1
|
Goyal A, Afzal M, Goyal K, Ganesan S, Kumari M, Sunitha S, Dash A, Saini S, Rana M, Gupta G, Ali H, Wong LS, Kumarasamy V, Subramaniyan V. MSC-derived extracellular vesicles: Precision miRNA delivery for overcoming cancer therapy resistance. Regen Ther 2025; 29:303-318. [PMID: 40237010 PMCID: PMC11999318 DOI: 10.1016/j.reth.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/04/2025] [Accepted: 03/18/2025] [Indexed: 04/17/2025] Open
Abstract
Cancer remains a prominent worldwide health concern, presenting existing therapies with frequent difficulties, including major toxicity, limited effectiveness, and treatment resistance emergence. These issues highlight the necessity for novel and enhanced remedies. Exosomes, tiny extracellular vesicles that facilitate intercellular communication, have attracted interest for their potential medicinal applications. Carrying a variety of molecules, including microRNAs, small interfering RNAs, long non-coding RNAs, proteins, lipids, and DNA, these vesicles are positioned as promising cancer treatment options. Current studies have increasingly investigated the capacity of microRNAs as a strategic approach for combating malignancy. Mesenchymal stem cells (MSC) are recognized for their aptitude to augment blood vessel formation, safeguard against cellular death, and modulate immune responses. Consequently, researchers examine exosomes derived from MSCs as a safer, non-cellular choice over therapies employing MSCs, which risk undesirable differentiation. The focus is shifting towards employing miRNA-encapsulated exosomes sourced from MSCs to target and heal cancerous cells selectively. However, the exact functions of miRNAs within MSC-derived exosomes in the context of cancer are still not fully understood. Additional exploration is necessary to clarify the role of these miRNAs in malignancy progression and to pinpoint viable therapeutic targets. This review offers a comprehensive examination of exosomes derived from mesenchymal stem cells, focusing on the encapsulation of miRNAs, methods for enhancing cellular uptake and stability, and their potential applications in cancer treatment. It also addresses the difficulties linked to this methodology and considers future avenues, including insights from current clinical oncology research.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, 248002, Dehradun, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mukesh Kumari
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - S. Sunitha
- Department of CHEMISTRY, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Aniruddh Dash
- Department of Orthopaedics IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India
| | - Suman Saini
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
2
|
Liu J, Chen Y, Yang B, Zhao J, Tong Q, Yuan Y, Kang Y, Ren T. Association between alactic base excess on mortality in sepsis patients: a retrospective observational study. J Intensive Care 2025; 13:20. [PMID: 40217391 PMCID: PMC11987327 DOI: 10.1186/s40560-025-00789-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/23/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Sepsis is a life-threatening condition often associated with metabolic and acid-base imbalances. Alactic base excess (ABE) has emerged as a novel biomarker to assess metabolic disturbances in critically ill sepsis patients, but its prognostic value remains underexplored. We aimed to investigate the relationship between ABE and 30-day/90-day ICU all-cause mortality in a large sepsis cohort in the intensive care unit (ICU) setting. METHODS This study utilised data from a large US ICU sepsis cohort. ABE was calculated as the sum of lactate and base excess (BE) values from the first day of ICU admission. Patients were divided into quartiles based on ABE values. Kaplan-Meier survival analysis, Cox proportional hazards models, and restricted cubic spline analyses were used to examine the associations between ABE and mortality outcomes. The predictive performance of ABE combined with the SOFA score was assessed using the area under the curve, Net Reclassification Improvement, and Integrated Discrimination Improvement. RESULTS 17,099 patients with sepsis were included in this analysis, with median (IQR) age of 67.82 (56.80, 78.04) years and 59.7% males. Our analysis revealed a U-shaped association between ABE and 30-day and 90-day ICU all-cause mortality. Both the lowest (Q1) and highest (Q4) quartiles of ABE were linked to increased mortality risks, with 30-day mortality showing HRs of 1.27 (95% CI 1.13-1.44) for Q1 and 1.17 (95% CI 1.06-1.31) for Q4, while 90-day mortality showed HRs of 1.28 (95% CI 1.16-1.44) for Q1, 1.12 (95% CI 1.02-1.23) for Q2, and 1.22 (95% CI 1.11-1.34) for Q4. ABE demonstrated superior predictive performance for mortality compared to BE and lactate. Incorporating ABE into the SOFA score improved predictive performance, emphasizing ABE's value in better risk stratification. The identified thresholds (2.5 mmol/L for 30-day mortality and 2.2 mmol/L for 90-day mortality) indicate optimal ABE levels that may be associated with improved survival outcomes. CONCLUSIONS ABE demonstrated a U-shaped association with 30-day and 90-day ICU all-cause mortality in critically ill sepsis patients, suggesting its superiority over BE and lactate as a predictive biomarker. Incorporating ABE with the SOFA score may further enhance prognostic predictions. Further studies are needed to determine whether ABE should serve solely as a biomarker for monitoring the clinical course or could also be considered a potential therapeutic target.
