1
|
Kavyashree S, Harithpriya K, Ramkumar KM. Miro1- a key player in β-cell function and mitochondrial dynamics under diabetes mellitus. Mitochondrion 2025; 84:102039. [PMID: 40204078 DOI: 10.1016/j.mito.2025.102039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/04/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025]
Abstract
Mitochondrial health is crucial for the survival and function of β-cells, preserving glucose homeostasis and effective insulin production. Miro1, a mitochondrial Rho GTPase1 protein, plays an essential role in maintaining thequality of mitochondria by regulating calcium homeostasis and mitophagy. In this review, we aim to explore the dysfunction of Miro1 in type 2 diabetes mellitus (T2DM) and its contribution to impaired Ca2+ signaling, which increases oxidative stress in β-cells. This dysfunction is the hallmark of T2DM pathogenesis, leading to insufficient insulin production and poor glycemic control. Additionally, we discuss the role of Miro1 in modulating insulin secretion and inflammation, highlighting its effect on modulating key signaling cascades in β-cells. Altogether, enhancing Miro1 function and activity could alleviate mitochondrial dysfunction, reducing oxidative stress-mediated damage, and improving pancreatic β-cell survival. Targeting Miro1 with small molecules or gene-editing approaches could provide effective strategies for restoring cell function and insulin secretion in diabetic individuals. Exploring the deeper knowledge of Miro1 functions and interactions could lead to novel therapeutic advances in T2DM management.
Collapse
Affiliation(s)
- Srikanth Kavyashree
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 210 Tamil Nadu, India
| | - Kannan Harithpriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 210 Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 210 Tamil Nadu, India.
| |
Collapse
|
2
|
Yue Q, Cao Z, Zhang T, Yin N, Liu L. Large Fibrous Connective Tissue Reduces Oxidative Stress to Form a Living Cell Scaffold in Adipose Grafts. Antioxidants (Basel) 2025; 14:270. [PMID: 40227213 PMCID: PMC11939587 DOI: 10.3390/antiox14030270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/17/2025] [Accepted: 02/22/2025] [Indexed: 04/15/2025] Open
Abstract
This study aimed to investigate the mechanisms by which large fibrous connective (LFC) tissue enhances fat graft survival in fat transplantation. A block fat graft model demonstrated that intact fat containing LFC showed significantly higher survival rates compared with liposuctioned fat. In the center of intact grafts, viable fat cells surrounded the LFC, forming a mesh-like living tissue structure. Proteomics of the extracellular matrix (ECM) adjacent to LFC (ALFC) and distant to LFC (DLFC) revealed significant differences in mitochondrial aspects. Staining of LFC tissue showed that it contains a large number of blood vessels and mitochondria, and exhibits stronger antioxidant capacity (p < 0.05) compared with adipose tissue. By mixing LFC with liposuctioned fat and transplanting into nude mice, histological sections showed that LFC promotes SOD1 expression, enhances respiratory chain RNA expression, and reduces ROS and inflammation. Pure mitochondrial-assisted fat transplantation only reduced short-term graft inflammation without improving long-term survival rates. In conclusion, LFC enhances long-term survival rates by reducing oxidative stress in fat grafts and forming a center for fat cell survival, thereby overcoming distance limitations. This represents a novel mechanism distinct from classical fat survival models and provides a reference for clinical practice.
Collapse
|
3
|
Guo M, Liu R, Zhang F, Qu J, Yang Y, Li X. A new perspective on liver diseases: Focusing on the mitochondria-associated endoplasmic reticulum membranes. Pharmacol Res 2024; 208:107409. [PMID: 39284429 DOI: 10.1016/j.phrs.2024.107409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
The pathogenesis of liver diseases is multifaceted and intricate, posing a persistent global public health challenge with limited therapeutic options. Therefore, further research into liver diseases is imperative for better comprehension and advancement in treatment strategies. Numerous studies have confirmed the endoplasmic reticulum (ER) and mitochondria as key organelles driving liver diseases. Notably, the mitochondrial-associated ER membranes (MAMs) establish a physical and functional connection between the ER and mitochondria, highlighting the importance of inter-organelle communication in maintaining their functional homeostasis. This review delves into the intricate architecture and regulative mechanism of the integrated MAM that facilitate the physiological transfer of signals and substances between organelles. Additionally, we also provide a detailed overview regarding the varied pathogenic roles of malfunctioning MAM in liver diseases, focusing on its involvement in the progression of ER stress and mitochondrial dysfunction, the regulation of mitochondrial dynamics and Ca2+ transfer, as well as the disruption of lipid and glucose homeostasis. Furthermore, the current challenges and prospects associated with MAM in liver disease research are thoroughly discussed. In conclusion, elucidating the specific structure and function of MAM in different liver diseases may pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Mengyu Guo
- School of Life Sciences, Beijing University of Chinese Medicine, 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, China
| | - Fukun Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, 100029, China
| | - Jiaorong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, 100029, China
| | - Yun Yang
- School of Life Sciences, Beijing University of Chinese Medicine, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 100029, China.
| |
Collapse
|
4
|
Li Y, Yang Z, Zhang S, Li J. Miro-mediated mitochondrial transport: A new dimension for disease-related abnormal cell metabolism? Biochem Biophys Res Commun 2024; 705:149737. [PMID: 38430606 DOI: 10.1016/j.bbrc.2024.149737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Mitochondria are versatile and highly dynamic organelles found in eukaryotic cells that play important roles in a variety of cellular processes. The importance of mitochondrial transport in cell metabolism, including variations in mitochondrial distribution within cells and intercellular transfer, has grown in recent years. Several studies have demonstrated that abnormal mitochondrial transport represents an early pathogenic alteration in a variety of illnesses, emphasizing its significance in disease development and progression. Mitochondrial Rho GTPase (Miro) is a protein found on the outer mitochondrial membrane that is required for cytoskeleton-dependent mitochondrial transport, mitochondrial dynamics (fusion and fission), and mitochondrial Ca2+ homeostasis. Miro, as a critical regulator of mitochondrial transport, has yet to be thoroughly investigated in illness. This review focuses on recent developments in recognizing Miro as a crucial molecule in controlling mitochondrial transport and investigates its roles in diverse illnesses. It also intends to shed light on the possibilities of targeting Miro as a therapeutic method for a variety of diseases.
Collapse
Affiliation(s)
- Yanxing Li
- Xi'an Jiaotong University Health Science Center, Xi'an, 710000, Shaanxi, People's Republic of China
| | - Zhen Yang
- Xi'an Jiaotong University Health Science Center, Xi'an, 710000, Shaanxi, People's Republic of China
| | - Shumei Zhang
- Xi'an Jiaotong University Health Science Center, Xi'an, 710000, Shaanxi, People's Republic of China
| | - Jianjun Li
- Department of Cardiology, Jincheng People's Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi, People's Republic of China.
| |
Collapse
|
5
|
Aspenström P. Miro GTPases at the Crossroads of Cytoskeletal Dynamics and Mitochondrial Trafficking. Cells 2024; 13:647. [PMID: 38607086 PMCID: PMC11012113 DOI: 10.3390/cells13070647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
Miro GTPases are key components in the machinery responsible for transporting mitochondria and peroxisomes along microtubules, and also play important roles in regulating calcium homeostasis and organizing contact sites between mitochondria and the endoplasmic reticulum. Moreover, Miro GTPases have been shown to interact with proteins that actively regulate cytoskeletal organization and dynamics, suggesting that these GTPases participate in organizing cytoskeletal functions and organelle transport. Derailed mitochondrial transport is associated with neuropathological conditions such as Parkinson's and Alzheimer's diseases. This review explores our recent understanding of the diverse roles of Miro GTPases under cytoskeletal control, both under normal conditions and during the course of human diseases such as neuropathological disorders.
Collapse
Affiliation(s)
- Pontus Aspenström
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology (IGP), Uppsala University, SE 751 85 Uppsala, Sweden
| |
Collapse
|
6
|
Jain R, Begum N, Tryphena KP, Singh SB, Srivastava S, Rai SN, Vamanu E, Khatri DK. Inter and intracellular mitochondrial transfer: Future of mitochondrial transplant therapy in Parkinson's disease. Biomed Pharmacother 2023; 159:114268. [PMID: 36682243 DOI: 10.1016/j.biopha.2023.114268] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Parkinson's disease (PD) is marked by the gradual degeneration of dopaminergic neurons and the intracellular build-up of Lewy bodies rich in α-synuclein protein. This impairs various aspects of the mitochondria including the generation of ROS, biogenesis, dynamics, mitophagy etc. Mitochondrial dynamics are regulated through the inter and intracellular movement which impairs mitochondrial trafficking within and between cells. This inter and intracellular mitochondrial movement plays a significant role in maintaining neuronal dynamics in terms of energy and growth. Kinesin, dynein, myosin, Mitochondrial rho GTPase (Miro), and TRAK facilitate the retrograde and anterograde movement of mitochondria. Enzymes such as Kinases along with Calcium (Ca2+), Adenosine triphosphate (ATP) and the genes PINK1 and Parkin are also involved. Extracellular vesicles, gap junctions, and tunneling nanotubes control intercellular movement. The knowledge and understanding of these proteins, enzymes, molecules, and movements have led to the development of mitochondrial transplant as a therapeutic approach for various disorders involving mitochondrial dysfunction such as stroke, ischemia and PD. A better understanding of these pathways plays a crucial role in establishing extracellular mitochondrial transplant therapy for reverting the pathology of PD. Currently, techniques such as mitochondrial coculture, mitopunch and mitoception are being utilized in the pre-clinical stages and should be further explored for translational value. This review highlights how intercellular and intracellular mitochondrial dynamics are affected during mitochondrial dysfunction in PD. The field of mitochondrial transplant therapy in PD is underlined in particular due to recent developments and the potential that it holds in the near future.
Collapse
Affiliation(s)
- Rachit Jain
- Molecular & Cellular Neuroscience lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India.
| | - Nusrat Begum
- Molecular & Cellular Neuroscience lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India.
| | - Kamatham Pushpa Tryphena
- Molecular & Cellular Neuroscience lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India.
| | - Shashi Bala Singh
- Molecular & Cellular Neuroscience lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India.
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India.
| | - Sachchida Nand Rai
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India.
| | - Emanuel Vamanu
- University of Agricultural Sciences and Veterinary Medicine of Bucharest, Romania.
| | - Dharmendra Kumar Khatri
- Molecular & Cellular Neuroscience lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India.
| |
Collapse
|
7
|
D'Amato M, Morra F, Di Meo I, Tiranti V. Mitochondrial Transplantation in Mitochondrial Medicine: Current Challenges and Future Perspectives. Int J Mol Sci 2023; 24:1969. [PMID: 36768312 PMCID: PMC9916997 DOI: 10.3390/ijms24031969] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Mitochondrial diseases (MDs) are inherited genetic conditions characterized by pathogenic mutations in nuclear DNA (nDNA) or mitochondrial DNA (mtDNA). Current therapies are still far from being fully effective and from covering the broad spectrum of mutations in mtDNA. For example, unlike heteroplasmic conditions, MDs caused by homoplasmic mtDNA mutations do not yet benefit from advances in molecular approaches. An attractive method of providing dysfunctional cells and/or tissues with healthy mitochondria is mitochondrial transplantation. In this review, we discuss what is known about intercellular transfer of mitochondria and the methods used to transfer mitochondria both in vitro and in vivo, and we provide an outlook on future therapeutic applications. Overall, the transfer of healthy mitochondria containing wild-type mtDNA copies could induce a heteroplasmic shift even when homoplasmic mtDNA variants are present, with the aim of attenuating or preventing the progression of pathological clinical phenotypes. In summary, mitochondrial transplantation is a challenging but potentially ground-breaking option for the treatment of various mitochondrial pathologies, although several questions remain to be addressed before its application in mitochondrial medicine.
