1
|
Yu Y, Meza K, Colbert C, Hoft DF, Jaunarajs A, Blazevic A, Frey SE, Abate G. Optimizing Microneutralization and IFN-γ ELISPOT Assays to Evaluate Mpox Immunity. Vaccines (Basel) 2024; 13:27. [PMID: 39852806 PMCID: PMC11769350 DOI: 10.3390/vaccines13010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/17/2024] [Accepted: 12/25/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Available assays to measure pox virus neutralizing antibody titers are laborious and take up to 5 days. In addition, assays to measure T cell responses require the use of specific antigens, which may not be the same for all pox viruses. This study reports the development of robust assays for the measurement of mpox-specific neutralizing antibodies and IFN-γ-producing T-cell responses. METHODS Fourteen samples from 7 volunteers who received Modified Vaccinia Ankara-Bavarian Nordic (MVA-BN) were used. The focused reduction neutralization test (FRNT) was performed using the mpox-specific A29 monoclonal antibody. Optimization and further development of FRNT were conducted using the plaque reduction neutralization test (PRNT) as the gold standard. The mpox-specific IFN-γ ELISPOT assay was optimized using different mpox antigen preparations. Results with pre-vaccination samples were compared with post-vaccination samples using the Wilcoxon matched-pairs test. RESULTS Pre-vaccination and post-vaccination sera (n = 7) had FRNT50 (i.e., titers that inhibited at least 50% of the virus) of 109.1 ± 161.8 and 303.7 ± 402.8 (mean ± SD), respectively. Regression analysis of fold changes in FRNT50 and PRNT50 showed that the two assays closely agree (n = 25 tests on paired samples, R2 of 0.787). Using UV-inactivated mpox as an antigen, the number of IFN-γ spot-forming T cells (SFC) in pre-vaccination samples (16.13 ± 15.86, mean ± SD) was significantly lower than SFC in post-vaccination samples (172.9 ± 313.3, mean ± SD) with p = 0.0078. CONCLUSIONS Our newly developed microneutralization test has a good correlation with PRNT. UV-inactivated mpox is an appropriate antigen for the ELISPOT assay that measures mpox cross-reactive T cells. These assays will be useful in future mpox vaccine studies.
Collapse
Affiliation(s)
- Yinyi Yu
- Division of Infectious Diseases, Allergy and Immunology, Saint Louis University, St. Louis, MO 63104, USA (D.F.H.); (A.B.); (S.E.F.)
| | - Krystal Meza
- Division of Infectious Diseases, Allergy and Immunology, Saint Louis University, St. Louis, MO 63104, USA (D.F.H.); (A.B.); (S.E.F.)
| | - Chase Colbert
- Division of Infectious Diseases, Allergy and Immunology, Saint Louis University, St. Louis, MO 63104, USA (D.F.H.); (A.B.); (S.E.F.)
| | - Daniel F. Hoft
- Division of Infectious Diseases, Allergy and Immunology, Saint Louis University, St. Louis, MO 63104, USA (D.F.H.); (A.B.); (S.E.F.)
| | | | - Azra Blazevic
- Division of Infectious Diseases, Allergy and Immunology, Saint Louis University, St. Louis, MO 63104, USA (D.F.H.); (A.B.); (S.E.F.)
| | - Sharon E. Frey
- Division of Infectious Diseases, Allergy and Immunology, Saint Louis University, St. Louis, MO 63104, USA (D.F.H.); (A.B.); (S.E.F.)
| | - Getahun Abate
- Division of Infectious Diseases, Allergy and Immunology, Saint Louis University, St. Louis, MO 63104, USA (D.F.H.); (A.B.); (S.E.F.)
| |
Collapse
|
2
|
Lehmann AA, Roen DR, Megyesi Z, Lehmann PV. Reagent Tracker ™ Platform Verifies and Provides Audit Trails for the Error-Free Implementation of T-Cell ImmunoSpot ® Assays. Methods Mol Biol 2024; 2768:105-115. [PMID: 38502390 DOI: 10.1007/978-1-0716-3690-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
ELISPOT and FluoroSpot assays, collectively called ImmunoSpot assays, permit to reliable detection of rare antigen-specific T cells in freshly isolated cell material, such as peripheral blood mononuclear cells (PBMC). Establishing their frequency within all PBMC permits to assess the magnitude of antigen-specific T-cell immunity; the simultaneous measurement of their cytokine signatures reveals these T-cells' lineage and effector functions, that is, the quality of T-cell-mediated immunity. Because of their unparalleled sensitivity, ease of implementation, robustness, and frugality in PBMC utilization, T-cell ImmunoSpot assays are increasingly becoming part of the standard immune monitoring repertoire. For regulated workflows, stringent audit trails of the data generated are a requirement. While this has been fully accomplished for the analysis of T-cell ImmunoSpot assay results, such are missing for the wet laboratory implementation of the actual test performed. Here we introduce a solution for enhancing and verifying the error-free implementation of T-cell ImmunoSpot assays.
Collapse
Affiliation(s)
- Alexander A Lehmann
- Department of Research & Development, Cellular Technology Limited, Shaker Heights, OH, USA.
| | - Diana R Roen
- Department of Research & Development, Cellular Technology Limited, Shaker Heights, OH, USA
| | - Zoltán Megyesi
- Department of Research & Development, Cellular Technology Limited, Shaker Heights, OH, USA
| | - Paul V Lehmann
- Department of Research & Development, Cellular Technology Limited, Shaker Heights, OH, USA
| |
Collapse
|
3
|
Karulin AY, Katona M, Megyesi Z, Kirchenbaum GA, Lehmann PV. Artificial Intelligence-Based Counting Algorithm Enables Accurate and Detailed Analysis of the Broad Spectrum of Spot Morphologies Observed in Antigen-Specific B-Cell ELISPOT and FluoroSpot Assays. Methods Mol Biol 2024; 2768:59-85. [PMID: 38502388 DOI: 10.1007/978-1-0716-3690-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Antigen-specific B-cell ELISPOT and multicolor FluoroSpot assays, in which the membrane-bound antigen itself serves as the capture reagent for the antibodies that B cells secrete, inherently result in a broad range of spot sizes and intensities. The diversity of secretory footprint morphologies reflects the polyclonal nature of the antigen-specific B cell repertoire, with individual antibody-secreting B cells in the test sample differing in their affinity for the antigen, fine epitope specificity, and activation/secretion kinetics. To account for these heterogeneous spot morphologies, and to eliminate the need for setting up subjective counting parameters well-by-well, CTL introduces here its cutting-edge deep learning-based IntelliCount™ algorithm within the ImmunoSpot® Studio Software Suite, which integrates CTL's proprietary deep neural network. Here, we report detailed analyses of spots with a broad range of morphologies that were challenging to analyze using standard parameter-based counting approaches. IntelliCount™, especially in conjunction with high dynamic range (HDR) imaging, permits the extraction of accurate, high-content information of such spots, as required for assessing the affinity distribution of an antigen-specific memory B-cell repertoire ex vivo. IntelliCount™ also extends the range in which the number of antibody-secreting B cells plated and spots detected follow a linear function; that is, in which the frequencies of antigen-specific B cells can be accurately established. Introducing high-content analysis of secretory footprints in B-cell ELISPOT/FluoroSpot assays, therefore, fundamentally enhances the depth in which an antigen-specific B-cell repertoire can be studied using freshly isolated or cryopreserved primary cell material, such as peripheral blood mononuclear cells.
