerate larval maturation, especially under conditions that are suboptimal for fish growth. Moreover, KYNA in concentrations over 1 mM caused morphological impairment and death of larvae. However, long-lasting exposure of larvae to subtoxic concentrations of KYNA does not affect the behavior of 5-day-old larvae kept under standard optimal conditions. We also show that ingestion of KYNA-supplemented feed can lead to KYNA accumulation, particularly in the pyloric caeca of mature trout. These results shed new light on the relevance of KYNA and provide new impulse for further research on the importance of the kynurenine pathway in fish.
Collapse
Affiliation(s)
- Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8B Str., 20-090 Lublin, Poland; (M.M.-G.); (K.W.-K.); (W.A.T.)
| | - Monika Turska-Kozlowska
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Konstantynow 1H, 20-708 Lublin, Poland;
| | - Edyta Kaczorek-Lukowska
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13 Str., 10-719 Olsztyn, Poland;
| | - Katarzyna Wicha-Komsta
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8B Str., 20-090 Lublin, Poland; (M.M.-G.); (K.W.-K.); (W.A.T.)
| | - Waldemar A. Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8B Str., 20-090 Lublin, Poland; (M.M.-G.); (K.W.-K.); (W.A.T.)
| | - Andrzej K. Siwicki
- Department of Ichiopathology and Fish Health Prevention, National Inland Fisheries Institute in Olsztyn, Oczapowskiego 10 Str., 10-917 Olsztyn, Poland;
| | - Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8B Str., 20-090 Lublin, Poland; (M.M.-G.); (K.W.-K.); (W.A.T.)
| |
Collapse
|
2
|
Pedraz-Petrozzi B, Lamadé EK, Marszalek-Grabska M, Trzpil A, Lindner O, Meininger P, Fornal E, Turski WA, Witt SH, Gilles M, Deuschle M. Fetal Sex as Moderating Factor for the Relationship Between Maternal Childhood Trauma and Salivary Kynurenic Acid and Tryptophan in Pregnancy: A Pilot Study. Int J Tryptophan Res 2024; 17:11786469241244603. [PMID: 38660592 PMCID: PMC11041113 DOI: 10.1177/11786469241244603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/17/2024] [Indexed: 04/26/2024] Open
Abstract
Traumatic experiences and fetal development influence tryptophan (TRP) and its neuroactive byproduct, kynurenic acid (KYNA). Maternal TRP metabolite levels during pregnancy vary by fetal sex, with higher concentrations in mothers carrying male fetuses. This pilot study aimed to explore the relationship between offspring sex, maternal childhood trauma, and maternal salivary KYNA and TRP levels during pregnancy. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine KYNA and TRP levels in maternal saliva samples collected from 35 late-pregnancy participants. Maternal childhood trauma was assessed using the Childhood Trauma Questionnaire, including subscales for emotional abuse, physical abuse, sexual abuse, emotional neglect, and physical neglect. Among mothers pregnant with boys, salivary KYNA significantly correlated with physical and emotional neglect, and salivary TRP with emotional neglect. No significant correlations were found in mothers who delivered female offspring. Significant associations of childhood trauma and offspring sex were found for salivary KYNA but not TRP concentrations. Mothers with higher trauma levels who delivered boys exhibited higher levels of salivary KYNA compared to those with lower trauma levels. Moreover, mothers with higher trauma levels who delivered boys had higher salivary KYNA levels than those with higher trauma levels who delivered girls. This pilot study provides evidence of an association between maternal childhood trauma and TRP metabolism, measured in saliva, especially in mothers pregnant with boys. However, longitudinal studies with larger sample sizes are required to confirm these results.
Collapse
Affiliation(s)
- Bruno Pedraz-Petrozzi
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Eva Kathrin Lamadé
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | | | - Alicja Trzpil
- Department of Bioanalytics, Medical University of Lublin, Poland
| | - Ole Lindner
- Center for Child and Adolescent Health, Pediatrics, University Hospital of Freiburg, Germany
| | - Pascal Meininger
- Department of Gynecology and Obstetrics, Westpfalz-Klinikum, Kaiserslautern, Germany
| | - Emilia Fornal
- Department of Bioanalytics, Medical University of Lublin, Poland
| | - Waldemar A Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Poland
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Maria Gilles
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Michael Deuschle
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| |
Collapse
|
3
|
Gawel K. A Review on the Role and Function of Cinnabarinic Acid, a "Forgotten" Metabolite of the Kynurenine Pathway. Cells 2024; 13:453. [PMID: 38474418 PMCID: PMC10930587 DOI: 10.3390/cells13050453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
In the human body, the majority of tryptophan is metabolized through the kynurenine pathway. This consists of several metabolites collectively called the kynurenines and includes, among others, kynurenic acid, L-kynurenine, or quinolinic acid. The wealth of metabolites, as well as the associated molecular targets and biological pathways, bring about a situation wherein even a slight imbalance in the kynurenine levels, both in the periphery and central nervous system, have broad consequences regarding general health. Cinnabarinic acid (CA) is the least known trace kynurenine, and its physiological and pathological roles are not widely understood. Some studies, however, indicate that it might be neuroprotective. Information on its hepatoprotective properties have also emerged, although these are pioneering studies and need to be replicated. Therefore, in this review, I aim to present and critically discuss the current knowledge on CA and its role in physiological and pathological settings to guide future studies.
Collapse
Affiliation(s)
- Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b Str., 20-090 Lublin, Poland
| |
Collapse
|