Collapse
Affiliation(s)
- Marco D'Amato
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Francesca Morra
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Ivano Di Meo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Valeria Tiranti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| |
Collapse
|
8
|
Panda SP, Prasanth D, Gorla US, Dewanjee S. Interlinked role of ASN, TDP-43 and Miro1 with parkinopathy: Focus on targeted approach against neuropathy in parkinsonism. Ageing Res Rev 2023; 83:101783. [PMID: 36371014 DOI: 10.1016/j.arr.2022.101783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
Parkinsonism is a complex neurodegenerative disease that is difficult to differentiate because of its idiopathic and unknown origins. The hereditary parkinsonism known as autosomal recessive-juvenile parkinsonism (AR-JP) is marked by tremors, dyskinesias, dystonic characteristics, and manifestations that improve sleep but do not include dementia. This was caused by deletions and point mutations in PARK2 (chromosome 6q25.2-27). Diminished or unusual sensations (paresthesias), loss of neuron strength both in the CNS and peripheral nerves, and lack of motor coordination are the hallmarks of neuropathy in parkinsonism. The incidence of parkinsonism during oxidative stress and ageing is associated with parkinopathy. Parkinopathy is hypothesized to be triggered by mutation of the parkin (PRKN) gene and loss of normal physiological functions of PRKN proteins, which triggers their pathogenic aggregation due to conformational changes. Two important genes that control mitochondrial health are PRKN and phosphatase and tensin homologue deleted on chromosome 10-induced putative kinase 1 (PINK1). Overexpression of TAR DNA-binding protein-43 (TDP-43) increases the aggregation of insoluble PRKN proteins in OMM. Foreign α-synuclein (ASN) promotes parkinopathy via S-nitrosylation and hence has a neurotoxic effect on dopaminergic nerves. Miro1 (Miro GTPase1), a member of the RAS superfamily, is expressed in nerve cells. Due to PINK1/PRKN and Miro1's functional relationship, an excess of mitochondrial calcium culminates in the destruction of dopaminergic neurons. An interlinked understanding of TDP-43, PINK1/PRKN, ASN, and Miro1 signalling in the communication among astrocytes, microglia, neurons, and immune cells within the brain explored the pathway of neuronal death and shed light on novel strategies for the diagnosis and treatment of parkinsonism.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Pharmacology Research Division, Institute of Pharmaceutical Research, GLA University, Mathura, India.
| | - Dsnbk Prasanth
- Department of Pharmacognosy, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, AP, India
| | - Uma Sankar Gorla
- College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhrapradesh, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
9
|
Morgado-Cáceres P, Liabeuf G, Calle X, Briones L, Riquelme JA, Bravo-Sagua R, Parra V. The aging of ER-mitochondria communication: A journey from undifferentiated to aged cells. Front Cell Dev Biol 2022; 10:946678. [PMID: 36060801 PMCID: PMC9437272 DOI: 10.3389/fcell.2022.946678] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/20/2022] [Indexed: 01/10/2023] Open
Abstract
The complex physiology of eukaryotic cells requires that a variety of subcellular organelles perform unique tasks, even though they form highly dynamic communication networks. In the case of the endoplasmic reticulum (ER) and mitochondria, their functional coupling relies on the physical interaction between their membranes, mediated by domains known as mitochondria-ER contacts (MERCs). MERCs act as shuttles for calcium and lipid transfer between organelles, and for the nucleation of other subcellular processes. Of note, mounting evidence shows that they are heterogeneous structures, which display divergent behaviors depending on the cell type. Furthermore, MERCs are plastic structures that remodel according to intra- and extracellular cues, thereby adjusting the function of both organelles to the cellular needs. In consonance with this notion, the malfunction of MERCs reportedly contributes to the development of several age-related disorders. Here, we integrate current literature to describe how MERCs change, starting from undifferentiated cells, and their transit through specialization, malignant transformation (i.e., dedifferentiation), and aging/senescence. Along this journey, we will review the function of MERCs and their relevance for pivotal cell types, such as stem and cancer cells, cardiac, skeletal, and smooth myocytes, neurons, leukocytes, and hepatocytes, which intervene in the progression of chronic diseases related to age.
Collapse
Affiliation(s)
- Pablo Morgado-Cáceres
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas e Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular y Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Gianella Liabeuf
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas e Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Laboratorio de Obesidad y Metabolismo Energético (OMEGA), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Facultad de Salud y Ciencias Sociales, Escuela de Nutrición y Dietética, Universidad de las Américas, Santiago, Chile
| | - Ximena Calle
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas e Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular y Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Lautaro Briones
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas e Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Laboratorio de Obesidad y Metabolismo Energético (OMEGA), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Departamento de Nutrición y Salud Pública, Facultad de Ciencias de la Salud y de los Alimentos, Universidad del Bío-Bío, Chillán, Chile
| | - Jaime A. Riquelme
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas e Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular y Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Roberto Bravo-Sagua
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas e Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Laboratorio de Obesidad y Metabolismo Energético (OMEGA), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Red de Investigación en Envejecimiento Saludable, Consorcio de Universidades del Estado de Chile, Santiago, Chile
- *Correspondence: Roberto Bravo-Sagua, ; Valentina Parra,
| | - Valentina Parra
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas e Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular y Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Red para el Estudio de Enfermedades Cardiopulmonares de alta letalidad (REECPAL), Universidad de Chile, Santiago, Chile
- *Correspondence: Roberto Bravo-Sagua, ; Valentina Parra,
| |
Collapse
|
10
|
Dorn Ii GW. Neurohormonal Connections with Mitochondria in Cardiomyopathy and Other Diseases. Am J Physiol Cell Physiol 2022; 323:C461-C477. [PMID: 35759434 PMCID: PMC9363002 DOI: 10.1152/ajpcell.00167.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neurohormonal signaling and mitochondrial dynamism are seemingly distinct processes that are almost ubiquitous among multicellular organisms. Both of these processes are regulated by GTPases, and disturbances in either can provoke disease. Here, inconspicuous pathophysiological connectivity between neurohormonal signaling and mitochondrial dynamism is reviewed in the context of cardiac and neurological syndromes. For both processes, greater understanding of basic mechanisms has evoked a reversal of conventional pathophysiological concepts. Thus, neurohormonal systems induced in, and previously thought to be critical for, cardiac functioning in heart failure are now pharmaceutically interrupted as modern standard of care. And, mitochondrial abnormalities in neuropathies that were originally attributed to an imbalance between mitochondrial fusion and fission are increasingly recognized as an interruption of axonal mitochondrial transport. The data are presented in a historical context to provided insight into how scientific thought has evolved and to foster an appreciation for how seemingly different areas of investigation can converge. Finally, some theoretical notions are presented to explain how different molecular and functional defects can evoke tissue-specific disease.
Collapse
Affiliation(s)
- Gerald W Dorn Ii
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
11
|
Smith KP, Lee W, Tonelli M, Lee Y, Light SH, Cornilescu G, Chakravarthy S. Solution structure and dynamics of the mitochondrial-targeted GTPase-activating protein (GAP) VopE by an integrated NMR/SAXS approach. Protein Sci 2022; 31:e4282. [PMID: 35137487 PMCID: PMC9047041 DOI: 10.1002/pro.4282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/17/2022] [Accepted: 01/27/2022] [Indexed: 11/11/2022]
Abstract
The bacterial pathogen Vibrio cholerae use a type III secretion system to inject effector proteins into a host cell. Recently, a putative Toxic GTPase Activating Protein (ToxGAP) called Vibrio outer protein E (VopE) was identified as a T3SS substrate and virulence factor that affected host mitochondrial dynamics and immune response. However, biophysical and structural characterization has been absent. Here, we describe solution NMR structure of the putative GTPase-activating protein (GAP) domain (73-204) of VopE. Using size exclusion chromatography coupled with small-angle x-ray scattering and residual dipolar coupling data, we restrained the MD process to efficiently determine the overall fold and improve the quality of the output calculated structures. Comparing the structure of VopE with other ToxGAP's revealed a similar overall fold with several features unique to VopE. Specifically, the "Bulge 1," α1 helix, and noteworthy "backside linker" elements on the N-terminus are dissimilar to the other ToxGAP's. By using NMR relaxation dispersion experiments, we demonstrate that these regions undergo motions on a > 6 s-1 timescale. Based on the disposition of these mobile regions relative to the putative catalytic arginine residue, we hypothesize that the protein may undergo structural changes to bind cognate GTPases.
Collapse
Affiliation(s)
- Kyle P. Smith
- Department of Cell & Developmental BiologyNorthwestern University ChicagoIllinoisUSA
- Xilio TherapeuticsWalthamMassachusettsUSA
| | - Woonghee Lee
- Department of ChemistryUniversity of Colorado‐DenverDenverColoradoUSA
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, Department of BiochemistryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Yeongjoon Lee
- Department of ChemistryUniversity of Colorado‐DenverDenverColoradoUSA
| | - Samuel H. Light
- Department of MicrobiologyUniversity of ChicagoChicagoIllinoisUSA
| | - Gabriel Cornilescu
- Advanced Technology Research Facility, Frederick National Laboratory for Cancer ResearchLeidos Biomedical Research, Inc., National Cancer Institute, National Institutes of HealthFrederickMarylandUSA
| | | |
Collapse
|
12
|
Hu D, Liu Z, Qi X. Mitochondrial Quality Control Strategies: Potential Therapeutic Targets for Neurodegenerative Diseases? Front Neurosci 2021; 15:746873. [PMID: 34867159 PMCID: PMC8633545 DOI: 10.3389/fnins.2021.746873] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022] Open
Abstract
Many lines of evidence have indicated the therapeutic potential of rescuing mitochondrial integrity by targeting specific mitochondrial quality control pathways in neurodegenerative diseases, such as Parkinson's disease, Huntington's disease, and Alzheimer's disease. In addition to ATP synthesis, mitochondria are critical regulators of ROS production, lipid metabolism, calcium buffering, and cell death. The mitochondrial unfolded protein response, mitochondrial dynamics, and mitophagy are the three main quality control mechanisms responsible for maintaining mitochondrial proteostasis and bioenergetics. The proper functioning of these complex processes is necessary to surveil and restore mitochondrial homeostasis and the healthy pool of mitochondria in cells. Mitochondrial dysfunction occurs early and causally in disease pathogenesis. A significant accumulation of mitochondrial damage resulting from compromised quality control pathways leads to the development of neuropathology. Moreover, genetic or pharmaceutical manipulation targeting the mitochondrial quality control mechanisms can sufficiently rescue mitochondrial integrity and ameliorate disease progression. Thus, therapies that can improve mitochondrial quality control have great promise for the treatment of neurodegenerative diseases. In this review, we summarize recent progress in the field that underscores the essential role of impaired mitochondrial quality control pathways in the pathogenesis of neurodegenerative diseases. We also discuss the translational approaches targeting mitochondrial function, with a focus on the restoration of mitochondrial integrity, including mitochondrial dynamics, mitophagy, and mitochondrial proteostasis.