Collapse
|
4
|
Hare J, Macharia G, Yue L, Streatfield CL, Hunter E, Purcell A, Ternette N, Gilmour J. Direct identification of HLA-presented CD8 T cell epitopes from transmitted founder HIV-1 variants. Proteomics 2021; 21:e2100142. [PMID: 34275180 DOI: 10.1002/pmic.202100142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 11/09/2022]
Abstract
Cytotoxic T lymphocytes (CTLs) are a critical arm of the immune response to viral infections. The activation and expansion of antigen specific CTL requires recognition of peptide antigens presented on class I major histocompatibility complex molecules (MHC-1) of infected cells. Methods to identify presented peptide antigens that do not rely on the pre-existence of antigen specific CTL are critical to the development of new vaccines. We infected activated CD4+ T cells with two HIV-1 transmitted founder (TF) isolates and used high-resolution mass spectrometry (MS) to identify HIV peptides bound on MHC-1. Using this approach, we identified 14 MHC-1 bound peptides from across the two TF isolates. Assessment of predicted binding thresholds revealed good association of the identified peptides to the shared HLA alleles between the HIV+ donors and the naïve PBMC sample with three peptides identified through peptide sequencing inducing a CD8 T-cell response (p < 0.05). Direct infection of naïve CD4 cells by HIV TF isolates and sequencing of MHC-I presented peptides by HPLC-MS/MS enables identification of novel peptides that may be missed by alternative epitope mapping strategies and can provide valuable insight in to the first peptides presented by an HIV-infected CD4 cell in the first few days post infection.
Collapse
Affiliation(s)
- Jonathan Hare
- IAVI Human Immunology Laboratory, Imperial College London, London, UK.,IAVI, New York, New York, USA
| | - Gladys Macharia
- IAVI Human Immunology Laboratory, Imperial College London, London, UK.,Department of Infectious Disease, Imperial College London, London, UK
| | - Ling Yue
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | - Claire L Streatfield
- IAVI Human Immunology Laboratory, Imperial College London, London, UK.,Department of Infectious Disease, Imperial College London, London, UK
| | - Eric Hunter
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | - Anthony Purcell
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | | | - Jill Gilmour
- Department of Infectious Disease, Imperial College London, London, UK
| |
Collapse
|
5
|
Lehmann AA, Kirchenbaum GA, Zhang T, Reche PA, Lehmann PV. Deconvoluting the T Cell Response to SARS-CoV-2: Specificity Versus Chance and Cognate Cross-Reactivity. Front Immunol 2021; 12:635942. [PMID: 34127926 PMCID: PMC8196231 DOI: 10.3389/fimmu.2021.635942] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/11/2021] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 infection takes a mild or clinically inapparent course in the majority of humans who contract this virus. After such individuals have cleared the virus, only the detection of SARS-CoV-2-specific immunological memory can reveal the exposure, and hopefully the establishment of immune protection. With most viral infections, the presence of specific serum antibodies has provided a reliable biomarker for the exposure to the virus of interest. SARS-CoV-2 infection, however, does not reliably induce a durable antibody response, especially in sub-clinically infected individuals. Consequently, it is plausible for a recently infected individual to yield a false negative result within only a few months after exposure. Immunodiagnostic attention has therefore shifted to studies of specific T cell memory to SARS-CoV-2. Most reports published so far agree that a T cell response is engaged during SARS-CoV-2 infection, but they also state that in 20-81% of SARS-CoV-2-unexposed individuals, T cells respond to SARS-CoV-2 antigens (mega peptide pools), allegedly due to T cell cross-reactivity with Common Cold coronaviruses (CCC), or other antigens. Here we show that, by introducing irrelevant mega peptide pools as negative controls to account for chance cross-reactivity, and by establishing the antigen dose-response characteristic of the T cells, one can clearly discern between cognate T cell memory induced by SARS-CoV-2 infection vs. cross-reactive T cell responses in individuals who have not been infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Alexander A Lehmann
- Research and Development, Cellular Technology Ltd., Shaker Heights, OH, United States
| | - Greg A Kirchenbaum
- Research and Development, Cellular Technology Ltd., Shaker Heights, OH, United States
| | - Ting Zhang
- Research and Development, Cellular Technology Ltd., Shaker Heights, OH, United States
| | - Pedro A Reche
- Laboratorio de Inmunomedicina & Inmunoinformatica, Departamento de Immunologia & O2, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Paul V Lehmann
- Research and Development, Cellular Technology Ltd., Shaker Heights, OH, United States
| |
Collapse
|
6
|
Michelo CM, Dalel JA, Hayes P, Fernandez N, Fiore-Gartland A, Kilembe W, Tang J, Streatfield C, Gilmour J, Hunter E. Comprehensive epitope mapping using polyclonally expanded human CD8 T cells and a two-step ELISpot assay for testing large peptide libraries. J Immunol Methods 2021; 491:112970. [PMID: 33529681 PMCID: PMC8008507 DOI: 10.1016/j.jim.2021.112970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/30/2020] [Accepted: 01/18/2021] [Indexed: 02/01/2023]
Abstract
The genetic diversity of circulating HIV-1 strains poses a major barrier to the design, development and evaluation of HIV-1 vaccines. The assessment of both vaccine- and natural infection-elicited T cell responses is commonly done with multivalent peptides that are designed to maximally capture the diversity of potential T cell epitopes (PTEs) observed in natural circulating sequences. However, depending on the sequence diversity of viral subtypes and number of the HIV immunogens under investigation, PTE estimates, including HLA-guided computational methods, can easily generate enormous peptide libraries. Evaluation of T cell epitope specificity using such extensive peptide libraries is usually limited by sample availability, even for high-throughput and robust epitope mapping techniques like ELISpot assays. Here we describe a novel, two-step protocol for in-vitro polyclonal expansion of CD8 T cells from a single vial of frozen PBMC, which facilitated the screening 441 HIV-1 Gag peptides for immune responses among 32 HIV-1 positive subjects and 40 HIV-1 negative subjects for peptide qualification. Using a pooled-peptide mapping strategy, epitopes were mapped in two sequential ELISpot assays; the first ELISpot screened 33 large peptide pools using CD8 T cells expanded for 7 days, while the second step tested pool-matrix peptides to identify individual peptides using CD8 T cells expanded for 10 days. This comprehensive epitope screening established the breadth and magnitude of HIV-1 Gag-specific CD8 T cells and further revealed the extent of immune responses to variable/polymorphic epitopes.