Collapse
Affiliation(s)
- Jiahui Liu
- Department of Pharmacy, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, 110000, Liaoning Province, People's Republic of China
| | - Yang Chen
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, Liverpool, UK
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Bin Yang
- Department of Pharmacy, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, 110000, Liaoning Province, People's Republic of China
| | - Jiabao Zhao
- The Second Affiliated Hospital of Shenyang Medical College, Heping District, Shenyang, People's Republic of China
| | - Qiang Tong
- Department of Pharmacy, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, 110000, Liaoning Province, People's Republic of China
| | - Yuan Yuan
- Department of Pharmacy, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, 110000, Liaoning Province, People's Republic of China
| | - Ye Kang
- Department of Pharmacy, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, 110000, Liaoning Province, People's Republic of China
| | - Tianshu Ren
- Department of Pharmacy, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, 110000, Liaoning Province, People's Republic of China.
| |
Collapse
|
3
|
da Silva MMA, Rocco PRM, Cruz FF. Challenges and limitations of mesenchymal stem cell therapy for lung diseases in clinical trials. Expert Opin Emerg Drugs 2025:1-4. [PMID: 40186620 DOI: 10.1080/14728214.2025.2489700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Affiliation(s)
- Mayck Medeiros Amaral da Silva
- Laboratory of Pulmonary Investigation, Carlos ChagasFilho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos ChagasFilho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE, Rio de Janeiro, Brazil
| | - Fernanda Ferreira Cruz
- Laboratory of Pulmonary Investigation, Carlos ChagasFilho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Zubair M, Abouelnazar FA, Iqbal MA, Pan J, Zheng X, Chen T, Shen W, Yin J, Yan Y, Liu P, Mao F, Chu Y. Mesenchymal stem cell-derived exosomes as a plausible immunomodulatory therapeutic tool for inflammatory diseases. Front Cell Dev Biol 2025; 13:1563427. [PMID: 40129569 PMCID: PMC11931156 DOI: 10.3389/fcell.2025.1563427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs), especially, exosomes are considered to have diverse therapeutic effects for various significant diseases. MSC-derived exosomes (MSCex) offer substantial advantages over MSCs due to their long-term preservation, stability, absence of nuclei and fewer adverse effects such as infusion toxicity, thereby paving the way towards regenerative medicine and cell-free therapeutics. These exosomes harbor several cellular contents such as DNA, RNA, lipids, metabolites, and proteins, facilitating drug delivery and intercellular communication. MSCex have the ability to immunomodulate and trigger the anti-inflammatory process hence, playing a key role in alleviating inflammation and enhancing tissue regeneration. In this review, we addressed the anti-inflammatory effects of MSCex and the underlying immunomodulatory pathways. Moreover, we discussed the recent updates on MSCex in treating specific inflammatory diseases, including arthritis, inflammatory bowel disease, inflammatory eye diseases, and respiratory diseases such as asthma and acute respiratory distress syndrome (ARDS), as well as neurodegenerative and cardiac diseases. Finally, we highlighted the challenges in using MSCex as the successful therapeutic tool and discussed future perspectives.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Fatma A. Abouelnazar
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Faculty of Applied Health Sciences Technology, Pharos University, Alexandria, Egypt
| | | | - Jingyun Pan
- Department of Traditional Chinese Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Xuwen Zheng
- Department of Emergency, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Tao Chen
- Department of Gastroenterology, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Wenming Shen
- Department of Emergency, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Jinnan Yin
- Department of Emergency, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Yongmin Yan
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Pengjun Liu
- Department of Gastroenterology, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ying Chu
- Wujin Clinical College, Xuzhou Medical University, Changzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
5
|
Balaraman AK, Arockia Babu M, Afzal M, Sanghvi G, M M R, Gupta S, Rana M, Ali H, Goyal K, Subramaniyan V, Wong LS, Kumarasamy V. Exosome-based miRNA delivery: Transforming cancer treatment with mesenchymal stem cells. Regen Ther 2025; 28:558-572. [PMID: 40034540 PMCID: PMC11872554 DOI: 10.1016/j.reth.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/14/2025] [Accepted: 01/25/2025] [Indexed: 03/05/2025] Open
Abstract
Recently, increasing interest has been in utilizing mesenchymal stem cell-derived extracellular vesicles (MSC-EVs), especially exosomes, as nanocarriers for miRNA delivery in cancer treatment. Due to such characteristics, nanocarriers are specific: biocompatible, low immunogenicity, and capable of spontaneous tumor accumulation. MSC-EVs were loaded with therapeutic miRNAs and minimized their susceptibility to degradation by protecting the miRNA from accessibility to degrading enzymes and providing targeted delivery of the miRNAs to the tumor cells to modulate oncogenic pathways. In vitro and in vivo experiments suggest that MSC-EVs loaded with miRNAs may inhibit tumor growth, prevent metastasis, and increase the effectiveness of chemotherapy and radiotherapy. However, these improvements present difficulties such as isolation, scalability, and stability of delivered miRNA during storage. Furthermore, the issues related to off-target effects, as well as immunogenicity, can be a focus. The mechanisms of miRNA loading into MSC-EVs, as well as their targeting efficiency and therapeutic potential, can be outlined in this manuscript. For the final part of the manuscript, the current advances in MSC-EV engineering and potential strategies for clinical application have been described. The findings of MSC-EVs imply that they present MSC-EVs as a second-generation tool for precise oncology.