Collapse
Affiliation(s)
- Di Hu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Zunren Liu
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Xin Qi
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Center for Mitochondrial Disease, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
13
|
Shvetsova A, Masud AJ, Schneider L, Bergmann U, Monteuuis G, Miinalainen IJ, Hiltunen JK, Kastaniotis AJ. A hunt for OM45 synthetic petite interactions in Saccharomyces cerevisiae reveals a role for Miro GTPase Gem1p in cristae structure maintenance. Microbiologyopen 2021; 10:e1238. [PMID: 34713605 PMCID: PMC8501180 DOI: 10.1002/mbo3.1238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 11/28/2022] Open
Abstract
Om45 is a major protein of the yeast's outer mitochondrial membrane under respiratory conditions. However, the cellular role of the protein has remained obscure. Previously, deletion mutant phenotypes have not been found, and clear amino acid sequence similarities that would allow inferring its functional role are not available. In this work, we describe synthetic petite mutants of GEM1 and UGO1 that depend on the presence of OM45 for respiratory growth, as well as the identification of several multicopy suppressors of the synthetic petite phenotypes. In the analysis of our mutants, we demonstrate that Om45p and Gem1p have a collaborative role in the maintenance of mitochondrial morphology, cristae structure, and mitochondrial DNA maintenance. A group of multicopy suppressors rescuing the synthetic lethal phenotypes of the mutants on non-fermentable carbon sources additionally supports this result. Our results imply that the synthetic petite phenotypes we observed are due to the disturbance of the inner mitochondrial membrane and point to this mitochondrial sub-compartment as the main target of action of Om45p, Ugo1p, and the yeast Miro GTPase Gem1p.
Collapse
Affiliation(s)
- Antonina Shvetsova
- Faculty of Biochemistry and Molecular Medicine and Biocenter OuluUniversity of OuluOuluFinland
| | - Ali J. Masud
- Faculty of Biochemistry and Molecular Medicine and Biocenter OuluUniversity of OuluOuluFinland
| | - Laura Schneider
- Faculty of Biochemistry and Molecular Medicine and Biocenter OuluUniversity of OuluOuluFinland
| | - Ulrich Bergmann
- Faculty of Biochemistry and Molecular Medicine and Biocenter OuluUniversity of OuluOuluFinland
| | - Geoffray Monteuuis
- Faculty of Biochemistry and Molecular Medicine and Biocenter OuluUniversity of OuluOuluFinland
- Present address:
Department of Biochemistry and Developmental BiologyUniversity of HelsinkiHelsinkiFinland
| | - Ilkka J. Miinalainen
- Faculty of Biochemistry and Molecular Medicine and Biocenter OuluUniversity of OuluOuluFinland
| | - J. Kalervo Hiltunen
- Faculty of Biochemistry and Molecular Medicine and Biocenter OuluUniversity of OuluOuluFinland
| | | |
Collapse
|
14
|
Muench NA, Patel S, Maes ME, Donahue RJ, Ikeda A, Nickells RW. The Influence of Mitochondrial Dynamics and Function on Retinal Ganglion Cell Susceptibility in Optic Nerve Disease. Cells 2021; 10:cells10071593. [PMID: 34201955 PMCID: PMC8306483 DOI: 10.3390/cells10071593] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/30/2022] Open
Abstract
The important roles of mitochondrial function and dysfunction in the process of neurodegeneration are widely acknowledged. Retinal ganglion cells (RGCs) appear to be a highly vulnerable neuronal cell type in the central nervous system with respect to mitochondrial dysfunction but the actual reasons for this are still incompletely understood. These cells have a unique circumstance where unmyelinated axons must bend nearly 90° to exit the eye and then cross a translaminar pressure gradient before becoming myelinated in the optic nerve. This region, the optic nerve head, contains some of the highest density of mitochondria present in these cells. Glaucoma represents a perfect storm of events occurring at this location, with a combination of changes in the translaminar pressure gradient and reassignment of the metabolic support functions of supporting glia, which appears to apply increased metabolic stress to the RGC axons leading to a failure of axonal transport mechanisms. However, RGCs themselves are also extremely sensitive to genetic mutations, particularly in genes affecting mitochondrial dynamics and mitochondrial clearance. These mutations, which systemically affect the mitochondria in every cell, often lead to an optic neuropathy as the sole pathologic defect in affected patients. This review summarizes knowledge of mitochondrial structure and function, the known energy demands of neurons in general, and places these in the context of normal and pathological characteristics of mitochondria attributed to RGCs.
Collapse
Affiliation(s)
- Nicole A. Muench
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (N.A.M.); (S.P.); (R.J.D.)
| | - Sonia Patel
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (N.A.M.); (S.P.); (R.J.D.)
| | - Margaret E. Maes
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria;
| | - Ryan J. Donahue
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (N.A.M.); (S.P.); (R.J.D.)
- Boston Children’s Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA;
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Robert W. Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (N.A.M.); (S.P.); (R.J.D.)
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
- Correspondence:
| |
Collapse
|
15
|
Zerimech S, Nguyen H, Baltan S. Mitochondria as the memory of preconditioning. CONDITIONING MEDICINE 2021; 4:151-160. [PMID: 36128004 PMCID: PMC9484407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Preconditioning is such a paradigm that a stimulus below the threshold of causing harm makes the brain stronger and resilient to subsequent injury. Preconditioning affords a vigorous tolerance to the brain against neurodegeneration. Numerous efforts have tried to identify the molecular targets involved in preconditioning-induced protective responses and interestingly many of those diverse mechanisms posit mitochondria as a master regulator of preconditioning. Therefore, in this review, we will critically discuss recent and emerging evidence for the involvement of mitochondria within the preconditioning paradigm. We will introduce the crucial targets and signaling cascades by which mitochondria exert preconditioning with a focus on white matter mitochondria and whether and how mechanisms for preconditioning differ in neurons and glial cells. In this aspect, we will evaluate the role of mitochondrial shaping proteins to establish structure-function interdependence for fusion-fission balance, motility, ATP production, Ca+2, and ROS scavenging. We will also discuss how aging impacts mitochondria and the consequences of mitochondrial aging on preconditioning mechanisms. We will concentrate on the regulation of mitochondrial DNA content and quantification specifically for its value as a biomarker to monitor disease conditions. The identification of these mitochondrial preconditioning mechanisms can be translated to potential pharmacological interventions to increase intrinsic resilience of the brain to injury and to develop novel approaches to neurodegenerative diseases. Moreover, mitochondria dynamics can be used as a memory or biomarker of preconditioning.
Collapse
Affiliation(s)
- Sarah Zerimech
- Anesthesiology and Peri-Operative Medicine (APOM), Oregon Health and Science University, Portland, Oregon 97239
| | - Hung Nguyen
- Anesthesiology and Peri-Operative Medicine (APOM), Oregon Health and Science University, Portland, Oregon 97239
| | - Selva Baltan
- Anesthesiology and Peri-Operative Medicine (APOM), Oregon Health and Science University, Portland, Oregon 97239
| |
Collapse
|
16
|
Qin Y, Jiang X, Yang Q, Zhao J, Zhou Q, Zhou Y. The Functions, Methods, and Mobility of Mitochondrial Transfer Between Cells. Front Oncol 2021; 11:672781. [PMID: 34041035 PMCID: PMC8141658 DOI: 10.3389/fonc.2021.672781] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022] Open
Abstract
Mitochondria are vital organelles in cells, regulating energy metabolism and apoptosis. Mitochondrial transcellular transfer plays a crucial role during physiological and pathological conditions, such as rescuing recipient cells from bioenergetic deficit and tumorigenesis. Studies have shown several structures that conduct transcellular transfer of mitochondria, including tunneling nanotubes (TNTs), extracellular vesicles (EVs), and Cx43 gap junctions (GJs). The intra- and intercellular transfer of mitochondria is driven by a transport complex. Mitochondrial Rho small GTPase (MIRO) may be the adaptor that connects the transport complex with mitochondria, and myosin XIX is the motor protein of the transport complex, which participates in the transcellular transport of mitochondria through TNTs. In this review, the roles of TNTs, EVs, GJs, and related transport complexes in mitochondrial transcellular transfer are discussed in detail, as well as the formation mechanisms of TNTs and EVs. This review provides the basis for the development of potential clinical therapies targeting the structures of mitochondrial transcellular transfer.
Collapse
Affiliation(s)
- Yiming Qin
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, China
| | - Xin Jiang
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, China
| | - Qi Yang
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, China
| | - Jiaqi Zhao
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, China
| | - Qiong Zhou
- Department of Neurology, Yiyang Central Hospital, Yiyang City, China
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, China
| |
Collapse
|
17
|
Cikic S, Chandra PK, Harman JC, Rutkai I, Katakam PV, Guidry JJ, Gidday JM, Busija DW. Sexual differences in mitochondrial and related proteins in rat cerebral microvessels: A proteomic approach. J Cereb Blood Flow Metab 2021; 41:397-412. [PMID: 32241204 PMCID: PMC8370005 DOI: 10.1177/0271678x20915127] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sex differences in mitochondrial numbers and function are present in large cerebral arteries, but it is unclear whether these differences extend to the microcirculation. We performed an assessment of mitochondria-related proteins in cerebral microvessels (MVs) isolated from young, male and female, Sprague-Dawley rats. MVs composed of arterioles, capillaries, and venules were isolated from the cerebrum and used to perform a 3 versus 3 quantitative, multiplexed proteomics experiment utilizing tandem mass tags (TMT), coupled with liquid chromatography/mass spectrometry (LC/MS). MS data and bioinformatic analyses were performed using Proteome Discoverer version 2.2 and Ingenuity Pathway Analysis. We identified a total of 1969 proteins, of which 1871 were quantified by TMT labels. Sixty-four proteins were expressed significantly (p < 0.05) higher in female samples compared with male samples. Females expressed more mitochondrial proteins involved in energy production, mitochondrial membrane structure, anti-oxidant enzyme proteins, and those involved in fatty acid oxidation. Conversely, males had higher expression levels of mitochondria-destructive proteins. Our findings reveal, for the first time, the full extent of sexual dimorphism in the mitochondrial metabolic protein profiles of MVs, which may contribute to sex-dependent cerebrovascular and neurological pathologies.
Collapse
Affiliation(s)
- Sinisa Cikic
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Partha K Chandra
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jarrod C Harman
- Department of Ophthalmology, Louisiana State University Health Science Center, New Orleans, LA, USA.,Department of Physiology, Louisiana State University Health Science Center, New Orleans, LA, USA.,Neuroscience Center of Excellence, Louisiana State University Health Science Center, New Orleans, LA, USA.,Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.,Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Prasad Vg Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.,Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Jessie J Guidry
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, New Orleans, LA, USA.,Proteomics Core Facility, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Jeffrey M Gidday
- Department of Ophthalmology, Louisiana State University Health Science Center, New Orleans, LA, USA.,Department of Physiology, Louisiana State University Health Science Center, New Orleans, LA, USA.,Neuroscience Center of Excellence, Louisiana State University Health Science Center, New Orleans, LA, USA.,Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - David W Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.,Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| |
Collapse
|
18
|
Wang XL, Feng ST, Wang ZZ, Chen NH, Zhang Y. Role of mitophagy in mitochondrial quality control: Mechanisms and potential implications for neurodegenerative diseases. Pharmacol Res 2021; 165:105433. [PMID: 33454337 DOI: 10.1016/j.phrs.2021.105433] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/15/2020] [Accepted: 01/09/2021] [Indexed: 02/06/2023]
Abstract
Neurodegenerative diseases (e.g., Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis) commonly characterized by the gradual loss of neurons have a seriously bad impact on motor and cognitive abilities of affected humans and bring great inconvenience to their lives. Mitochondrial dysfunction has been considered the key and common factor for the pathologies of neurodegenerative diseases for that neurons are extremely energy-intensive due to their unique properties in structures and functions. Thus, mitophagy, as a central role of mitochondrial quality control and currently believed to be the most effective pathway to clear dysfunctional or unwanted mitochondria, is rather crucial in the preservation of neuronal health. In addition, mitophagy establishes an intimated link with several other pathways of mitochondrial quality control (e.g., mitochondrial biogenesis and mitochondrial dynamics), and they work together to preserve mitochondrial health. Therefore, in this review, we summarized the recent process on the mechanisms of mitophagy pathways in mammals, it's linking to mitochondrial quality control, its role in several major neurodegenerative diseases, and possible therapeutic interventions focusing on mitophagy pathways. And we expect that it can provide us with more understanding of the mitophagy pathways and more promising approaches for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiao-Le Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Si-Tong Feng
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
19
|
Panchal K, Tiwari AK. Miro (Mitochondrial Rho GTPase), a key player of mitochondrial axonal transport and mitochondrial dynamics in neurodegenerative diseases. Mitochondrion 2021; 56:118-135. [PMID: 33127590 DOI: 10.1016/j.mito.2020.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
Miro (mitochondrial Rho GTPases) a mitochondrial outer membrane protein, plays a vital role in the microtubule-based mitochondrial axonal transport, mitochondrial dynamics (fusion and fission) and Mito-Ca2+ homeostasis. It forms a major protein complex with Milton (an adaptor protein), kinesin and dynein (motor proteins), and facilitates bidirectional mitochondrial axonal transport such as anterograde and retrograde transport. By forming this protein complex, Miro facilitates the mitochondrial axonal transport and fulfills the neuronal energy demand, maintain the mitochondrial homeostasis and neuronal survival. It has been demonstrated that altered mitochondrial biogenesis, improper mitochondrial axonal transport, and mitochondrial dynamics are the early pathologies associated with most of the neurodegenerative diseases (NDs). Being the sole mitochondrial outer membrane protein associated with mitochondrial axonal transport-related processes, Miro proteins can be one of the key players in various NDs such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD). Thus, in the current review, we have discussed the evolutionarily conserved Miro proteins and its role in the pathogenesis of the various NDs. From this, we indicated that Miro proteins may act as a potential target for a novel therapeutic intervention for the treatment of various NDs.