Collapse
Affiliation(s)
- Clive M Michelo
- Zambia Emory HIV Research Project, B22/737 Mwembelelo, Emmasdale, Lusaka, Zambia
| | - Jama A Dalel
- Human Immunology Laboratory, International AIDS Vaccine Initiative, Imperial College London, London, United Kingdom
| | - Peter Hayes
- Human Immunology Laboratory, International AIDS Vaccine Initiative, Imperial College London, London, United Kingdom
| | - Natalia Fernandez
- Human Immunology Laboratory, International AIDS Vaccine Initiative, Imperial College London, London, United Kingdom
| | - Andrew Fiore-Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - William Kilembe
- Zambia Emory HIV Research Project, B22/737 Mwembelelo, Emmasdale, Lusaka, Zambia
| | - Jianming Tang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Claire Streatfield
- Human Immunology Laboratory, International AIDS Vaccine Initiative, Imperial College London, London, United Kingdom
| | - Jill Gilmour
- Human Immunology Laboratory, International AIDS Vaccine Initiative, Imperial College London, London, United Kingdom
| | - Eric Hunter
- Zambia Emory HIV Research Project, B22/737 Mwembelelo, Emmasdale, Lusaka, Zambia; Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329, USA.
| |
Collapse
|
7
|
Lehmann AA, Zhang T, Reche PA, Lehmann PV. Discordance Between the Predicted Versus the Actually Recognized CD8+ T Cell Epitopes of HCMV pp65 Antigen and Aleatory Epitope Dominance. Front Immunol 2021; 11:618428. [PMID: 33633736 PMCID: PMC7900545 DOI: 10.3389/fimmu.2020.618428] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
CD8+ T cell immune monitoring aims at measuring the size and functions of antigen-specific CD8+ T cell populations, thereby providing insights into cell-mediated immunity operational in a test subject. The selection of peptides for ex vivo CD8+ T cell detection is critical because within a complex antigen exists a multitude of potential epitopes that can be presented by HLA class I molecules. Further complicating this task, there is HLA class I polygenism and polymorphism which predisposes CD8+ T cell responses towards individualized epitope recognition profiles. In this study, we compare the actual CD8+ T cell recognition of a well-characterized model antigen, human cytomegalovirus (HCMV) pp65 protein, with its anticipated epitope coverage. Due to the abundance of experimentally defined HLA-A*02:01-restricted pp65 epitopes, and because in silico epitope predictions are most advanced for HLA-A*02:01, we elected to focus on subjects expressing this allele. In each test subject, every possible CD8+ T cell epitope was systematically covered testing 553 individual peptides that walk the sequence of pp65 in steps of single amino acids. Highly individualized CD8+ T cell response profiles with aleatory epitope recognition patterns were observed. No correlation was found between epitopes' ranking on the prediction scale and their actual immune dominance. Collectively, these data suggest that accurate CD8+ T cell immune monitoring may necessitate reliance on agnostic mega peptide pools, or brute force mapping, rather than electing individual peptides as representative epitopes for tetramer and other multimer labeling of surface antigen receptors.
Collapse
Affiliation(s)
- Alexander A. Lehmann
- Research and Development, Cellular Technology Ltd., Shaker Heights, OH, United States
| | - Ting Zhang
- Research and Development, Cellular Technology Ltd., Shaker Heights, OH, United States
| | - Pedro A. Reche
- Laboratorio de Inmunomedicina & Inmunoinformatica, Departamento de Immunologia & O2, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Paul V. Lehmann
- Research and Development, Cellular Technology Ltd., Shaker Heights, OH, United States
| |
Collapse
|
8
|
CERI, CEFX, and CPI: Largely Improved Positive Controls for Testing Antigen-Specific T Cell Function in PBMC Compared to CEF. Cells 2021; 10:cells10020248. [PMID: 33514016 PMCID: PMC7911306 DOI: 10.3390/cells10020248] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/21/2020] [Accepted: 01/14/2021] [Indexed: 01/17/2023] Open
Abstract
Monitoring antigen-specific T cell immunity relies on functional tests that require T cells and antigen presenting cells to be uncompromised. Drawing of blood, its storage and shipment from the clinical site to the test laboratory, and the subsequent isolation, cryopreservation and thawing of peripheral blood mononuclear cells (PBMCs) before the actual test is performed can introduce numerous variables that may jeopardize the results. Therefore, no T cell test is valid without assessing the functional fitness of the PBMC being utilized. This can only be accomplished through the inclusion of positive controls that actually evaluate the performance of the antigen-specific T cell and antigen presenting cell (APC) compartments. For Caucasians, CEF peptides have been commonly used to this extent. Moreover, CEF peptides only measure CD8 cell functionality. We introduce here universal CD8+ T cell positive controls without any racial bias, as well as positive controls for the CD4+ T cell and APC compartments. In summary, we offer new tools and strategies for the assessment of PBMC functional fitness required for reliable T cell immune monitoring.