Collapse
Affiliation(s)
- Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya, Selangor, 63000, Malaysia
| | - M. Arockia Babu
- Institute of Pharmaceutical Research, GLA UNIVERSITY, Mathura, UP, 281406, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia
| | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Rekha M M
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Sofia Gupta
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, 248002, Dehradun, India
| | - Vetriselvan Subramaniyan
- Division of Pharmacology, School of Medical and Life Sciences, Sunway University Jalan Universiti, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| | - Vinoth Kumarasamy
- Department of Parasitology, Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Song Y, Liang F, Tian W, Rayhill E, Ye L, Tian X. Optimizing therapeutic outcomes: preconditioning strategies for MSC-derived extracellular vesicles. Front Pharmacol 2025; 16:1509418. [PMID: 39995418 PMCID: PMC11847897 DOI: 10.3389/fphar.2025.1509418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/23/2025] [Indexed: 02/26/2025] Open
Abstract
Mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (MSC-EVs) are increasingly recognized for their therapeutic potential in regenerative medicine, driven by their capabilities in immunomodulation and tissue repair. However, MSCs present risks such as immunogenic responses, malignant transformation, and the potential to transmit infectious pathogens due to their intrinsic proliferative and differentiative abilities. In contrast, MSC-EVs, particularly exosomes (MSC-exosomes, 30-150 nm in diameter), offer a safer therapeutic profile. These acellular vesicles mitigate risks associated with immune rejection and tumorigenesis and are inherently incapable of forming ectopic tissues, thereby enhancing their clinical safety and applicability. This review highlights the therapeutic promise of MSC-exosomes especially focusing on the modulation of miRNA (one of bioactive molecules in MSC-EVs) profiles through various preconditioning strategies such as exposure to hypoxia, chemotherapeutic agents, inflammatory cytokines, and physical stimuli. Such conditioning is shown to optimize their therapeutic potential. Key miRNAs including miR-21, miR-146, miR-125a, miR-126, and miR-181a are particularly noted for their roles in facilitating tissue repair and modulating inflammatory responses. These functionalities position MSC-exosomes as a valuable tool in personalized medicine, particularly in the case of exosome-based interventions. Despite the potential of MSC-EVs, this review also acknowledged the limitations of traditional MSC therapies and advocates for a strategic pivot towards exosome-based modalities to enhance therapeutic outcomes. By discussing recent advances in detail and identifying remaining pitfalls, this review aims to guide future directions in improving the efficacy of MSC-exosome-based therapeutics. Additionally, miRNA variability in MSC-EVs presents challenges due to the diverse roles of miRNAs play in regulating gene expression and cell behavior. The miRNA content of MSC-EVs can be influenced by preconditioning strategies and differences in isolation and purification methods, which may alter the expression profiles of specific miRNAs, contributing to differences in their therapeutic effects.
Collapse
Affiliation(s)
- Yuqi Song
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Fengrui Liang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Weikun Tian
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Erin Rayhill
- Biology Department, Hamilton College, Clinton, NY, United States
| | - Liping Ye
- Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Xinghan Tian
- Yantai Yuhuangding Hospital, Yantai, Shandong, China
| |
Collapse
|
7
|
Lv K, Liang Q. Macrophages in sepsis-induced acute lung injury: exosomal modulation and therapeutic potential. Front Immunol 2025; 15:1518008. [PMID: 39840035 PMCID: PMC11746006 DOI: 10.3389/fimmu.2024.1518008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Sepsis-induced acute lung injury (ALI) remains a leading cause of mortality in critically ill patients. Macrophages, key modulators of immune responses, play a dual role in both promoting and resolving inflammation. Exosomes, small extracellular vesicles released by various cells, carry bioactive molecules that influence macrophage polarization and immune responses. Emerging researchers have identified exosomes as crucial mediators that modulate macrophage activity during sepsis-induced ALI. This review explores the role of exosomes in modulating macrophage functions, focusing on the cellular interactions within the lung microenvironment and their potential as therapeutic targets. It highlights the regulation of macrophages by exosomes derived from pathogenic germs, neutrophils, alveolar epithelial cells, and mesenchymal stromal cells. By understanding these mechanisms, it aims to uncover innovative therapeutic strategies for sepsis-induced ALI.
Collapse
Affiliation(s)
- Kaiying Lv
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qun Liang
- Department of Critical Care Medicine, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
8
|
Zhao DZ, Yang RL, Wei HX, Yang K, Yang YB, Wang NX, Zhang Q, Chen F, Zhang T. Advances in the research of immunomodulatory mechanism of mesenchymal stromal/stem cells on periodontal tissue regeneration. Front Immunol 2025; 15:1449411. [PMID: 39830512 PMCID: PMC11739081 DOI: 10.3389/fimmu.2024.1449411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
Periodontal disease is a highly prevalent disease worldwide that seriously affects people's oral health, including gingivitis and periodontitis. Although the current treatment of periodontal disease can achieve good control of inflammation, it is difficult to regenerate the periodontal supporting tissues to achieve a satisfactory therapeutic effect. In recent years, due to the good tissue regeneration ability, the research on Mesenchymal stromal/stem cells (MSCs) and MSC-derived exosomes has been gradually deepened, especially its ability to interact with the microenvironment of the body in the complex immunoregulatory network, which has led to many new perspectives on the therapeutic strategies for many diseases. This paper systematically reviews the immunomodulatory (including bone immunomodulation) properties of MSCs and their role in the periodontal inflammatory microenvironment, summarizes the pathways and mechanisms by which MSCs and MSC-EVs have promoted periodontal regeneration in recent years, lists potential areas for future research, and describes the issues that should be considered in future basic research and the direction of development of "cell-free therapies" for periodontal regeneration.