Collapse
Affiliation(s)
- Komal Panchal
- Genetics & Developmental Biology Laboratory, Department of Biological Sciences & Biotechnology, Institute of Advanced Research (IAR), Koba, Gandhinagar, Gujarat 382426, India
| | - Anand Krishna Tiwari
- Genetics & Developmental Biology Laboratory, Department of Biological Sciences & Biotechnology, Institute of Advanced Research (IAR), Koba, Gandhinagar, Gujarat 382426, India.
| |
Collapse
|
20
|
Defective mitophagy in Alzheimer's disease. Ageing Res Rev 2020; 64:101191. [PMID: 33022416 DOI: 10.1016/j.arr.2020.101191] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/25/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a progressive, mental illness without cure. Several years of intense research on postmortem AD brains, cell and mouse models of AD have revealed that multiple cellular changes are involved in the disease process, including mitochondrial abnormalities, synaptic damage, and glial/astrocytic activation, in addition to age-dependent accumulation of amyloid beta (Aβ) and hyperphosphorylated tau (p-tau). Synaptic damage and mitochondrial dysfunction are early cellular changes in the disease process. Healthy and functionally active mitochondria are essential for cellular functioning. Dysfunctional mitochondria play a central role in aging and AD. Mitophagy is a cellular process whereby damaged mitochondria are selectively removed from cell and mitochondrial quality and biogenesis. Mitophagy impairments cause the progressive accumulation of defective organelle and damaged mitochondria in cells. In AD, increased levels of Aβ and p-tau can induce reactive oxygen species (ROS) production, causing excessive fragmentation of mitochondria and promoting defective mitophagy. The current article discusses the latest developments of mitochondrial research and also highlights multiple types of mitophagy, including Aβ and p-tau-induced mitophagy, stress-induced mitophagy, receptor-mediated mitophagy, ubiquitin mediated mitophagy and basal mitophagy. This article also discusses the physiological states of mitochondria, including fission-fusion balance, Ca2+ transport, and mitochondrial transport in normal and diseased conditions. Our article summarizes current therapeutic interventions, like chemical or natural mitophagy enhancers, that influence mitophagy in AD. Our article discusses whether a partial reduction of Drp1 can be a mitophagy enhancer and a therapeutic target for mitophagy in AD and other neurological diseases.
Collapse
|
21
|
Paul D, Chipurupalli S, Justin A, Raja K, Mohankumar SK. Caenorhabditis elegans as a possible model to screen anti-Alzheimer's therapeutics. J Pharmacol Toxicol Methods 2020; 106:106932. [PMID: 33091537 DOI: 10.1016/j.vascn.2020.106932] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) is regarded as one of the significant health burdens, as the prevalence is raising worldwide and gradually reaching to epidemic proportions. Consequently, a number of scientific investigations have been initiated to derive therapeutics to combat AD with a concurrent advancement in pharmacological methods and experimental models. Whilst, the available experimental pharmacological approaches both in vivo and in vitro led to the development of AD therapeutics, the precise manner by which experimental models mimic either one or more biomarkers of human pathology of AD is gaining scientific attentions. Caenorhabditis elegans (C. elegans) has been regarded as an emerging model for various reasons, including its high similarities with the biomarkers of human AD. Our review supports the versatile nature of C. elegans and collates that it is a well-suited model to elucidate various molecular mechanisms by which AD therapeutics elicit their pharmacological effects. It is apparent that C. elegans is capable of establishing the pathological processes that links the endoplasmic reticulum and mitochondria dysfunctions in AD, exploring novel molecular cascades of AD pathogenesis and underpinning causal and consequential changes in the associated proteins and genes. In summary, C. elegans is a unique and feasible model for the screening of anti-Alzheimer's therapeutics and has the potential for further scientific exploration.
Collapse
Affiliation(s)
- Deepraj Paul
- TIFAC CORE in Herbal Drugs, Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Rockland's, Ooty 643001, Tamil Nadu, India
| | - Sandhya Chipurupalli
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Rockland's, Ooty 643001, Tamil Nadu, India
| | - Antony Justin
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Rockland's, Ooty 643001, Tamil Nadu, India
| | - Kalpana Raja
- Regenerative Biology, Morgridge Institute of Research, Madison, WI, USA
| | - Suresh K Mohankumar
- TIFAC CORE in Herbal Drugs, Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Rockland's, Ooty 643001, Tamil Nadu, India.
| |
Collapse
|
22
|
Panchal K, Tiwari AK. Miro, a Rho GTPase genetically interacts with Alzheimer's disease-associated genes ( Tau, Aβ42 and Appl) in Drosophila melanogaster. Biol Open 2020; 9:bio049569. [PMID: 32747449 PMCID: PMC7489762 DOI: 10.1242/bio.049569] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
Miro (mitochondrial Rho GTPases), a mitochondrial outer membrane protein, facilitates mitochondrial axonal transport along the microtubules to facilitate neuronal function. It plays an important role in regulating mitochondrial dynamics (fusion and fission) and cellular energy generation. Thus, Miro might be associated with the key pathologies of several neurodegenerative diseases (NDs) including Alzheimer's disease (AD). In the present manuscript, we have demonstrated the possible genetic interaction between Miro and AD-related genes such as Tau, Aβ42 and Appl in Drosophila melanogaster Ectopic expression of Tau, Aβ42 and Appl induced a rough eye phenotype, defects in phototaxis and climbing activity, and shortened lifespan in the flies. In our study, we have observed that overexpression of Miro improves the rough eye phenotype, behavioral activities (climbing and phototaxis) and ATP level in AD model flies. Further, the improvement examined in AD-related phenotypes was correlated with decreased oxidative stress, cell death and neurodegeneration in Miro overexpressing AD model flies. Thus, the obtained results suggested that Miro genetically interacts with AD-related genes in Drosophila and has the potential to be used as a therapeutic target for the design of therapeutic strategies for NDs.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Komal Panchal
- Genetics and Developmental Biology Laboratory, Department of Biological Sciences and Biotechnology, Institute of Advanced Research (IAR), Koba, Gandhinagar, Gujarat 382426, India
| | - Anand Krishna Tiwari
- Genetics and Developmental Biology Laboratory, Department of Biological Sciences and Biotechnology, Institute of Advanced Research (IAR), Koba, Gandhinagar, Gujarat 382426, India
| |
Collapse
|
23
|
Proteomic profiling of developing wheat heads under water-stress. Funct Integr Genomics 2020; 20:695-710. [PMID: 32681185 DOI: 10.1007/s10142-020-00746-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 10/23/2022]
Abstract
A replicated iTRAQ (isobaric tags for relative and absolute quantification) study on developing wheat heads from two doubled haploid (DH) lines identified from a cross between cv Westonia x cv Kauz characterized the proteome changes influenced by reproductive stage water-stress. All lines were exposed to 10 days of water-stress from early booting (Zadok 40), with sample sets taken from five head developmental stages. Two sample groups (water-stressed and control) account for 120 samples that required 18 eight-plex iTRAQ runs. Based on the IWGSC RefSeq v1 wheat assembly, among the 4592 identified proteins, a total of 132 proteins showed a significant response to water-stress, including the down-regulation of a mitochondrial Rho GTPase, a regulator of intercellular fundamental biological processes (7.5 fold) and cell division protein FtsZ at anthesis (6.0 fold). Up-regulated proteins included inosine-5'-monophosphate dehydrogenase (3.83 fold) and glycerophosphodiester phosphodiesterase (4.05 fold). The Pre-FHE and FHE stages (full head emerged) of head development were differentiated by 391 proteins and 270 proteins differentiated the FHE and Post-FHE stages. Water-stress during meiosis affected seed setting with 27% and 6% reduction in the progeny DH105 and DH299 respectively. Among the 77 proteins that differentiated between the two DH lines, 7 proteins were significantly influenced by water-stress and correlated with the seed set phenotype response of the DH lines to water-stress (e.g. the up-regulation of a subtilisin-like protease in DH 299 relative to DH 105). This study provided unique insights into the biological changes in developing wheat head that occur during water-stress.
Collapse
|
24
|
High Throughput strategies Aimed at Closing the GAP in Our Knowledge of Rho GTPase Signaling. Cells 2020; 9:cells9061430. [PMID: 32526908 PMCID: PMC7348934 DOI: 10.3390/cells9061430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 12/21/2022] Open
Abstract
Since their discovery, Rho GTPases have emerged as key regulators of cytoskeletal dynamics. In humans, there are 20 Rho GTPases and more than 150 regulators that belong to the RhoGEF, RhoGAP, and RhoGDI families. Throughout development, Rho GTPases choregraph a plethora of cellular processes essential for cellular migration, cell–cell junctions, and cell polarity assembly. Rho GTPases are also significant mediators of cancer cell invasion. Nevertheless, to date only a few molecules from these intricate signaling networks have been studied in depth, which has prevented appreciation for the full scope of Rho GTPases’ biological functions. Given the large complexity involved, system level studies are required to fully grasp the extent of their biological roles and regulation. Recently, several groups have tackled this challenge by using proteomic approaches to map the full repertoire of Rho GTPases and Rho regulators protein interactions. These studies have provided in-depth understanding of Rho regulators specificity and have contributed to expand Rho GTPases’ effector portfolio. Additionally, new roles for understudied family members were unraveled using high throughput screening strategies using cell culture models and mouse embryos. In this review, we highlight theses latest large-scale efforts, and we discuss the emerging opportunities that may lead to the next wave of discoveries.