Collapse
|
9
|
Przybyla A, Lehmann AA, Zhang T, Mackiewicz J, Galus Ł, Kirchenbaum GA, Mackiewicz A, Lehmann PV. Functional T Cell Reactivity to Melanocyte Antigens Is Lost during the Progression of Malignant Melanoma, but Is Restored by Immunization. Cancers (Basel) 2021; 13:cancers13020223. [PMID: 33435427 PMCID: PMC7827050 DOI: 10.3390/cancers13020223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Healthy humans develop spontaneous CD8+ T cell responses to melanoma associated antigens (MA) expressed by normal melanocytes. This natural autoimmunity directed against melanocytes might confer protection against the development of malignant melanoma (MM), where MA are overexpressed tumor-associated antigens. We report that functional T cell reactivity to MA is diminished in untreated MM patients. Three lines of evidence suggest that the MA-reactive T cells present in healthy subjects undergo exhaustion once MM establishes itself. First, only the MA-specific T cell reactivity was affected in the MM patients. Second, in these patients, the residual MA-specific T cells were functionally impaired, showing a diminished per cell IFN-γ productivity. Third, immunizations with allogeneic melanoma cells restored natural CD8+ T cell autoimmunity to MA. Abstract Healthy human subjects develop spontaneous CD8+ T cell responses to melanoma associated antigens (MA) expressed by normal melanocytes, such as Tyrosinase, MAGE-A3, Melan/Mart-1, gp100, and NY-ESO-1. This natural autoimmunity directed against melanocytes might confer protection against the development of malignant melanoma (MM), where MA are present as overexpressed tumor-associated antigens. Consistent with this notion we report here that functional T cell reactivity to MA was found to be significantly diminished to MAGE-A3, Melan-A/Mart-1, and gp100 in untreated MM patients. Three lines of evidence suggest that the MA-reactive T cells present in healthy subjects undergo exhaustion once MM establishes itself. First, only the MA-specific T cell reactivity was affected in the MM patients; that to third party recall antigens was not. Second, in these patients, the residual MA-specific T cells, unlike third party antigen reactive T cells, were functionally impaired, showing a diminished per cell IFN-γ productivity. Third, we show that immunization with MA restored natural CD8+ T cell autoimmunity to MA in 85% of the MM patients. The role of natural T cell autoimmunity to tumor-associated MA is discussed based on discrete levels of T cell activation thresholds.
Collapse
Affiliation(s)
- Anna Przybyla
- Research and Development Department, Cellular Technology Limited (CTL), Shaker Heights, OH 44122, USA; (A.P.); (A.A.L.); (T.Z.); (G.A.K.)
- Department of Cancer Immunology, Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznan, Poland;
| | - Alexander A. Lehmann
- Research and Development Department, Cellular Technology Limited (CTL), Shaker Heights, OH 44122, USA; (A.P.); (A.A.L.); (T.Z.); (G.A.K.)
| | - Ting Zhang
- Research and Development Department, Cellular Technology Limited (CTL), Shaker Heights, OH 44122, USA; (A.P.); (A.A.L.); (T.Z.); (G.A.K.)
| | - Jacek Mackiewicz
- Department of Medical and Experimental Oncology, University of Medical Sciences, 60-355 Poznan, Poland; (J.M.); (Ł.G.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Center, 61-866 Poznan, Poland
| | - Łukasz Galus
- Department of Medical and Experimental Oncology, University of Medical Sciences, 60-355 Poznan, Poland; (J.M.); (Ł.G.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Center, 61-866 Poznan, Poland
- Chemotherapy Department, Greater Poland Cancer Center, 61-866 Poznan, Poland
| | - Greg A. Kirchenbaum
- Research and Development Department, Cellular Technology Limited (CTL), Shaker Heights, OH 44122, USA; (A.P.); (A.A.L.); (T.Z.); (G.A.K.)
| | - Andrzej Mackiewicz
- Department of Cancer Immunology, Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznan, Poland;
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Center, 61-866 Poznan, Poland
| | - Paul V. Lehmann
- Research and Development Department, Cellular Technology Limited (CTL), Shaker Heights, OH 44122, USA; (A.P.); (A.A.L.); (T.Z.); (G.A.K.)
- Correspondence: ; Tel.: +1-216-965-6311
| |
Collapse
|
10
|
Ferrari L, Martelli P, Saleri R, De Angelis E, Ferrarini G, Cavalli V, Passeri B, Bazzoli G, Ogno G, Magliani W, Borghetti P. An engineered anti-idiotypic antibody-derived killer peptide (KP) early activates swine inflammatory monocytes, CD3 +CD16 + natural killer T cells and CD4 +CD8α + double positive CD8β + cytotoxic T lymphocytes associated with TNF-α and IFN-γ secretion. Comp Immunol Microbiol Infect Dis 2020; 72:101523. [PMID: 32758800 DOI: 10.1016/j.cimid.2020.101523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 12/19/2022]
Abstract
This study evaluated the early modulation of the phenotype and cytokine secretion in swine immune cells treated with an engineered killer peptide (KP) based on an anti-idiotypic antibody functionally mimicking a yeast killer toxin. The influence of KP on specific immunity was investigated using porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) as ex vivo antigens. Peripheral blood mononuclear cells (PBMC) from healthy pigs were stimulated with KP and with a scramble peptide for 20 min, 1, 4 and 20 h or kept unstimulated. The cells were analyzed using flow cytometry and ELISA. The same time-periods were used for KP pre-incubation/co-incubation to determine the effect on virus-recalled interferon-gamma (IFN-γ) secreting cell (SC) frequencies and single cell IFN-γ productivity using ELISPOT. KP induced an early dose-dependent shift to pro-inflammatory CD172α+CD14+high monocytes and an increase of CD3+CD16+ natural killer (NK) T cells. KP triggered CD8α and CD8β expression on classical CD4-CD8αβ+ cytotoxic T lymphocytes (CTL) and double positive (DP) CD4+CD8α+ Th memory cells (CD4+CD8α+low CD8β+low). A fraction of DP cells also expressed high levels of CD8α. The two identified DP CD4+CD8α+high CD8β+low/+high CTL subsets were associated with tumor necrosis factor alpha (TNF-α) and IFN-γ secretion. KP markedly boosted the reactivity and cross-reactivity of PRRSV type-1- and PCV2b-specific IFN-γ SC. The results indicate the efficacy of KP in stimulating Th1-biased immunomodulation and support studies of KP as an immunomodulator or vaccine adjuvant.