Collapse
Affiliation(s)
- De-Zhi Zhao
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Rui-Lin Yang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Han-Xiao Wei
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Kang Yang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yi-Bing Yang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Nuo-Xin Wang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qian Zhang
- Department of Human Anatomy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Fang Chen
- Department of Prosthetics, Affiliated Stomatology Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
9
|
Al-Ward H, Chen W, Gao W, Zhang C, Yang X, Xiong Y, Wang X, Agila R, Xu H, Sun YE. Can miRNAs in MSCs-EVs Offer a Potential Treatment for Hypoxic-ischemic Encephalopathy? Stem Cell Rev Rep 2025; 21:236-253. [PMID: 39503828 DOI: 10.1007/s12015-024-10803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 01/26/2025]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a critical condition resulting from impaired oxygen and blood flow to the brain during birth, leading to neuroinflammation, neuronal apoptosis, and long-term neurological deficits. Despite the use of therapeutic hypothermia, current treatments remain inadequate in fully preventing brain damage. Recent advances in mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) offer a novel, cell-free therapeutic approach, as these EVs can cross the blood-brain barrier (BBB) and deliver functional microRNAs (miRNAs) to modulate key pathways involved in inflammation and neuroprotection. This review examines how specific miRNAs encapsulated in MSC-EVs-including miR-21, miR-124, miR-146, and the miR-17-92 cluster-target the complex inflammatory responses that drive HIE pathology. By modulating pathways such as NF-κB, STAT3, and PI3K/Akt, these miRNAs influence neuroinflammatory processes, reduce neuronal apoptosis, and promote tissue repair. The aim is to assess the therapeutic potential of miRNA-loaded MSC-EVs in mitigating inflammation and neuronal damage, thus addressing the limitations of current therapies like therapeutic hypothermia.
Collapse
Affiliation(s)
- Hisham Al-Ward
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenxia Gao
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunxue Zhang
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xueyan Yang
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yao Xiong
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinyi Wang
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rafeq Agila
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Hui Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
10
|
Dunbar H, Hawthorne IJ, Tunstead C, Dunlop M, Volkova E, Weiss DJ, dos Santos CC, Armstrong ME, Donnelly SC, English K. The VEGF-Mediated Cytoprotective Ability of MIF-Licensed Mesenchymal Stromal Cells in House Dust Mite-Induced Epithelial Damage. Eur J Immunol 2025; 55:e202451205. [PMID: 39502000 PMCID: PMC11739667 DOI: 10.1002/eji.202451205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 01/06/2025]
Abstract
Enhancing mesenchymal stromal cell (MSC) therapeutic efficacy through licensing with proinflammatory cytokines is now well established. We have previously shown that macrophage migration inhibitory factor (MIF)-licensed MSCs exerted significantly enhanced therapeutic efficacy in reducing inflammation in house dust mite (HDM)-driven allergic asthma. Soluble mediators released into the MSC secretome boast cytoprotective properties equal to those associated with the cell itself. In asthma, epithelial barrier damage caused by the inhalation of allergens like HDM drives goblet cell hyperplasia. Vascular endothelial growth factor (VEGF) plays a pivotal role in the repair and maintenance of airway epithelial integrity. Human bone marrow-derived MSCs expressed the MIF receptors CD74, CXCR2, and CXCR4. Endogenous MIF from high MIF expressing CATT7 bone marrow-derived macrophages increased MSC production of VEGF through the MIF CXCR4 chemokine receptor, where preincubation with CXCR4 inhibitor mitigated this effect. CATT7-MIF licensed MSC conditioned media containing increased levels of VEGF significantly enhanced bronchial epithelial wound healing via migration and proliferation in vitro. Blocking VEGFR2 or the use of mitomycin C abrogated this effect. Furthermore, CATT7-MIF MSC CM significantly decreased goblet cell hyperplasia after the HDM challenge in vivo. This was confirmed to be VEGF-dependent, as the use of anti-human VEGF neutralising antibody abrogated this effect. Overall, this study highlights that MIF-licenced MSCs show enhanced production of VEGF, which has the capacity to repair the lung epithelium.