Collapse
|
25
|
Cheng H, Gang X, He G, Liu Y, Wang Y, Zhao X, Wang G. The Molecular Mechanisms Underlying Mitochondria-Associated Endoplasmic Reticulum Membrane-Induced Insulin Resistance. Front Endocrinol (Lausanne) 2020; 11:592129. [PMID: 33329397 PMCID: PMC7719781 DOI: 10.3389/fendo.2020.592129] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
Mitochondria and the endoplasmic reticulum (ER) are connected at multiple sites via what are known as mitochondria-associated ER membranes (MAMs). These associations are known to play an important role in maintaining cellular homeostasis. Impaired MAM signaling has wide-ranging effects in many diseases, such as obesity, diabetes, and neurodegenerative disorders. Accumulating evidence has suggested that MAMs influence insulin signaling through different pathways, including those associated with Ca2+ signaling, lipid metabolism, mitochondrial function, ER stress responses, and inflammation. Altered MAM signaling is a common feature of insulin resistance in different tissues, including the liver, muscle, and even the brain. In the liver, MAMs are key glucose-sensing regulators and have been proposed to be a hub for insulin signaling. Impaired MAM integrity has been reported to disrupt hepatic responses to changes in glucose availability during nutritional transition and to induce hepatic insulin resistance. Meanwhile, these effects can be rescued by the reinforcement of MAM interactions. In contrast, several studies have proposed that enhanced ER-mitochondria connections are detrimental to hepatic insulin signaling and can lead to mitochondrial dysfunction. Thus, given these contradictory results, the role played by the MAM in the regulation of hepatic insulin signaling remains elusive. Similarly, in skeletal muscle, enhanced MAM formation may be beneficial in the early stage of diabetes, whereas continuous MAM enhancement aggravates insulin resistance. Furthermore, recent studies have suggested that ER stress may be the primary pathway through which MAMs induce brain insulin resistance, especially in the hypothalamus. This review will discuss the possible mechanisms underlying MAM-associated insulin resistance as well as the therapeutic potential of targeting the MAM in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | - Xue Zhao
- *Correspondence: Guixia Wang, ; Xue Zhao,
| | | |
Collapse
|
26
|
Olmedo I, Pino G, Riquelme JA, Aranguiz P, Díaz MC, López-Crisosto C, Lavandero S, Donoso P, Pedrozo Z, Sánchez G. Inhibition of the proteasome preserves Mitofusin-2 and mitochondrial integrity, protecting cardiomyocytes during ischemia-reperfusion injury. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165659. [PMID: 31891806 DOI: 10.1016/j.bbadis.2019.165659] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 12/13/2019] [Accepted: 12/24/2019] [Indexed: 12/18/2022]
Abstract
Cardiomyocyte loss is the main cause of myocardial dysfunction following an ischemia-reperfusion (IR) injury. Mitochondrial dysfunction and altered mitochondrial network dynamics play central roles in cardiomyocyte death. Proteasome inhibition is cardioprotective in the setting of IR; however, the mechanisms underlying this protection are not well-understood. Several proteins that regulate mitochondrial dynamics and energy metabolism, including Mitofusin-2 (Mfn2), are degraded by the proteasome. The aim of this study was to evaluate whether proteasome inhibition can protect cardiomyocytes from IR damage by maintaining Mfn2 levels and preserving mitochondrial network integrity. Using ex vivo Langendorff-perfused rat hearts and in vitro neonatal rat ventricular myocytes, we showed that the proteasome inhibitor MG132 reduced IR-induced cardiomyocyte death. Moreover, MG132 preserved mitochondrial mass, prevented mitochondrial network fragmentation, and abolished IR-induced reductions in Mfn2 levels in heart tissue and cultured cardiomyocytes. Interestingly, Mfn2 overexpression also prevented cardiomyocyte death. This effect was apparently specific to Mfn2, as overexpression of Miro1, another protein implicated in mitochondrial dynamics, did not confer the same protection. Our results suggest that proteasome inhibition protects cardiomyocytes from IR damage. This effect could be partly mediated by preservation of Mfn2 and therefore mitochondrial integrity.
Collapse
Affiliation(s)
- Ivonne Olmedo
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Gonzalo Pino
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Jaime A Riquelme
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380492, Chile; Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago de Chile 8380492, Chile
| | - Pablo Aranguiz
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andrés Bello, Viña del Mar 2520000, Chile
| | - Magda C Díaz
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380492, Chile; Grupo de Investigación en Ciencias Básicas y Clínicas de la Salud, Pontificia Universidad Javeriana de Cali, Colombia
| | - Camila López-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380492, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380492, Chile; Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), Santiago de Chile 7680201, Chile; Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX 75390-8573, USA
| | - Paulina Donoso
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Zully Pedrozo
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380492, Chile.
| | - Gina Sánchez
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile.
| |
Collapse
|
27
|
Bastian C, Day J, Politano S, Quinn J, Brunet S, Baltan S. Preserving Mitochondrial Structure and Motility Promotes Recovery of White Matter After Ischemia. Neuromolecular Med 2019; 21:484-492. [PMID: 31152363 PMCID: PMC6884671 DOI: 10.1007/s12017-019-08550-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/20/2019] [Indexed: 12/23/2022]
Abstract
Stroke significantly affects white matter in the brain by impairing axon function, which results in clinical deficits. Axonal mitochondria are highly dynamic and are transported via microtubules in the anterograde or retrograde direction, depending upon axonal energy demands. Recently, we reported that mitochondrial division inhibitor 1 (Mdivi-1) promotes axon function recovery by preventing mitochondrial fission only when applied during ischemia. Application of Mdivi-1 after injury failed to protect axon function. Interestingly, L-NIO, which is a NOS3 inhibitor, confers post-ischemic protection to axon function by attenuating mitochondrial fission and preserving mitochondrial motility via conserving levels of the microtubular adaptor protein Miro-2. We propose that preventing mitochondrial fission protects axon function during injury, but that restoration of mitochondrial motility is more important to promote axon function recovery after injury. Thus, Miro-2 may be a therapeutic molecular target for recovery following a stroke.
Collapse
Affiliation(s)
- Chinthasagar Bastian
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue/NC30, Cleveland, OH, 44195, USA
| | - Jerica Day
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue/NC30, Cleveland, OH, 44195, USA
| | - Stephen Politano
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue/NC30, Cleveland, OH, 44195, USA
| | - John Quinn
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue/NC30, Cleveland, OH, 44195, USA
| | - Sylvain Brunet
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue/NC30, Cleveland, OH, 44195, USA
| | - Selva Baltan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue/NC30, Cleveland, OH, 44195, USA.
| |
Collapse
|
28
|
The Overcrowded Crossroads: Mitochondria, Alpha-Synuclein, and the Endo-Lysosomal System Interaction in Parkinson's Disease. Int J Mol Sci 2019; 20:ijms20215312. [PMID: 31731450 PMCID: PMC6862467 DOI: 10.3390/ijms20215312] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder worldwide, mainly affecting the elderly. The disease progresses gradually, with core motor presentations and a multitude of non-motor manifestations. There are two neuropathological hallmarks of PD, the dopaminergic neuronal loss and the alpha-synuclein-containing Lewy body inclusions in the substantia nigra. While the exact pathomechanisms of PD remain unclear, genetic investigations have revealed evidence of the involvement of mitochondrial function, alpha-synuclein (α-syn) aggregation, and the endo-lysosomal system, in disease pathogenesis. Due to the high energy demand of dopaminergic neurons, mitochondria are of special importance acting as the cellular powerhouse. Mitochondrial dynamic fusion and fission, and autophagy quality control keep the mitochondrial network in a healthy state. Should defects of the organelle occur, a variety of reactions would ensue at the cellular level, including disrupted mitochondrial respiratory network and perturbed calcium homeostasis, possibly resulting in cellular death. Meanwhile, α-syn is a presynaptic protein that helps regulate synaptic vesicle transportation and endocytosis. Its misfolding into oligomeric sheets and fibrillation is toxic to the mitochondria and neurons. Increased cellular oxidative stress leads to α-syn accumulation, causing mitochondrial dysfunction. The proteasome and endo-lysosomal systems function to regulate damage and unwanted waste management within the cell while facilitating the quality control of mitochondria and α-syn. This review will analyze the biological functions and interactions between mitochondria, α-syn, and the endo-lysosomal system in the pathogenesis of PD.
Collapse
|
29
|
Mitochondrial Transfer of Wharton's Jelly Mesenchymal Stem Cells Eliminates Mutation Burden and Rescues Mitochondrial Bioenergetics in Rotenone-Stressed MELAS Fibroblasts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9537504. [PMID: 31249652 PMCID: PMC6556302 DOI: 10.1155/2019/9537504] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/03/2019] [Indexed: 12/28/2022]
Abstract
Wharton's jelly mesenchymal stem cells (WJMSCs) transfer healthy mitochondria to cells harboring a mitochondrial DNA (mtDNA) defect. Mitochondrial myopathy, encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) is one of the major subgroups of mitochondrial diseases, caused by the mt.3243A>G point mutation in the mitochondrial tRNALeu(UUR) gene. The specific aim of the study is to investigate whether WJMSCs exert therapeutic effect for mitochondrial dysfunction in cells of MELAS patient through donating healthy mitochondria. We herein demonstrate that WJMSCs transfer healthy mitochondria into rotenone-stressed fibroblasts of a MELAS patient, thereby eliminating mutation burden and rescuing mitochondrial functions. In the coculture system in vitro study, WJMSCs transferred healthy mitochondria to rotenone-stressed MELAS fibroblasts. By inhibiting actin polymerization to block tunneling nanotubes (TNTs), the WJMSC-conducted mitochondrial transfer was abrogated. After mitochondrial transfer, the mt.3243A>G mutation burden of MELAS fibroblasts was reduced to an undetectable level, with long-term retention. Sequencing results confirmed that the transferred mitochondria were donated from WJMSCs. Furthermore, mitochondrial transfer of WJMSCs to MELAS fibroblasts improves mitochondrial functions and cellular performance, including protein translation of respiratory complexes, ROS overexpression, mitochondrial membrane potential, mitochondrial morphology and bioenergetics, cell proliferation, mitochondrion-dependent viability, and apoptotic resistance. This study demonstrates that WJMSCs exert bioenergetic therapeutic effects through mitochondrial transfer. This finding paves the way for the development of innovative treatments for MELAS and other mitochondrial diseases.
Collapse
|
30
|
Dietz JV, Bohovych I, Viana MP, Khalimonchuk O. Proteolytic regulation of mitochondrial dynamics. Mitochondrion 2019; 49:289-304. [PMID: 31029640 DOI: 10.1016/j.mito.2019.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/19/2019] [Indexed: 12/23/2022]
Abstract
Spatiotemporal changes in the abundance, shape, and cellular localization of the mitochondrial network, also known as mitochondrial dynamics, are now widely recognized to play a key role in mitochondrial and cellular physiology as well as disease states. This process involves coordinated remodeling of the outer and inner mitochondrial membranes by conserved dynamin-like guanosine triphosphatases and their partner molecules in response to various physiological and stress stimuli. Although the core machineries that mediate fusion and partitioning of the mitochondrial network have been extensively characterized, many aspects of their function and regulation are incompletely understood and only beginning to emerge. In the present review we briefly summarize current knowledge about how the key mitochondrial dynamics-mediating factors are regulated via selective proteolysis by mitochondrial and cellular proteolytic machineries.