Collapse
Affiliation(s)
- Luca Ferrari
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy.
| | - Paolo Martelli
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy.
| | - Roberta Saleri
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy.
| | - Elena De Angelis
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy.
| | - Giulia Ferrarini
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy.
| | - Valeria Cavalli
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy.
| | - Benedetta Passeri
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy.
| | - Gianluca Bazzoli
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy.
| | - Giulia Ogno
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy.
| | - Walter Magliani
- Department of Medicine and Surgery, University of Parma, Via Gramsci, 14 - 43126, Parma, Italy.
| | - Paolo Borghetti
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy.
| |
Collapse
|
11
|
Safi S, Yamauchi Y, Stamova S, Rathinasamy A, Op den Winkel J, Jünger S, Bucur M, Umansky L, Warth A, Herpel E, Eichhorn M, Winter H, Hoffmann H, Beckhove P. Bone marrow expands the repertoire of functional T cells targeting tumor-associated antigens in patients with resectable non-small-cell lung cancer. Oncoimmunology 2019; 8:e1671762. [PMID: 31741774 PMCID: PMC6844373 DOI: 10.1080/2162402x.2019.1671762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 11/17/2022] Open
Abstract
The efficacy of cancer immunotherapy may be improved by increasing the number of circulating tumor-reactive T cells. The bone marrow is a priming site and reservoir for such T cells. The characteristics of bone marrow-derived tumor-reactive T cells are poorly understood in patients with non-small-cell lung cancer (NSCLC). To compare the responsiveness of tumor antigen-reactive T cells from the bone marrow with matched peripheral blood samples in patients with resectable NSCLC, we used flow cytometry, cytokine capture assays and enzyme-linked immunospot assays to examine the responsiveness of T cells to 14 tumor antigens in matched bone marrow and peripheral blood samples from patients with resectable NSCLC or benign tumors and tumor-free patients. T cells with reactivity to tumor antigens were detected in the bone marrow of 20 of 39 (51%) NSCLC patients. The panel of tumor antigens recognized by bone marrow-derived T cells was distinct from that recognized by peripheral blood-derived T cells in NSCLC patients. Unlike for peripheral blood T cells, the presence of tumor-reactive T cells in the bone marrow did not correlate with recurrence-free survival after curative intent resection of NSCLC. T cells with reactivity to tumor antigens are common in the bone marrow of patients with NSCLC. Tumor-reactive T cells of the bone marrow have the potential to significantly broaden the total repertoire of tumor-reactive T cells in the body. To clarify the role of tumor-reactive T cells of the bone marrow in T cell-based immunotherapy approaches, clinical studies are needed (ClinicalTrials.gov: NCT02515760).
Collapse
Affiliation(s)
- Seyer Safi
- Department of Thoracic Surgery, Thoraxklinik, Heidelberg University Hospital, Heidelberg, Germany
| | - Yoshikane Yamauchi
- Department of Thoracic Surgery, Thoraxklinik, Heidelberg University Hospital, Heidelberg, Germany
| | - Slava Stamova
- Regensburg Center for Interventional Immunology and Regensburg University Hospital, Regensburg, Germany
| | - Anchana Rathinasamy
- Translational Immunology Department, German Cancer Research Center, Heidelberg, Germany
| | - Jan Op den Winkel
- Department of Thoracic Surgery, Thoraxklinik, Heidelberg University Hospital, Heidelberg, Germany
| | - Simone Jünger
- Translational Immunology Department, German Cancer Research Center, Heidelberg, Germany
| | - Mariana Bucur
- Translational Immunology Department, German Cancer Research Center, Heidelberg, Germany
| | - Ludmilla Umansky
- Translational Immunology Department, German Cancer Research Center, Heidelberg, Germany
| | - Arne Warth
- Institute of Pathology, Heidelberg University, Heidelberg, Germany.,Institute of Pathology, Cytopathology and Molecular Pathology Gießen/Wetzlar/Limburg, Wettenberg, Germany
| | - Esther Herpel
- Institute of Pathology, Heidelberg University, Heidelberg, Germany.,NCT Tissue Bank, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Martin Eichhorn
- Department of Thoracic Surgery, Thoraxklinik, Heidelberg University Hospital, Heidelberg, Germany
| | - Hauke Winter
- Department of Thoracic Surgery, Thoraxklinik, Heidelberg University Hospital, Heidelberg, Germany.,Translational Lung Research Center (TLRC), Member of German Center for Lung Research (DZL), Heidelberg, Germany
| | - Hans Hoffmann
- Division of Thoracic Surgery, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - Philipp Beckhove
- Regensburg Center for Interventional Immunology and Regensburg University Hospital, Regensburg, Germany
| |
Collapse
|
12
|
Xu J, Zhang B, Gong G, Huang X, Du W. Inhibitory effects of oxidovanadium complexes on the aggregation of human islet amyloid polypeptide and its fragments. J Inorg Biochem 2019; 197:110721. [PMID: 31146152 DOI: 10.1016/j.jinorgbio.2019.110721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/26/2019] [Accepted: 05/13/2019] [Indexed: 10/26/2022]
Abstract
Human islet amyloid polypeptide (hIAPP) is synthesized by pancreatic β-cells and co-secreted with insulin. Misfolding and amyloidosis of hIAPP induce β-cell dysfunction in type II diabetes mellitus. Numerous small organic molecules and metal complexes act as inhibitors against amyloid-related diseases, justifying the need to explore the inhibitory mechanism of these compounds. In this work, three oxidovanadium complexes, namely, (NH4)[VO(O2)2(bipy)]·4H2O (1) (bipy = 2,2' bipyridine), bis(ethyl-maltolato, O,O)oxido-vanadium(IV) (2), and (bipyH2)H2[O{VO(O2)(bipy)}2]·5H2O (3), were synthesized and used to inhibit the aggregation of hIAPP and its fragments, namely, hIAPP19-37 and hIAPP20-29. Results revealed that shortening the peptide sequence decreased the aggregation capability of hIAPP fragments, and the oxidovanadium complexes inhibited the fibrillization of hIAPP better than its fragments. Interestingly, the binding of oxidovanadium complexes to hIAPP and its fragments presented a distinct thermodynamic behavior. Oxidovanadium complexes featured the disaggregation capability against hIAPP, better than against its fragments. These complexes also decreased the cytotoxicity caused by hIAPP and its fragments by reducing the production of oligomers. 3 may be a good hIAPP inhibitor based on its inhibition, disaggregation capability, and regulatory effect on peptide-induced cytotoxicity. Oxidovanadium complexes exhibit potential as metallodrugs against amyloidosis-related diseases.