Collapse
Affiliation(s)
- Hazel Dunbar
- Kathleen Lonsdale Institute for Human Health ResearchMaynooth UniversityMaynooth, Co. KildareIreland
- Department of BiologyMaynooth UniversityMaynooth, Co. KildareIreland
| | - Ian J. Hawthorne
- Kathleen Lonsdale Institute for Human Health ResearchMaynooth UniversityMaynooth, Co. KildareIreland
- Department of BiologyMaynooth UniversityMaynooth, Co. KildareIreland
| | - Courteney Tunstead
- Kathleen Lonsdale Institute for Human Health ResearchMaynooth UniversityMaynooth, Co. KildareIreland
- Department of BiologyMaynooth UniversityMaynooth, Co. KildareIreland
| | - Molly Dunlop
- Kathleen Lonsdale Institute for Human Health ResearchMaynooth UniversityMaynooth, Co. KildareIreland
- Department of BiologyMaynooth UniversityMaynooth, Co. KildareIreland
| | - Evelina Volkova
- Kathleen Lonsdale Institute for Human Health ResearchMaynooth UniversityMaynooth, Co. KildareIreland
- Department of BiologyMaynooth UniversityMaynooth, Co. KildareIreland
| | - Daniel J. Weiss
- Department of Medicine, 226 Health Sciences Research Facility, Larner College of MedicineUniversity of VermontBurlingtonVermontUSA
| | - Claudia C. dos Santos
- The Keenan Research Centre for Biomedical Science of St. Michael's HospitalTorontoOntarioCanada
- Institute of Medical Sciences and Interdepartmental Division of Critical CareFaculty of MedicineUniversity of TorontoTorontoOntarioCanada
| | | | - Seamas C. Donnelly
- Department of MedicineTrinity College Dublin and Tallaght HospitalDublinIreland
| | - Karen English
- Kathleen Lonsdale Institute for Human Health ResearchMaynooth UniversityMaynooth, Co. KildareIreland
- Department of BiologyMaynooth UniversityMaynooth, Co. KildareIreland
| |
Collapse
|
11
|
Mendes RDS, Silva PL, Robba C, Battaglini D, Lopes-Pacheco M, Caruso-Neves C, Rocco PRM. Advancements in understanding the mechanisms of lung-kidney crosstalk. Intensive Care Med Exp 2024; 12:81. [PMID: 39298036 DOI: 10.1186/s40635-024-00672-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024] Open
Abstract
This narrative review delves into the intricate interplay between the lungs and the kidneys, with a focus on elucidating the pathogenesis of diseases influenced by immunological factors, acid-base regulation, and blood gas disturbances, as well as assessing the effects of various therapeutic modalities on these interactions. Key disorders, such as anti-glomerular basement membrane (anti-GBM) disease, the syndrome of inappropriate antidiuretic hormone secretion (SIADH), and Anti-neutrophil Cytoplasmic Antibodies (ANCA) associated vasculitis (AAV), are also examined to shed light on their underlying mechanisms. This review also explores the relationship between acute respiratory distress syndrome (ARDS) and acute kidney injury (AKI), emphasizing how inflammatory mediators can lead to systemic damage and impact multiple organs. In ARDS, fluid overload exacerbates pulmonary edema, while imbalances in blood volume, such as hypovolemia or hypervolemia, can precipitate renal dysfunction. The review highlights how mechanical ventilation strategies can compromise renal blood flow, trigger systemic inflammation, and induce hemodynamic and neurohormonal alterations, all contributing to lung and kidney damage. The impact of extracorporeal membrane oxygenation (ECMO) on lung-kidney interactions is evaluated, highlighting its role in severe respiratory failure and its renal implications. Emerging therapies, such as mesenchymal stem cells and extracellular vesicles, are discussed as promising avenues to mitigate organ damage and enhance outcomes in critically ill patients. Overall, this review offers a nuanced exploration of lung-kidney dynamics, bridging historical insights with contemporary perspectives. It underscores the clinical significance of these interactions in critically ill patients and advocates for integrated management approaches to optimize patient outcomes.
Collapse
Affiliation(s)
- Renata de Souza Mendes
- Department of Nephrology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Nephrology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Chiara Robba
- IRCCS Policlinico San Martino, Genoa, Italy
- Dipertimento di Scienze Chirurgiche Diagnostiche e Integrate, Policlinico San Martino, IRCCS Per l'Oncologia e Neuroscienze, Università degli Studi di Genova, Genoa, Italy
| | - Denise Battaglini
- IRCCS Policlinico San Martino, Genoa, Italy
- Dipertimento di Scienze Chirurgiche Diagnostiche e Integrate, Policlinico San Martino, IRCCS Per l'Oncologia e Neuroscienze, Università degli Studi di Genova, Genoa, Italy
| | - Miquéias Lopes-Pacheco
- Department of Pediatrics, Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, USA
| | - Celso Caruso-Neves
- Laboratory of Biochemistry and Cellular Biology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
12
|
Lv J, Xiong X. Extracellular Vesicle microRNA: A Promising Biomarker and Therapeutic Target for Respiratory Diseases. Int J Mol Sci 2024; 25:9147. [PMID: 39273095 PMCID: PMC11395461 DOI: 10.3390/ijms25179147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Respiratory diseases, including chronic obstructive pulmonary disease (COPD), asthma, lung cancer, and coronavirus pneumonia, present a major global health challenge. Current diagnostic and therapeutic options for these diseases are limited, necessitating the urgent development of novel biomarkers and therapeutic strategies. In recent years, microRNAs (miRNAs) within extracellular vesicles (EVs) have received considerable attention due to their crucial role in intercellular communication and disease progression. EVs are membrane-bound structures released by cells into the extracellular environment, encapsulating a variety of biomolecules such as DNA, RNA, lipids, and proteins. Specifically, miRNAs within EVs, known as EV-miRNAs, facilitate intercellular communication by regulating gene expression. The expression levels of these miRNAs can reflect distinct disease states and significantly influence immune cell function, chronic airway inflammation, airway remodeling, cell proliferation, angiogenesis, epithelial-mesenchymal transition, and other pathological processes. Consequently, EV-miRNAs have a profound impact on the onset, progression, and therapeutic responses of respiratory diseases, with great potential for disease management. Synthesizing the current understanding of EV-miRNAs in respiratory diseases such as COPD, asthma, lung cancer, and novel coronavirus pneumonia, this review aims to explore the potential of EV-miRNAs as biomarkers and therapeutic targets and examine their prospects in the diagnosis and treatment of these respiratory diseases.