Collapse
Affiliation(s)
- Jonathan V Dietz
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, United States of America
| | - Iryna Bohovych
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, United States of America
| | - Martonio Ponte Viana
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, United States of America
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, United States of America; Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, United States of America; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, United States of America.
| |
Collapse
|
31
|
Long actin-based cellular protrusions as novel evidence of the cytopathic effect induced in immune cells infected by the ectromelia virus. Cent Eur J Immunol 2019; 43:363-370. [PMID: 30799983 PMCID: PMC6384431 DOI: 10.5114/ceji.2018.81352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/05/2017] [Indexed: 11/17/2022] Open
Abstract
The aim of the study was to evaluate the influence of ectromelia virus (ECTV) infection on actin cytoskeleton rearrangement in immune cells, such as macrophages and dendritic cells (DCs). Using scanning electron and fluorescence microscopy analysis we observed the presence of long actin-based cellular extensions, formed by both types of immune cells at later stages of infection with ECTV. Such extensions contained straight tubulin filaments and numerous punctuate mitochondria. Moreover, these long cellular projections extended to a certain length and formed convex structures termed “cytoplasmic packets”. These structures contained numerous viral particles and presumably were sites of progeny virions’ release via budding. Further, discrete mitochondria and separated tubulin filaments that formed a scaffold for accumulated mitochondria were visible within cytoplasmic packets. ECTV-induced long actin-based protrusions resemble “cytoplasmic corridors” and probably participate in virus dissemination. Our data demonstrate the incredible capacity for adaptation of ECTV to its natural host immune cells, in which it can survive, replicate and induce effective mechanisms for viral spread and dissemination.
Collapse
|
32
|
Nishimura A, Shimauchi T, Tanaka T, Shimoda K, Toyama T, Kitajima N, Ishikawa T, Shindo N, Numaga-Tomita T, Yasuda S, Sato Y, Kuwahara K, Kumagai Y, Akaike T, Ide T, Ojida A, Mori Y, Nishida M. Hypoxia-induced interaction of filamin with Drp1 causes mitochondrial hyperfission-associated myocardial senescence. Sci Signal 2018; 11:11/556/eaat5185. [PMID: 30425165 DOI: 10.1126/scisignal.aat5185] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Defective mitochondrial dynamics through aberrant interactions between mitochondria and actin cytoskeleton is increasingly recognized as a key determinant of cardiac fragility after myocardial infarction (MI). Dynamin-related protein 1 (Drp1), a mitochondrial fission-accelerating factor, is activated locally at the fission site through interactions with actin. Here, we report that the actin-binding protein filamin A acted as a guanine nucleotide exchange factor for Drp1 and mediated mitochondrial fission-associated myocardial senescence in mice after MI. In peri-infarct regions characterized by mitochondrial hyperfission and associated with myocardial senescence, filamin A colocalized with Drp1 around mitochondria. Hypoxic stress induced the interaction of filamin A with the GTPase domain of Drp1 and increased Drp1 activity in an actin-binding-dependent manner in rat cardiomyocytes. Expression of the A1545T filamin mutant, which potentiates actin aggregation, promoted mitochondrial hyperfission under normoxia. Furthermore, pharmacological perturbation of the Drp1-filamin A interaction by cilnidipine suppressed mitochondrial hyperfission-associated myocardial senescence and heart failure after MI. Together, these data demonstrate that Drp1 association with filamin and the actin cytoskeleton contributes to cardiac fragility after MI and suggests a potential repurposing of cilnidipine, as well as provides a starting point for innovative Drp1 inhibitor development.
Collapse
Affiliation(s)
- Akiyuki Nishimura
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tsukasa Shimauchi
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Tomohiro Tanaka
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi 444-8787, Japan
| | - Kakeru Shimoda
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi 444-8787, Japan
| | - Takashi Toyama
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Naoyuki Kitajima
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tatsuya Ishikawa
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,EA Pharma Co. Inc., Tokyo 104-0042, Japan
| | - Naoya Shindo
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takuro Numaga-Tomita
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi 444-8787, Japan
| | - Satoshi Yasuda
- National Institute of Health Sciences, Kanagawa 210-9501, Japan
| | - Yoji Sato
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,National Institute of Health Sciences, Kanagawa 210-9501, Japan
| | | | - Yoshito Kumagai
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Takaaki Akaike
- Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Tomomi Ide
- Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Akio Ojida
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasuo Mori
- Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Motohiro Nishida
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi 444-8787, Japan. .,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
33
|
Chiaratti MR, Garcia BM, Carvalho KF, Macabelli CH, Ribeiro FKDS, Zangirolamo AF, Sarapião FD, Seneda MM, Meirelles FV, Guimarães FEG, Machado TS. Oocyte mitochondria: role on fertility and disease transmission. Anim Reprod 2018; 15:231-238. [PMID: 34178146 PMCID: PMC8202466 DOI: 10.21451/1984-3143-ar2018-0069] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oocyte mitochondria are increased in number, smaller, and rounder in appearance than mitochondria in somatic cells. Moreover, mitochondrial numbers and activity are narrowly tied with oocyte quality because of the key role of mitochondria to oocyte maturation. During oocyte maturation, mitochondria display great mobility and cluster at specific sites to meet the high energy demand. Conversely, oocyte mitochondria are not required during early oogenesis as coupling with granulosa cells is sufficient to support gamete's needs. In part, this might be explained by the importance of protecting mitochondria from oxidative damage that result in mutations in mitochondrial DNA (mtDNA). Considering mitochondria are transmitted exclusively by the mother, oocytes with mtDNA mutations may lead to diseases in offspring. Thus, to counterbalance mutation expansion, the oocyte has developed specific mechanisms to filter out deleterious mtDNA molecules. Herein, we discuss the role of mitochondria on oocyte developmental potential and recent evidence supporting a purifying filter against deleterious mtDNA mutations in oocytes.
Collapse
Affiliation(s)
- Marcos R Chiaratti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil.,Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Bruna M Garcia
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Karen F Carvalho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Carolina H Macabelli
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | | | | | | | | | - Flávio V Meirelles
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brazil.,Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| | | | - Thiago S Machado
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil.,Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
34
|
Neuronal Preconditioning Requires the Mitophagic Activity of C-terminus of HSC70-Interacting Protein. J Neurosci 2018; 38:6825-6840. [PMID: 29934347 DOI: 10.1523/jneurosci.0699-18.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/08/2018] [Accepted: 06/13/2018] [Indexed: 11/21/2022] Open
Abstract
The C terminus of HSC70-interacting protein (CHIP, STUB1) is a ubiquitously expressed cytosolic E3-ubiquitin ligase. CHIP-deficient mice exhibit cardiovascular stress and motor dysfunction before premature death. This phenotype is more consistent with animal models in which master regulators of autophagy are affected rather than with the mild phenotype of classic E3-ubiquitin ligase mutants. The cellular and biochemical events that contribute to neurodegeneration and premature aging in CHIP KO models remain poorly understood. Electron and fluorescent microscopy demonstrates that CHIP deficiency is associated with greater numbers of mitochondria, but these organelles are swollen and misshapen. Acute bioenergetic stress triggers CHIP induction and relocalization to mitochondria, where it plays a role in the removal of damaged organelles. This mitochondrial clearance is required for protection following low-level bioenergetic stress in neurons. CHIP expression overlaps with stabilization of the redox stress sensor PTEN-inducible kinase 1 (PINK1) and is associated with increased LC3-mediated mitophagy. Introducing human promoter-driven vectors with mutations in either the E3 ligase or tetracopeptide repeat domains of CHIP in primary neurons derived from CHIP-null animals enhances CHIP accumulation at mitochondria. Exposure to autophagy inhibitors suggests that the increase in mitochondrial CHIP is likely due to diminished clearance of these CHIP-tagged organelles. Proteomic analysis of WT and CHIP KO mouse brains (four male, four female per genotype) reveals proteins essential for maintaining energetic, redox, and mitochondrial homeostasis undergo significant genotype-dependent expression changes. Together, these data support the use of CHIP-deficient animals as a predictive model of age-related degeneration with selective neuronal proteotoxicity and mitochondrial failure.SIGNIFICANCE STATEMENT Mitochondria are recognized as central determinants of neuronal function and survival. We demonstrate that C terminus of HSC70-Interacting Protein (CHIP) is critical for neuronal responses to stress. CHIP upregulation and localization to mitochondria is required for mitochondrial autophagy (mitophagy). Unlike other disease-associated E3 ligases such as Parkin and Mahogunin, CHIP controls homeostatic and stress-induced removal of mitochondria. Although CHIP deletion results in greater numbers of mitochondria, these organelles have distorted inner membranes without clear cristae. Neuronal cultures derived from animals lacking CHIP are more vulnerable to acute injuries and transient loss of CHIP renders neurons incapable of mounting a protective response after low-level stress. Together, these data suggest that CHIP is an essential regulator of mitochondrial number, cell signaling, and survival.
Collapse
|
35
|
NOS3 Inhibition Confers Post-Ischemic Protection to Young and Aging White Matter Integrity by Conserving Mitochondrial Dynamics and Miro-2 Levels. J Neurosci 2018; 38:6247-6266. [PMID: 29891729 DOI: 10.1523/jneurosci.3017-17.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 01/01/2023] Open
Abstract
White matter (WM) damage following a stroke underlies a majority of the neurological disability that is subsequently observed. Although ischemic injury mechanisms are age-dependent, conserving axonal mitochondria provides consistent post-ischemic protection to young and aging WM. Nitric oxide synthase (NOS) activation is a major cause of oxidative and mitochondrial injury in gray matter during ischemia; therefore, we used a pure WM tract, isolated male mouse optic nerve, to investigate whether NOS inhibition provides post-ischemic functional recovery by preserving mitochondria. We show that pan-NOS inhibition applied before oxygen-glucose deprivation (OGD) promotes functional recovery of young and aging axons and preserves WM cellular architecture. This protection correlates with reduced nitric oxide (NO) generation, restored glutathione production, preserved axonal mitochondria and oligodendrocytes, and preserved ATP levels. Pan-NOS inhibition provided post-ischemic protection to only young axons, whereas selective inhibition of NOS3 conferred post-ischemic protection to both young and aging axons. Concurrently, genetic deletion of NOS3 conferred long-lasting protection to young axons against ischemia. OGD upregulated NOS3 levels in astrocytes, and we show for the first time that inhibition of NOS3 generation in glial cells prevents axonal mitochondrial fission and restores mitochondrial motility to confer protection to axons by preserving Miro-2 levels. Interestingly, NOS1 inhibition exerted post-ischemic protection selectively to aging axons, which feature age-dependent mechanisms of oxidative injury in WM. Our study provides the first evidence that inhibition of glial NOS activity confers long-lasting benefits to WM function and structure and suggests caution in defining the role of NO in cerebral ischemia at vascular and cellular levels.SIGNIFICANCE STATEMENT White matter (WM) injury during stroke is manifested as the subsequent neurological disability in surviving patients. Aging primarily impacts CNS WM and mechanisms of ischemic WM injury change with age. Nitric oxide is involved in various mitochondrial functions and we propose that inhibition of glia-specific nitric oxide synthase (NOS) isoforms promotes axon function recovery by preserving mitochondrial structure, function, integrity, and motility. Using electrophysiology and three-dimensional electron microscopy, we show that NOS3 inhibition provides a common target to improve young and aging axon function, whereas NOS1 inhibition selectively protects aging axons when applied after injury. This study provides the first evidence that inhibition of glial cell NOS activity confers long-lasting benefits to WM structure and function.
Collapse
|
36
|
Miro-Working beyond Mitochondria and Microtubules. Cells 2018; 7:cells7030018. [PMID: 29510535 PMCID: PMC5870350 DOI: 10.3390/cells7030018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/02/2018] [Accepted: 03/03/2018] [Indexed: 12/19/2022] Open
Abstract
The small GTPase Miro is best known for its regulation of mitochondrial movement by engaging with the microtubule-based motor proteins kinesin and dynein. Very recent findings have now showed that Miro also targets peroxisomes and regulates microtubule-dependent peroxisome motility. Moreover, Miro recruits and stabilizes the myosin motor Myo19 at the mitochondria to enable actin-based mitochondria movement, which is important for mitochondrial segregation during mitosis. Miro thus has much broader functions that previously known, and these new findings may have important implications on disease pathology.