Collapse
Affiliation(s)
- Jufei Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Baohong Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Gehui Gong
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Xiangyi Huang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Weihong Du
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
13
|
Przybyla A, Zhang T, Li R, Roen DR, Mackiewicz A, Lehmann PV. Natural T cell autoreactivity to melanoma antigens: clonally expanded melanoma-antigen specific CD8 + memory T cells can be detected in healthy humans. Cancer Immunol Immunother 2019; 68:709-720. [PMID: 30783693 PMCID: PMC11028361 DOI: 10.1007/s00262-018-02292-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 12/24/2018] [Indexed: 12/30/2022]
Abstract
We used four-color ImmunoSpot® assays, in conjunction with peptide pools that cover the sequence of tyrosinase (Tyr), melanoma-associated antigen A3 (MAGE-A3), melanocyte antigen/melanoma antigen recognized by T cells 1 (Melan-A/MART-1), glycoprotein 100 (gp100), and New York esophageal squamous cell carcinoma-1 (NY-ESO-1) to characterize the melanoma antigen (MA)-specific CD8 + cell repertoire in PBMC of 40 healthy human donors (HD). Tyr triggered interferon gamma (IFN-γ)-secreting CD8 + T cells in 25% of HD within 24 h of antigen stimulation ex vivo. MAGE-A3, Melan-A/MART-1, and gp100 also induced recall responses in 10%, 7.5%, and 2.5% of HD, respectively. At this time point, these CD8 + T cells did not yet produce GzB (granzyme B). However, they engaged in GzB production after 72 h of antigen stimulation. By this 72-h time point, 57.5% of the HD responded to at least one, and typically several, of the MA. A closer characterization of the Tyr-specific CD8 + T cell repertoire indicated that it was low-affinity, and to primarily entail a stem cell-like subpopulation. Collectively, our data reveal pre-existing endogenous T cell immunity against melanoma antigens in healthy donors, and analogous to natural autoantibodies, we have termed this "natural T cell autoreactivity".
Collapse
Affiliation(s)
- Anna Przybyla
- Research and Development Department, Cellular Technology Limited (CTL), 20521 Chagrin Boulevard, Shaker Heights, Cleveland, OH, 44122-5350, USA
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Ting Zhang
- Research and Development Department, Cellular Technology Limited (CTL), 20521 Chagrin Boulevard, Shaker Heights, Cleveland, OH, 44122-5350, USA
| | - Ruliang Li
- Research and Development Department, Cellular Technology Limited (CTL), 20521 Chagrin Boulevard, Shaker Heights, Cleveland, OH, 44122-5350, USA
| | - Diana R Roen
- Research and Development Department, Cellular Technology Limited (CTL), 20521 Chagrin Boulevard, Shaker Heights, Cleveland, OH, 44122-5350, USA
| | - Andrzej Mackiewicz
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland
| | - Paul V Lehmann
- Research and Development Department, Cellular Technology Limited (CTL), 20521 Chagrin Boulevard, Shaker Heights, Cleveland, OH, 44122-5350, USA.
| |
Collapse
|
14
|
Lehmann PV, Suwansaard M, Zhang T, Roen DR, Kirchenbaum GA, Karulin AY, Lehmann A, Reche PA. Comprehensive Evaluation of the Expressed CD8+ T Cell Epitope Space Using High-Throughput Epitope Mapping. Front Immunol 2019; 10:655. [PMID: 31105686 PMCID: PMC6499037 DOI: 10.3389/fimmu.2019.00655] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
T cell immunity is traditionally assessed through functional recall assays, which detect the consequences of the T cells' antigen encounter, or via fluorescently labeled multimers that selectively bind peptide-specific T cell receptors. Using either approach, if the wrong antigen or peptide of a complex antigenic system, such as a virus, is used for immune monitoring, either false negative data will be obtained, or the magnitude of the antigen-specific T cell compartment will go largely underestimated. In this work, we show how selection of the “right” antigen or antigenic peptides is critical for successful T cell immune monitoring against human cytomegalovirus (HCMV). Specifically, we demonstrate that individual HCMV antigens, along with previously reported epitopes, frequently failed to detect CD8+ T cell immunity in test subjects. Through systematic assessment of T cell reactivity against individual nonamer peptides derived from the HCMVpp65 protein, our data clearly establish that (i) systematic testing against all potential epitopes encoded by the genome of the antigen of interest is required to reliably detect CD8+ T cell immunity, and (ii) genome-wide, large scale systematic testing of peptides has become feasible through high-throughput ELISPOT-based “brute force” epitope mapping.
Collapse
Affiliation(s)
- Paul V Lehmann
- Cellular Technology Ltd., Shaker Heights, OH, United States
| | | | - Ting Zhang
- Cellular Technology Ltd., Shaker Heights, OH, United States
| | - Diana R Roen
- Cellular Technology Ltd., Shaker Heights, OH, United States
| | | | | | | | - Pedro A Reche
- Laboratorio de Inmunomedicina & Inmunoinformatica, Departamento de Immunologia & O2, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
15
|
Kuranda K, Jean-Alphonse P, Leborgne C, Hardet R, Collaud F, Marmier S, Costa Verdera H, Ronzitti G, Veron P, Mingozzi F. Exposure to wild-type AAV drives distinct capsid immunity profiles in humans. J Clin Invest 2018; 128:5267-5279. [PMID: 30352429 DOI: 10.1172/jci122372] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/11/2018] [Indexed: 01/10/2023] Open
Abstract
Recombinant adeno-associated virus (AAV) vectors have been broadly adopted as a gene delivery tool in clinical trials, owing to their high efficiency of transduction of several host tissues and their low immunogenicity. However, a considerable proportion of the population is naturally exposed to the WT virus from which AAV vectors are derived, which leads to the acquisition of immunological memory that can directly determine the outcome of gene transfer. Here, we show that prior exposure to AAV drives distinct capsid immunity profiles in healthy subjects. In peripheral blood mononuclear cells (PBMCs) isolated from AAV-seropositive donors, recombinant AAV triggered TNF-α secretion in memory CD8+ T cells, B cell differentiation into antibody-secreting cells, and anti-capsid antibody production. Conversely, PBMCs isolated from AAV-seronegative individuals appeared to carry a population of NK cells reactive to AAV. Further, we demonstrated that the AAV capsid activates IL-1β and IL-6 cytokine secretion in monocyte-related dendritic cells (moDCs). IL-1β and IL-6 blockade inhibited the anti-capsid humoral response in vitro and in vivo. These results provide insights into immune responses to AAV in humans, define a possible role for moDCs and NK cells in capsid immunity, and open new avenues for the modulation of vector immunogenicity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Giuseppe Ronzitti
- Genethon, Evry, France.,INSERM S951, Université Evry, Université Paris Saclay, EPHE, Evry, France
| | | | - Federico Mingozzi
- INSERM U974, Sorbonne Université, Paris, France.,Genethon, Evry, France.,INSERM S951, Université Evry, Université Paris Saclay, EPHE, Evry, France
| |
Collapse
|
16
|
Lehmann A, Megyesi Z, Przybyla A, Lehmann PV. Reagent Tracker Dyes Permit Quality Control for Verifying Plating Accuracy in ELISPOT Tests. Cells 2018; 7:E3. [PMID: 29301355 PMCID: PMC5789276 DOI: 10.3390/cells7010003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/25/2017] [Accepted: 12/29/2017] [Indexed: 12/04/2022] Open
Abstract
ELISPOT assays enable the detection of the frequency of antigen-specific T cells in the blood by measuring the secretion of cytokines, or combinations of cytokines, in response to antigenic challenges of a defined population of PBMC. As such, these assays are suited to establish the magnitude and quality of T cell immunity in infectious, allergic, autoimmune and transplant settings, as well as for measurements of anti-tumor immunity. The simplicity, robustness, cost-effectiveness and scalability of ELISPOT renders it suitable for regulated immune monitoring. In response to the regulatory requirements of clinical and pre-clinical immune monitoring trials, tamper-proof audit trails have been introduced to all steps of ELISPOT analysis: from capturing the raw images of assay wells and counting of spots, to all subsequent quality control steps involved in count verification. A major shortcoming of ELISPOT and other related cellular assays is presently the lack of audit trails for the wet laboratory part of the assay, in particular, the assurance that no pipetting errors have occurred during the plating of antigens and cells. Here, we introduce a dye-based reagent tracking platform that fills this gap, thereby increasing the transparency and documentation of ELISPOT test results.