Collapse
Affiliation(s)
- Jiaxi Lv
- Department of Pulmonary and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Xianzhi Xiong
- Department of Pulmonary and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| |
Collapse
|
13
|
Schaubmayr W, Hackl M, Pultar M, Ghanim BD, Klein KU, Schmid JA, Mohr T, Tretter V. Candidate Signature miRNAs from Secreted miRNAome of Human Lung Microvascular Endothelial Cells in Response to Different Oxygen Conditions: A Pilot Study. Int J Mol Sci 2024; 25:8798. [PMID: 39201485 PMCID: PMC11354369 DOI: 10.3390/ijms25168798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Oxygen conditions in the lung determine downstream organ functionality by setting the partial pressure of oxygen, regulating the redox homeostasis and by activating mediators in the lung that can be propagated in the blood stream. Examples for such mediators are secreted soluble or vesicle-bound molecules (proteins and nucleic acids) that can be taken up by remote target cells impacting their metabolism and signaling pathways. MicroRNAs (miRNAs) have gained significant interest as intercellular communicators, biomarkers and therapeutic targets in this context. Due to their high stability in the blood stream, they have also been attributed a role as "memory molecules" that are able to modulate gene expression upon repeated (stress) exposures. In this study, we aimed to identify and quantify released miRNAs from lung microvascular endothelial cells in response to different oxygen conditions. We combined next-generation sequencing (NGS) of secreted miRNAs and cellular mRNA sequencing with bioinformatic analyses in order to delineate molecular events on the cellular and extracellular level and their putative interdependence. We show that the identified miRNA networks have the potential to co-mediate some of the molecular events, that have been observed in the context of hypoxia, hyperoxia, intermittent hypoxia and intermittent hypoxia/hyperoxia.
Collapse
Affiliation(s)
- Wolfgang Schaubmayr
- Department of Anesthesia, General Intensive Care and Pain Management, Medical University of Vienna, 1090 Vienna, Austria; (W.S.)
| | | | | | - Bahil D. Ghanim
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Klaus U. Klein
- Department of Anesthesia, General Intensive Care and Pain Management, Medical University of Vienna, 1090 Vienna, Austria; (W.S.)
| | - Johannes A. Schmid
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria;
| | - Thomas Mohr
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria;
| | - Verena Tretter
- Department of Anesthesia, General Intensive Care and Pain Management, Medical University of Vienna, 1090 Vienna, Austria; (W.S.)
| |
Collapse
|
14
|
Xiao Y, Yuan Y, Hu D, Wang H. Exosome-Derived microRNA: Potential Target for Diagnosis and Treatment of Sepsis. J Immunol Res 2024; 2024:4481452. [PMID: 39104595 PMCID: PMC11300089 DOI: 10.1155/2024/4481452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/23/2024] [Accepted: 07/06/2024] [Indexed: 08/07/2024] Open
Abstract
Exosome-derived microRNAs (miRNAs) are emerging as pivotal players in the pathophysiology of sepsis, representing a new frontier in both the diagnosis and treatment of this complex condition. Sepsis, a severe systemic response to infection, involves intricate immune and nonimmune mechanisms, where exosome-mediated communication can significantly influence disease progression and outcomes. During the progress of sepsis, the miRNA profile of exosomes undergoes notable alterations, is reflecting, and may affect the progression of the disease. This review comprehensively explores the biology of exosome-derived miRNAs, which originate from both immune cells (such as macrophages and dendritic cells) and nonimmune cells (such as endothelial and epithelial cells) and play a dynamic role in modulating pathways that affect the course of sepsis, including those related to inflammation, immune response, cell survival, and apoptosis. Taking into account these dynamic changes, we further discuss the potential of exosome-derived miRNAs as biomarkers for the early detection and prognosis of sepsis and advantages over traditional biomarkers due to their stability and specificity. Furthermore, this review evaluates exosome-based therapeutic miRNA delivery systems in sepsis, which may pave the way for targeted modulation of the septic response and personalized treatment options.
Collapse
Affiliation(s)
- Yujie Xiao
- Department of Burns and Cutaneous SurgeryXijing HospitalFourth Military Medical University, 127 West Chang-le Road, Xi'an 710032, Shaanxi, China
| | - Yixuan Yuan
- Department of Burns and Cutaneous SurgeryXijing HospitalFourth Military Medical University, 127 West Chang-le Road, Xi'an 710032, Shaanxi, China
| | - Dahai Hu
- Department of Burns and Cutaneous SurgeryXijing HospitalFourth Military Medical University, 127 West Chang-le Road, Xi'an 710032, Shaanxi, China
| | - Hongtao Wang
- Department of Burns and Cutaneous SurgeryXijing HospitalFourth Military Medical University, 127 West Chang-le Road, Xi'an 710032, Shaanxi, China
| |
Collapse
|
15
|
Dunbar H, Hawthorne IJ, English K. Carbon monoxide licensing of MSCs enhances their efficacy through autophagy-mediated miRNA mechanisms. Mol Ther 2024; 32:2047-2049. [PMID: 38906151 PMCID: PMC11286800 DOI: 10.1016/j.ymthe.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024] Open
Affiliation(s)
- Hazel Dunbar
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Ian J Hawthorne
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Karen English
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
16
|
Battaglini D, Iavarone IG, Rocco PRM. An update on the pharmacological management of acute respiratory distress syndrome. Expert Opin Pharmacother 2024; 25:1229-1247. [PMID: 38940703 DOI: 10.1080/14656566.2024.2374461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024]
Abstract
INTRODUCTION Acute respiratory distress syndrome (ARDS) is characterized by acute inflammatory injury to the lungs, alterations in vascular permeability, loss of aerated tissue, bilateral infiltrates, and refractory hypoxemia. ARDS is considered a heterogeneous syndrome, which complicates the search for effective therapies. The goal of this review is to provide an update on the pharmacological management of ARDS. AREAS COVERED The difficulties in finding effective pharmacological therapies are mainly due to the challenges in designing clinical trials for this unique, varied population of critically ill patients. Recently, some trials have been retrospectively analyzed by dividing patients into hyper-inflammatory and hypo-inflammatory sub-phenotypes. This approach has led to significant outcome improvements with some pharmacological treatments that previously failed to demonstrate efficacy, which suggests that a more precise selection of ARDS patients for clinical trials could be the key to identifying effective pharmacotherapies. This review is provided after searching the main studies on this topics on the PubMed and clinicaltrials.gov databases. EXPERT OPINION The future of ARDS therapy lies in precision medicine, innovative approaches to drug delivery, immunomodulation, cell-based therapies, and robust clinical trial designs. These should lead to more effective and personalized treatments for patients with ARDS.