Collapse
|
37
|
Abstract
To survive, organisms require mechanisms that enable them to sense changes in the outside environment, introduce necessary responses, and resist unfavorable distortion. Consequently, through evolutionary adaptation, cells have become equipped with the apparatus required to monitor their fundamental intracellular processes and the mechanisms needed to try to offset malfunction without receiving any direct signals from the outside environment. It has been shown recently that eukaryotic cells are equipped with a special mechanism that monitors their fundamental cellular functions and that some pathogenic proteobacteria can override this monitoring mechanism to cause harm. The monitored cellular activities involved in the stressed intracellular response have been researched extensively in Caenorhabditis elegans, where discovery of an association between key mitochondrial activities and innate immune responses was named "cellular associated detoxification and defenses (cSADD)." This cellular surveillance pathway (cSADD) oversees core cellular activities such as mitochondrial respiration and protein transport into mitochondria, detects xenobiotics and invading pathogens, and activates the endocrine pathways controlling behavior, detoxification, and immunity. The cSADD pathway is probably associated with cellular responses to stress in human inflammatory diseases. In the critical care field, the pathogenesis of lethal inflammatory syndromes (e.g., respiratory distress syndromes and sepsis) involves the disturbance of mitochondrial respiration leading to cell death. Up-to-date knowledge about monitored cellular activities and cSADD, especially focusing on mitochondrial involvement, can probably help fill a knowledge gap regarding the pathogenesis of lethal inflammatory syndromes in the critical care field.
Collapse
|
38
|
Ježek J, Cooper KF, Strich R. Reactive Oxygen Species and Mitochondrial Dynamics: The Yin and Yang of Mitochondrial Dysfunction and Cancer Progression. Antioxidants (Basel) 2018; 7:E13. [PMID: 29337889 PMCID: PMC5789323 DOI: 10.3390/antiox7010013] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/02/2018] [Accepted: 01/09/2018] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are organelles with a highly dynamic ultrastructure maintained by a delicate equilibrium between its fission and fusion rates. Understanding the factors influencing this balance is important as perturbations to mitochondrial dynamics can result in pathological states. As a terminal site of nutrient oxidation for the cell, mitochondrial powerhouses harness energy in the form of ATP in a process driven by the electron transport chain. Contemporaneously, electrons translocated within the electron transport chain undergo spontaneous side reactions with oxygen, giving rise to superoxide and a variety of other downstream reactive oxygen species (ROS). Mitochondrially-derived ROS can mediate redox signaling or, in excess, cause cell injury and even cell death. Recent evidence suggests that mitochondrial ultrastructure is tightly coupled to ROS generation depending on the physiological status of the cell. Yet, the mechanism by which changes in mitochondrial shape modulate mitochondrial function and redox homeostasis is less clear. Aberrant mitochondrial morphology may lead to enhanced ROS formation, which, in turn, may deteriorate mitochondrial health and further exacerbate oxidative stress in a self-perpetuating vicious cycle. Here, we review the latest findings on the intricate relationship between mitochondrial dynamics and ROS production, focusing mainly on its role in malignant disease.
Collapse
Affiliation(s)
- Jan Ježek
- Department of Molecular Biology, Rowan University Graduate School of Biomedical Sciences, Stratford, NJ 08084, USA.
| | - Katrina F Cooper
- Department of Molecular Biology, Rowan University Graduate School of Biomedical Sciences, Stratford, NJ 08084, USA.
| | - Randy Strich
- Department of Molecular Biology, Rowan University Graduate School of Biomedical Sciences, Stratford, NJ 08084, USA.
| |
Collapse
|
39
|
Qureshi SH, Patel NN, Murphy GJ. Vascular endothelial cell changes in postcardiac surgery acute kidney injury. Am J Physiol Renal Physiol 2017; 314:F726-F735. [PMID: 29357431 DOI: 10.1152/ajprenal.00319.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Acute kidney injury (AKI) is common complication of cardiac surgery; however, the phenotype of this condition is poorly defined. The aim of this study was to characterize changes in endothelial structure and function that underlie postcardiopulmonary bypass (post-CPB) AKI. Adult pigs ( n = 16) were randomized to undergo the following procedures ( n = 8 per group): group 1: sham operation, neck dissection with 2.5 h of general anesthesia; and group 2: CPB, 2.5 h of cardiopulmonary bypass. CPB resulted in the depletion of specific epitopes of glycosaminoglycans side chains of the endothelial glycocalyx: Dolichos biflorus agglutinin: mean difference (MD) [95% confidence interval (CI)], P value: -0.26 (-0.42, -0.09), P = 0.0024, Triticum vulgaris (wheat germ) agglutinin: -0.83 (-1.2, -0.38), P = 0.0005, and Ulex europaeus agglutinin 1: -0.25 (-0.49, -0.009), P = 0.041; endothelial membrane protein: thrombomodulin: -3.13 (-5.6, -0.65), P = 0.02; and adherens junction: VE-cadherin: -1.06 (-1.98, -0.145), P = 0.02. CPB also resulted in reductions in microvascular cortical perfusion: -0.62 (-1.02, -0.22), P = 0.006, and increased renal cortex adenosine levels: 2.32 (0.83, 3.8), P = 0.0059. These changes were accompanied by significant reduction in creatinine clearance at 1.5 h postintervention, MD 95% CI; -51.7 (-99.7, -3.7), P = 0.037, and at 24 h, MD (95% CI): -47.3 (-87.7, -7.6), P = 0.023, and proteinuria immediately postintervention MD (95% CI): 18.79 (2.17, 35.4), P = 0.03 vs. sham. In our experimental CPB model, endothelial injury was associated with loss of autoregulation, increase in microvascular permeability, and reduced glomerular filtration. Interventions that promote endothelial homeostasis may have clinical utility in the prevention of postcardiac surgery AKI.
Collapse
Affiliation(s)
- Saqib H Qureshi
- University of Leicester, Clinical Sciences Wing, Glenfield General Hospital , Leicester , United Kingdom
| | - Nishith N Patel
- National Heart and Lung Institute, Hammersmith Hospital Campus, Imperial College London , London , United Kingdom
| | - Gavin J Murphy
- University of Leicester, Clinical Sciences Wing, Glenfield General Hospital , Leicester , United Kingdom
| |
Collapse
|
40
|
Koch B, Tucey TM, Lo TL, Novakovic S, Boag P, Traven A. The Mitochondrial GTPase Gem1 Contributes to the Cell Wall Stress Response and Invasive Growth of Candida albicans. Front Microbiol 2017; 8:2555. [PMID: 29326680 PMCID: PMC5742345 DOI: 10.3389/fmicb.2017.02555] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/08/2017] [Indexed: 01/27/2023] Open
Abstract
The interactions of mitochondria with the endoplasmic reticulum (ER) are crucial for maintaining proper mitochondrial morphology, function and dynamics. This enables cells to utilize their mitochondria optimally for energy production and anabolism, and it further provides for metabolic control over developmental decisions. In fungi, a key mechanism by which ER and mitochondria interact is via a membrane tether, the protein complex ERMES (ER-Mitochondria Encounter Structure). In the model yeast Saccharomyces cerevisiae, the mitochondrial GTPase Gem1 interacts with ERMES, and it has been proposed to regulate its activity. Here we report on the first characterization of Gem1 in a human fungal pathogen. We show that in Candida albicans Gem1 has a dominant role in ensuring proper mitochondrial morphology, and our data is consistent with Gem1 working with ERMES in this role. Mitochondrial respiration and steady state cellular phospholipid homeostasis are not impacted by inactivation of GEM1 in C. albicans. There are two major virulence-related consequences of disrupting mitochondrial morphology by GEM1 inactivation: C. albicans becomes hypersusceptible to cell wall stress, and is unable to grow invasively. In the gem1Δ/Δ mutant, it is specifically the invasive capacity of hyphae that is compromised, not the ability to transition from yeast to hyphal morphology, and this phenotype is shared with ERMES mutants. As a consequence of the hyphal invasion defect, the gem1Δ/Δ mutant is drastically hypovirulent in the worm infection model. Activation of the mitogen activated protein (MAP) kinase Cek1 is reduced in the gem1Δ/Δ mutant, and this function could explain both the susceptibility to cell wall stress and lack of invasive growth. This result establishes a new, respiration-independent mechanism of mitochondrial control over stress signaling and hyphal functions in C. albicans. We propose that ER-mitochondria interactions and the ER-Mitochondria Organizing Network (ERMIONE) play important roles in adaptive responses in fungi, in particular cell surface-related mechanisms that drive invasive growth and stress responsive behaviors that support fungal pathogenicity.
Collapse
Affiliation(s)
- Barbara Koch
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Timothy M Tucey
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Tricia L Lo
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Stevan Novakovic
- Development and Stem Cells Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Peter Boag
- Development and Stem Cells Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ana Traven
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
41
|
Mortiboys H, Macdonald R, Payne T, Sassani M, Jenkins T, Bandmann O. Translational approaches to restoring mitochondrial function in Parkinson's disease. FEBS Lett 2017; 592:776-792. [PMID: 29178330 DOI: 10.1002/1873-3468.12920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/04/2017] [Accepted: 11/14/2017] [Indexed: 12/22/2022]
Abstract
There is strong evidence of a key role for mitochondrial dysfunction in both sporadic and all forms of familial Parkinson's disease (PD). However, none of the clinical trials carried out with putative mitochondrial rescue agents have been successful. Firm establishment of a wet biomarker or a reliable readout from imaging studies detecting mitochondrial dysfunction and reflecting disease progression is also awaited. We will provide an overview of our current knowledge about mitochondrial dysfunction in PD and related drug screens. We will also summarise previously undertaken mitochondrial wet biomarker studies and relevant imaging studies with particular focus on 31P-MRI spectroscopy. We will conclude with an overview of clinical trials which tested putative mitochondrial rescue agents in PD patients.
Collapse
Affiliation(s)
- Heather Mortiboys
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, UK
| | - Ruby Macdonald
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, UK
| | - Thomas Payne
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, UK
| | - Matilde Sassani
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, UK
| | - Thomas Jenkins
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, UK
| | - Oliver Bandmann
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, UK
| |
Collapse
|
42
|
Chen L, Liu C, Gao J, Xie Z, Chan LW, Keating DJ, Yang Y, Sun J, Zhou F, Wei Y, Men X, Yang S. Inhibition of Miro1 disturbs mitophagy and pancreatic β-cell function interfering insulin release via IRS-Akt-Foxo1 in diabetes. Oncotarget 2017; 8:90693-90705. [PMID: 29207597 PMCID: PMC5710878 DOI: 10.18632/oncotarget.20963] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/29/2017] [Indexed: 11/25/2022] Open
Abstract
Mitochondrial function is essential to meet metabolic demand of pancreatic beta cells respond to high nutrient stress. Mitophagy is an essential component to normal pancreatic β-cell function and has been associated with β-cell failure in Type 2 diabetes (T2D). Our previous studies have indicated that mitochondrial Rho (Miro) GTPase-mediated mitochondrial dysfunction under high nutrient stress leads to NOD-like receptor 3 (NLRP3)-dependent proinflammatory responses and subsequent insulin resistance. However, the in vivo mechanism by which Miro1 underlies mitophagy has not been identified. Here we show firstly that the expression of Miro is reduced in human T2D and mouse db/db islets and in INS-1 cell line exposed to high glucose and palmitate. β-cell specific ablation of Miro1 (Miro1f/f: Rip-cre mice, or (IKO) under high nutrient stress promotes the development of hyperglycemia. β-cells from IKO mice display an inhibition of mitophagy under oxidative stress and induces mitochondrial dysfunction. Dysfunctional mitophagy in IKO mice is represented by damaged islet beta cell mitochondrial and secretory capacity, unbalanced downstream MKK-JNK signalling without affecting the levels of MEK, ERK or p38 activation and subsequently, impaired insulin secretion signaling via inhibition IRS-AKT-Foxo1 pathway, leading to worsening glucose tolerance in these mice. Thus, these data suggest that Miro1 may be responsible for mitophagy deficiency and β-cell dysfunction in T2D and that strategies target Miro1 in vivo may provide a therapeutic target to enhance β-cell mitochondrial quality and insulin secretion to ameliorate complications associated with T2D.