Collapse
Affiliation(s)
- Alexander Lehmann
- Research and Development Department, CTL, Shaker Heights, OH 44122, USA.
| | - Zoltan Megyesi
- Research and Development Department, CTL, Shaker Heights, OH 44122, USA.
| | - Anna Przybyla
- Research and Development Department, CTL, Shaker Heights, OH 44122, USA.
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-701 Poznan, Poland.
| | - Paul V Lehmann
- Research and Development Department, CTL, Shaker Heights, OH 44122, USA.
| |
Collapse
|
17
|
Karulin AY, Megyesi Z, Caspell R, Hanson J, Lehmann PV. Multiplexing T- and B-Cell FLUOROSPOT Assays: Experimental Validation of the Multi-Color ImmunoSpot ® Software Based on Center of Mass Distance Algorithm. Methods Mol Biol 2018; 1808:95-113. [PMID: 29956177 DOI: 10.1007/978-1-4939-8567-8_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Over the past decade, ELISPOT has become a highly implemented mainstream assay in immunological research, immune monitoring, and vaccine development. Unique single cell resolution along with high throughput potential sets ELISPOT apart from flow cytometry, ELISA, microarray- and bead-based multiplex assays. The necessity to unambiguously identify individual T and B cells that do, or do not co-express certain analytes, including polyfunctional cytokine producing T cells has stimulated the development of multi-color ELISPOT assays. The success of these assays has also been driven by limited sample/cell availability and resource constraints with reagents and labor. There are few commercially available test kits and instruments available at present for multi-color FLUOROSPOT. Beyond commercial descriptions of competing systems, little is known about their accuracy in experimental settings detecting individual cells that secrete multiple analytes vs. random overlays of spots. Here, we present a theoretical and experimental validation study for three and four color T- and B-cell FLUOROSPOT data analysis. The ImmunoSpot® Fluoro-X™ analysis system we used includes an automatic image acquisition unit that generates individual color images free of spectral overlaps and multi-color spot counting software based on the maximal allowed distance between centers of spots of different colors or Center of Mass Distance (COMD). Using four color B-cell FLUOROSPOT for IgM, IgA, IgG1, IgG3; and three/four color T-cell FLUOROSPOT for IL-2, IFN-γ, TNF-α, and GzB, in serial dilution experiments, we demonstrate the validity and accuracy of Fluoro-X™ multi-color spot counting algorithms. Statistical predictions based on the Poisson spatial distribution, coupled with scrambled image counting, permit objective correction of true multi-color spot counts to exclude randomly overlaid spots.
Collapse
Affiliation(s)
| | | | | | - Jodi Hanson
- Cellular Technology Ltd., Shaker Heights, OH, USA
| | | |
Collapse
|
18
|
A Positive Control for Detection of Functional CD4 T Cells in PBMC: The CPI Pool. Cells 2017; 6:cells6040047. [PMID: 29215584 PMCID: PMC5753071 DOI: 10.3390/cells6040047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/01/2017] [Accepted: 12/03/2017] [Indexed: 12/29/2022] Open
Abstract
Testing of peripheral blood mononuclear cells (PBMC) for immune monitoring purposes requires verification of their functionality. This is of particular concern when the PBMC have been shipped or stored for prolonged periods of time. While the CEF (Cytomegalo-, Epstein-Barr and Flu-virus) peptide pool has become the gold standard for testing CD8 cell functionality, a positive control for CD4 cells is so far lacking. The latter ideally consists of proteins so as to control for the functionality of the antigen processing and presentation compartments, as well. Aiming to generate a positive control for CD4 cells, we first selected 12 protein antigens from infectious/environmental organisms that are ubiquitous: Varicella, Influenza, Parainfluenza, Mumps, Cytomegalovirus, Streptococcus, Mycoplasma, Lactobacillus, Neisseria, Candida, Rubella, and Measles. Of these antigens, three were found to elicited interferon (IFN)-γ-producing CD4 cells in the majority of human test subjects: inactivated cytomegalo-, parainfluenza-, and influenza virions (CPI). While individually none of these three antigens triggered a recall response in all donors, the pool of the three (the ‘CPI pool’), did. One hundred percent of 245 human donors tested were found to be CPI positive, including Caucasians, Asians, and African-Americans. Therefore, the CPI pool appears to be suitable to serve as universal positive control for verifying the functionality of CD4 and of antigen presenting cells.
Collapse
|
19
|
Delayed Activation Kinetics of Th2- and Th17 Cells Compared to Th1 Cells. Cells 2017; 6:cells6030029. [PMID: 28895901 PMCID: PMC5617975 DOI: 10.3390/cells6030029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 08/29/2017] [Accepted: 09/05/2017] [Indexed: 01/12/2023] Open
Abstract
During immune responses, different classes of T cells arise: Th1, Th2, and Th17. Mobilizing the right class plays a critical role in successful host defense and therefore defining the ratios of Th1/Th2/Th17 cells within the antigen-specific T cell repertoire is critical for immune monitoring purposes. Antigen-specific Th1, Th2, and Th17 cells can be detected by challenging peripheral blood mononuclear cells (PBMC) with antigen, and establishing the numbers of T cells producing the respective lead cytokine, IFN-γ and IL-2 for Th1 cells, IL-4 and IL-5 for Th2, and IL-17 for Th-17 cells, respectively. Traditionally, these cytokines are measured within 6 h in flow cytometry. We show here that 6 h of stimulation is sufficient to detect peptide-induced production of IFN-γ, but 24 h are required to reveal the full frequency of protein antigen-specific Th1 cells. Also the detection of IL-2 producing Th1 cells requires 24 h stimulation cultures. Measurements of IL-4 producing Th2 cells requires 48-h cultures and 96 h are required for frequency measurements of IL-5 and IL-17 secreting T cells. Therefore, accounting for the differential secretion kinetics of these cytokines is critical for the accurate determination of the frequencies and ratios of antigen-specific Th1, Th2, and Th17 cells.