Collapse
Affiliation(s)
- Denise Battaglini
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico, Genova, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Genova, Italy
| | - Ida Giorgia Iavarone
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico, Genova, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Genova, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Paes Leme AF, Yokoo S, Normando AGC, Ormonde JVS, Domingues RR, Cruz FF, Silva PL, Souza BSF, Dos Santos CC, Castro-Faria-Neto H, Martins CM, Lopes-Pacheco M, Rocco PRM. Proteomics of serum-derived extracellular vesicles are associated with the severity and different clinical profiles of patients with COVID-19: An exploratory secondary analysis. Cytotherapy 2024; 26:444-455. [PMID: 38363248 DOI: 10.1016/j.jcyt.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND AIMS Coronavirus disease 2019 (COVID-19) is characterized by a broad spectrum of clinical manifestations with the potential to progress to multiple organ dysfunction in severe cases. Extracellular vesicles (EVs) carry a range of biological cargoes, which may be used as biomarkers of disease state. METHODS An exploratory secondary analysis of the SARITA-2 and SARITA-1 datasets (randomized clinical trials on patients with mild and moderate/severe COVID-19) was performed. Serum-derived EVs were used for proteomic analysis to identify enriched biological processes and key proteins, thus providing insights into differences in disease severity. Serum-derived EVs were separated from patients with COVID-19 by size exclusion chromatography and nanoparticle tracking analysis was used to determine particle concentration and diameter. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was performed to identify and quantify protein signatures. Bioinformatics and multivariate statistical analysis were applied to distinguish candidate proteins associated with disease severity (mild versus moderate/severe COVID-19). RESULTS No differences were observed in terms of the concentration and diameter of enriched EVs between mild (n = 14) and moderate/severe (n = 30) COVID-19. A total of 414 proteins were found to be present in EVs, of which 360 were shared while 48 were uniquely present in severe/moderate compared to mild COVID-19. The main biological signatures in moderate/severe COVID-19 were associated with platelet degranulation, exocytosis, complement activation, immune effector activation, and humoral immune response. Von Willebrand factor, serum amyloid A-2 protein, histone H4 and H2A type 2-C, and fibrinogen β-chain were the most differentially expressed proteins between severity groups. CONCLUSION Exploratory proteomic analysis of serum-derived EVs from patients with COVID-19 detected key proteins related to immune response and activation of coagulation and complement pathways, which are associated with disease severity. Our data suggest that EV proteins may be relevant biomarkers of disease state and prognosis.
Collapse
Affiliation(s)
- Adriana F Paes Leme
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, São Paulo, Brazil
| | - Sami Yokoo
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, São Paulo, Brazil
| | - Ana Gabriela C Normando
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, São Paulo, Brazil
| | - João Vitor S Ormonde
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, São Paulo, Brazil
| | - Romenia Ramos Domingues
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, São Paulo, Brazil
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSaúde, Research Support Foundation of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSaúde, Research Support Foundation of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno S F Souza
- Goncalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil; D'Or Institute for Research and Education (IDOR), Salvador, Bahia, Brazil; Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Bahia, Brazil
| | - Claudia C Dos Santos
- The Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada; Institute of Medical Sciences and Interdepartmental Division of Critical Care, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Miquéias Lopes-Pacheco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSaúde, Research Support Foundation of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
18
|
El Safadi D, Mokhtari A, Krejbich M, Lagrave A, Hirigoyen U, Lebeau G, Viranaicken W, Krejbich-Trotot P. Exosome-Mediated Antigen Delivery: Unveiling Novel Strategies in Viral Infection Control and Vaccine Design. Vaccines (Basel) 2024; 12:280. [PMID: 38543914 PMCID: PMC10974137 DOI: 10.3390/vaccines12030280] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 01/03/2025] Open
Abstract
Exosomes are small subtypes of extracellular vesicles (EVs) naturally released by different types of cells into their environment. Their physiological roles appear to be multiple, yet many aspects of their biological activities remain to be understood. These vesicles can transport and deliver a variety of cargoes and may serve as unconventional secretory vesicles. Thus, they play a crucial role as important vectors for intercellular communication and the maintenance of homeostasis. Exosome production and content can vary under several stresses or modifications in the cell microenvironment, influencing cellular responses and stimulating immunity. During infectious processes, exosomes are described as double-edged swords, displaying both beneficial and detrimental effects. Owing to their tractability, the analysis of EVs from multiple biofluids has become a booming tool for monitoring various pathologies, from infectious to cancerous origins. In this review, we present an overview of exosome features and discuss their particular and ambiguous functions in infectious contexts. We then focus on their properties as diagnostic or therapeutic tools. In this regard, we explore the capacity of exosomes to vectorize immunogenic viral antigens and their function in mounting adaptive immune responses. As exosomes provide interesting platforms for antigen presentation, we further review the available data on exosome engineering, which enables peptides of interest to be exposed at their surface. In the light of all these data, exosomes are emerging as promising avenues for vaccine strategies.