Collapse
|
20
|
How frequently are predicted peptides actually recognized by CD8 cells? Cancer Immunol Immunother 2016; 65:847-55. [PMID: 27108305 PMCID: PMC4917593 DOI: 10.1007/s00262-016-1840-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 04/14/2016] [Indexed: 12/27/2022]
Abstract
Detection of antigen-specific CD8 cells frequently relies on the use of peptides that are predicted to bind to HLA Class I molecules or have been shown to induce immune responses. There is extensive knowledge on individual HLA alleles’ peptide-binding requirements, and immunogenic peptides for many antigens have been defined. The 32 individual peptides that comprise the CEF peptide pool represent such well-defined peptide determinants for Cytomegalo-, Epstein–barr-, and Influenza virus. We tested the accuracy of these peptide recognition predictions on 42 healthy human donors that have been high-resolution HLA-typed. According to the predictions, 241 recall responses should have been detected in these donors. Actual testing showed that 36 (15 %) of the predicted CD8 cell responses occurred in the high frequency range, 41 (17 %) in mid-frequencies, and 45 (19 %) were at the detection limit. In 119 instances (49 %), the predicted peptides were not targeted by CD8 cells detectably. The individual CEF peptides were recognized in an unpredicted fashion in 57 test cases. Moreover, the frequency of CD8 cells responding to a single peptide did not reflect on the number of CD8 cells targeting other determinants on the same antigen. Thus, reliance on one or a few predicted peptides provides a rather inaccurate assessment of antigen-specific CD8 cell immunity, strongly arguing for the use of peptide pools for immune monitoring.
Collapse
|
21
|
Characterization of the HCMV-Specific CD4 T Cell Responses that Are Associated with Protective Immunity. Viruses 2015; 7:4414-37. [PMID: 26258786 PMCID: PMC4576189 DOI: 10.3390/v7082828] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/15/2015] [Accepted: 07/27/2015] [Indexed: 11/23/2022] Open
Abstract
Most humans become infected with human cytomegalovirus (HCMV). Typically, the immune system controls the infection, but the virus persists and can reactivate in states of immunodeficiency. While substantial information is available on the contribution of CD8 T cells and antibodies to anti-HCMV immunity, studies of the TH1, TH2, and TH17 subsets have been limited by the low frequency of HCMV-specific CD4 T cells in peripheral blood mononuclear cell (PBMC). Using the enzyme-linked Immunospot® assay (ELISPOT) that excels in low frequency measurements, we have established these in a sizable cohort of healthy HCMV controllers. Cytokine recall responses were seen in all seropositive donors. Specifically, interferon (IFN)-γ and/or interleukin (IL)-17 were seen in isolation or with IL-4 in all test subjects. IL-4 recall did not occur in isolation. While the ratios of TH1, TH2, and TH17 cells exhibited substantial variations between different individuals these ratios and the frequencies were relatively stable when tested in samples drawn up to five years apart. IFN-γ and IL-2 co-expressing polyfunctional cells were seen in most subjects. Around half of the HCMV-specific CD4 cells were in a reversible state of exhaustion. The data provided here established the TH1, TH2, and TH17 characteristic of the CD4 cells that convey immune protection for successful immune surveillance against which reactivity can be compared when the immune surveillance of HCMV fails.
Collapse
|
22
|
ELISPOT Assays in 384-Well Format: Up to 30 Data Points with One Million Cells. Cells 2015; 4:71-83. [PMID: 25643292 PMCID: PMC4381210 DOI: 10.3390/cells4010071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/18/2014] [Accepted: 12/01/2014] [Indexed: 12/03/2022] Open
Abstract
Comprehensive immune monitoring requires that frequencies of T cells, producing different cytokines, are measured to establish the magnitude of Th1, Th2, and Th17 components of cell-mediated immunity. Antigen titration provides additional information about the affinity of T cell response. In tumor immunity, it is also advisable to account for determinant spreading by testing multiple epitopes. Efforts for comprehensive immune monitoring would require substantial numbers of PBMC to run the above tests systematically, which in most test cases is limiting. Immune monitoring with ELISPOT assays have been performed, thus far, in a 96-well format. In this study we show that one can increase cell utilization by performing the assay in 384-well plates whose membrane surface area is one third that of 96-well plates. Systematic testing of PBMC for antigen-specific T cell response in the two formats demonstrated that the 384-well assay corresponds to a one-in-three miniaturization of the 96-well assay. The lowest number of cells that can be used in the 384-well format, while allowing for sufficient contact with APC, is 33,000 PBMC/well. Therefore, with one million PBMC typically obtained from 1 mL of blood, a 30 well T cell ELISPOT assay can be performed in a 384-well format.
Collapse
|
23
|
High Reproducibility of ELISPOT Counts from Nine Different Laboratories. Cells 2015; 4:21-39. [PMID: 25585297 PMCID: PMC4381207 DOI: 10.3390/cells4010021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 11/26/2014] [Indexed: 11/17/2022] Open
Abstract
The primary goal of immune monitoring with ELISPOT is to measure the number of T cells, specific for any antigen, accurately and reproducibly between different laboratories. In ELISPOT assays, antigen-specific T cells secrete cytokines, forming spots of different sizes on a membrane with variable background intensities. Due to the subjective nature of judging maximal and minimal spot sizes, different investigators come up with different numbers. This study aims to determine whether statistics-based, automated size-gating can harmonize the number of spot counts calculated between different laboratories. We plated PBMC at four different concentrations, 24 replicates each, in an IFN-γ ELISPOT assay with HCMV pp65 antigen. The ELISPOT plate, and an image file of the plate was counted in nine different laboratories using ImmunoSpot® Analyzers by (A) Basic Count™ relying on subjective counting parameters set by the respective investigators and (B) SmartCount™, an automated counting protocol by the ImmunoSpot® Software that uses statistics-based spot size auto-gating with spot intensity auto-thresholding. The average coefficient of variation (CV) for the mean values between independent laboratories was 26.7% when counting with Basic Count™, and 6.7% when counting with SmartCount™. Our data indicates that SmartCount™ allows harmonization of counting ELISPOT results between different laboratories and investigators.
Collapse
|