Collapse
Affiliation(s)
- Daed El Safadi
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France; (D.E.S.); (A.M.); (G.L.); (W.V.)
| | - Alexandre Mokhtari
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France; (D.E.S.); (A.M.); (G.L.); (W.V.)
| | - Morgane Krejbich
- Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes-Angers, CRCI2NA, INSERM U1307, CNRS UMR 6075, Université de Nantes, Université d’Angers, 8 Quai Moncousu, P.O. Box 70721, Cedex 1, 44007 Nantes, France; (M.K.); (U.H.)
| | - Alisé Lagrave
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France; (D.E.S.); (A.M.); (G.L.); (W.V.)
- National Reference Center for Arboviruses, Institut Pasteur de la Guyane, Cayenne 97300, French Guiana
| | - Ugo Hirigoyen
- Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes-Angers, CRCI2NA, INSERM U1307, CNRS UMR 6075, Université de Nantes, Université d’Angers, 8 Quai Moncousu, P.O. Box 70721, Cedex 1, 44007 Nantes, France; (M.K.); (U.H.)
| | - Grégorie Lebeau
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France; (D.E.S.); (A.M.); (G.L.); (W.V.)
- Unité Mixte Diabète Athérothrombose Réunion Océan Indien (DéTROI), Université de La Réunion, INSERM U1188, Campus Santé de Terre Sainte, 97410 Saint-Pierre, La Réunion, France
| | - Wildriss Viranaicken
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France; (D.E.S.); (A.M.); (G.L.); (W.V.)
- Unité Mixte Diabète Athérothrombose Réunion Océan Indien (DéTROI), Université de La Réunion, INSERM U1188, Campus Santé de Terre Sainte, 97410 Saint-Pierre, La Réunion, France
| | - Pascale Krejbich-Trotot
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France; (D.E.S.); (A.M.); (G.L.); (W.V.)
| |
Collapse
|
19
|
Bacalhau M, Camargo M, Lopes-Pacheco M. Laboratory Tools to Predict CFTR Modulator Therapy Effectiveness and to Monitor Disease Severity in Cystic Fibrosis. J Pers Med 2024; 14:93. [PMID: 38248793 PMCID: PMC10820563 DOI: 10.3390/jpm14010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
The implementation of cystic fibrosis (CF) transmembrane conductance regulator (CFTR) modulator drugs into clinical practice has been attaining remarkable therapeutic outcomes for CF, a life-threatening autosomal recessive genetic disease. However, there is elevated CFTR allelic heterogeneity, and various individuals carrying (ultra)rare CF genotypes remain without any approved modulator therapy. Novel translational model systems based on individuals' own cells/tissue are now available and can be used to interrogate in vitro CFTR modulator responses and establish correlations of these assessments with clinical features, aiming to provide prediction of therapeutic effectiveness. Furthermore, because CF is a progressive disease, assessment of biomarkers in routine care is fundamental in monitoring treatment effectiveness and disease severity. In the first part of this review, we aimed to focus on the utility of individual-derived in vitro models (such as bronchial/nasal epithelial cells and airway/intestinal organoids) to identify potential responders and expand personalized CF care. Thereafter, we discussed the usage of CF inflammatory biomarkers derived from blood, bronchoalveolar lavage fluid, and sputum to routinely monitor treatment effectiveness and disease progression. Finally, we summarized the progress in investigating extracellular vesicles as a robust and reliable source of biomarkers and the identification of microRNAs related to CFTR regulation and CF inflammation as novel biomarkers, which may provide valuable information for disease prognosis.
Collapse
Affiliation(s)
- Mafalda Bacalhau
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| | - Mariana Camargo
- Department of Surgery, Division of Urology, Sao Paulo Federal University, Sao Paulo 04039-060, SP, Brazil
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| |
Collapse
|
20
|
Schemiko Almeida K, Rossi SA, Alves LR. RNA-containing extracellular vesicles in infection. RNA Biol 2024; 21:37-51. [PMID: 39589334 PMCID: PMC11601058 DOI: 10.1080/15476286.2024.2431781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/07/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound particles released by cells that play vital roles in intercellular communication by transporting diverse biologically active molecules, including RNA molecules, including mRNA, miRNA, lncRNA, and other regulatory RNAs. These RNA types are protected within the lipid bilayer of EVs, ensuring their stability and enabling long-distance cellular interactions. Notably, EVs play roles in infection, where pathogens and host cells use EV-mediated RNA transfer to influence immune responses and disease outcomes. For example, bacterial EVs play a crucial role in infection by modulating host immune responses and facilitating pathogen invasion. This review explores the complex interactions between EV-associated RNA and host-pathogen dynamics in bacteria, parasites, and fungi, aiming to uncover molecular mechanisms in infectious diseases and potential therapeutic targets.
Collapse
Affiliation(s)
- Kayo Schemiko Almeida
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, FIOCRUZ, Curitiba, PR, Brazil
| | - Suélen Andreia Rossi
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, FIOCRUZ, Curitiba, PR, Brazil
| | - Lysangela Ronalte Alves
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, FIOCRUZ, Curitiba, PR, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
| |
Collapse
|