Collapse
Affiliation(s)
- Lingling Chen
- ABSL-3 Laboratory at the Center for Animal Experiment and Institute of Animal Model for Human Disease, Wuhan University School of Medicine, Wuhan, P. R. China
- Department of Cell Biology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, P.R. China
| | - Chunyan Liu
- ABSL-3 Laboratory at the Center for Animal Experiment and Institute of Animal Model for Human Disease, Wuhan University School of Medicine, Wuhan, P. R. China
| | - Jianfeng Gao
- ABSL-3 Laboratory at the Center for Animal Experiment and Institute of Animal Model for Human Disease, Wuhan University School of Medicine, Wuhan, P. R. China
| | - Zhiwen Xie
- School of Bioscience and Technology , Weifang Medical University, Weifang Shandong, P.R. China
| | - Lawrence W.C. Chan
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Damien J. Keating
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - Yibin Yang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Jiazhong Sun
- Department of Respiratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Fuling Zhou
- Department of Hematology and Radiation, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Yongchang Wei
- Department of Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Xiuli Men
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, P.R. China
| | - Sijun Yang
- ABSL-3 Laboratory at the Center for Animal Experiment and Institute of Animal Model for Human Disease, Wuhan University School of Medicine, Wuhan, P. R. China
| |
Collapse
|
43
|
Kawasaki H, Kretsinger RH. Structural and functional diversity of EF-hand proteins: Evolutionary perspectives. Protein Sci 2017; 26:1898-1920. [PMID: 28707401 PMCID: PMC5606533 DOI: 10.1002/pro.3233] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 01/02/2023]
Abstract
We have classified 865 sequences of EF-hand proteins from five proteomes into 156 subfamilies. These subfamilies were put into six groups. Evolutionary relationships among subfamilies and groups were analyzed from the inferred ancestral sequence for each subfamily. CTER, CPV, and PEF groups arose from a common EF-lobe (pair of adjacent EF-hands). They have two or more EF-lobes; the relative positions of their EF-lobes differ from each other. Comparisons of the ancestral sequences and the inferred structures of the EF-lobes of these groups indicate that the mutual positions of EF-lobes were established soon after divergence of an EF-lobe for each group and before the duplication and fusion of EF-lobe gene(s). These ancestral sequences reveal that some subfamilies in low similarity and isolated groups did not evolve from the EF-lobe precursor, even if their conformations are similar to the canonical EF-hand. This is an example of convergent evolution.
Collapse
Affiliation(s)
- Hiroshi Kawasaki
- Department of Medical Life ScienceGraduate School of Medical Life Science, Yokohama City UniversityYokohamaKanagawa230‐0045Japan
| | | |
Collapse
|
44
|
O'Mealey GB, Plafker KS, Berry WL, Janknecht R, Chan JY, Plafker SM. A PGAM5-KEAP1-Nrf2 complex is required for stress-induced mitochondrial retrograde trafficking. J Cell Sci 2017; 130:3467-3480. [PMID: 28839075 DOI: 10.1242/jcs.203216] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 08/20/2017] [Indexed: 12/12/2022] Open
Abstract
The Nrf2 transcription factor is a master regulator of the cellular anti-stress response. A population of the transcription factor associates with the mitochondria through a complex with KEAP1 and the mitochondrial outer membrane histidine phosphatase, PGAM5. To determine the function of this mitochondrial complex, we knocked down each component and assessed mitochondrial morphology and distribution. We discovered that depletion of Nrf2 or PGAM5, but not KEAP1, inhibits mitochondrial retrograde trafficking induced by proteasome inhibition. Mechanistically, this disrupted motility results from aberrant degradation of Miro2, a mitochondrial GTPase that links mitochondria to microtubules. Rescue experiments demonstrate that this Miro2 degradation involves the KEAP1-cullin-3 E3 ubiquitin ligase and the proteasome. These data are consistent with a model in which an intact complex of PGAM5-KEAP1-Nrf2 preserves mitochondrial motility by suppressing dominant-negative KEAP1 activity. These data further provide a mechanistic explanation for how age-dependent declines in Nrf2 expression impact mitochondrial motility and induce functional deficits commonly linked to neurodegeneration.
Collapse
Affiliation(s)
- Gary B O'Mealey
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73118, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73118, USA
| | - Kendra S Plafker
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73118, USA
| | - William L Berry
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73118, USA
| | - Ralf Janknecht
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73118, USA
| | - Jefferson Y Chan
- Department of Pathology, University of Irvine School of Medicine, Irvine, CA 92697, USA
| | - Scott M Plafker
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73118, USA
| |
Collapse
|
45
|
Chakrabarty Y, Bhattacharyya SN. Leishmania donovani restricts mitochondrial dynamics to enhance miRNP stability and target RNA repression in host macrophages. Mol Biol Cell 2017; 28:2091-2105. [PMID: 28539410 PMCID: PMC5509422 DOI: 10.1091/mbc.e16-06-0388] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 05/08/2017] [Accepted: 05/16/2017] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs), the tiny regulatory RNAs, form complexes with Argonaute (Ago) proteins and inhibit gene expression in metazoan cells. While studying parasite-invaded macrophages, we identify a unique mode of gene regulation in which the parasite Leishmania donovani (Ld) causes mitochondrial depolarization, reduces mitochondrial dynamics, and restricts turnover of cellular microRNA ribonucleoprotein (miRNP) complexes in infected host cells. This leads to increased stability of miRNPs along with elevated levels of Ago2-bound cytokine mRNA in Ld-infected macrophages. Thus the increase of miRNP stability in Ld-infected cells curtails production of proinflammatory cytokines, which are otherwise detrimental for survival of the parasite within the infected macrophages. Loss of mitochondrial membrane potential is accompanied by reduced juxtaposition of endoplasmic reticulum (ER) and mitochondria as well as endosomes. This is likely coupled with enhanced sequestration and stabilization of ER- associated miRNPs observed in infected macrophage cells. Mitofusin 2 (Mfn2), a membrane protein implicated in ER-mitochondria tethering, also shows reduced expression in Ld-infected cells. A mitochondrial role in Ld-induced alteration of miRNA activity and stability is further corroborated by impaired compartmentalization and stabilization of miRNP components in Mfn2-depleted mammalian cells.
Collapse
Affiliation(s)
- Yogaditya Chakrabarty
- RNA Biology Research Laboratories, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Suvendra N Bhattacharyya
- RNA Biology Research Laboratories, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| |
Collapse
|
46
|
Walz G. Role of primary cilia in non-dividing and post-mitotic cells. Cell Tissue Res 2017; 369:11-25. [PMID: 28361305 PMCID: PMC5487853 DOI: 10.1007/s00441-017-2599-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/20/2017] [Accepted: 02/27/2017] [Indexed: 12/12/2022]
Abstract
The essential role of primary (non-motile) cilia during the development of multi-cellular tissues and organs is well established and is underlined by severe disease manifestations caused by mutations in cilia-associated molecules that are collectively termed ciliopathies. However, the role of primary cilia in non-dividing and terminally differentiated, post-mitotic cells is less well understood. Although the prevention of cells from re-entering the cell cycle may represent a major chore, primary cilia have recently been linked to DNA damage responses, autophagy and mitochondria. Given this connectivity, primary cilia in non-dividing cells are well positioned to form a signaling hub outside of the nucleus. Such a center could integrate information to initiate responses and to maintain cellular homeostasis if cell survival is jeopardized. These more discrete functions may remain undetected until differentiated cells are confronted with emergencies.
Collapse
Affiliation(s)
- Gerd Walz
- Renal Division, Department of Medicine, University Freiburg Medical Center, Hugstetter Strasse 55, 79106, Freiburg, Germany.
| |
Collapse
|
47
|
Abstract
Mitochondria have a pivotal role in the maintenance of cell homeostasis and survival. Mitochondria are involved in processes such as ATP production, reactive oxygen species production, apoptosis induction, calcium homeostasis and protein degradation. Thus, mechanisms that regulate the intrinsic quality of mitochondria have a crucial role in dictating overall cell fate. The importance of these well-regulated mechanisms is highlighted in disease scenarios such as neurodegeneration, cancer and neuromuscular atrophy. How mitochondria senses and regulates their intrinsic quality control, and consequently cell survival, is still not fully understood. In this review, we discuss the pathways that are at present considered as state-of-the-art for mitochondria quality control regulation, and highlight a mitochondrial protein-PINK1-that has revealed to act as a mitochondrial gatekeeper able to sense the presence of healthy or damaged mitochondria.
Collapse
Affiliation(s)
- Elvira P Leites
- iMM Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Vanessa A Morais
- iMM Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| |
Collapse
|
48
|
Enhancement of Mitochondrial Transfer by Antioxidants in Human Mesenchymal Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8510805. [PMID: 28596814 PMCID: PMC5449759 DOI: 10.1155/2017/8510805] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/23/2017] [Indexed: 02/07/2023]
Abstract
Excessive reactive oxygen species is the major component of a harsh microenvironment after ischemia/reperfusion injury in human tissues. Combined treatment of N-acetyl-L-cysteine (NAC) and L-ascorbic acid 2-phosphate (AAP) promoted the growth of human mesenchymal stem cells (hMSCs) and suppressed oxidative stress-induced cell death by enhancing mitochondrial integrity and function in vitro. In this study, we aimed to determine whether NAC and AAP (termed MCA) could enhance the therapeutic potential of hMSCs. We established a coculture system consisting of MCA-treated and H2O2-treated hMSCs and investigated the role of tunneling nanotubes (TNTs) in the exchange of mitochondria between the 2 cell populations. The consequences of mitochondria exchange were assessed by fluorescence confocal microscopy and flow cytometry. The results showed that MCA could increase the mitochondrial mass, respiratory capacity, and numbers of TNTs in hMSCs. The “energized” mitochondria were transferred to the injured hMSCs via TNTs, the oxidative stress was decreased, and the mitochondrial membrane potential of the H2O2-treated hMSCs was stabilized. The transfer of mitochondria decreased the expression of S616-phosphorylated dynamin-related protein 1, a protein that dictates the fragmentation/fission of mitochondria. Concurrently, MCA also enhanced mitophagy in the coculture system, implicating that damaged mitochondria were eliminated in order to maintain cell physiology.
Collapse
|
49
|
Flippo KH, Strack S. Mitochondrial dynamics in neuronal injury, development and plasticity. J Cell Sci 2017; 130:671-681. [PMID: 28154157 DOI: 10.1242/jcs.171017] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondria fulfill numerous cellular functions including ATP production, Ca2+ buffering, neurotransmitter synthesis and degradation, ROS production and sequestration, apoptosis and intermediate metabolism. Mitochondrial dynamics, a collective term for the processes of mitochondrial fission, fusion and transport, governs mitochondrial function and localization within the cell. Correct balance of mitochondrial dynamics is especially important in neurons as mutations in fission and fusion enzymes cause peripheral neuropathies and impaired development of the nervous system in humans. Regulation of mitochondrial dynamics is partly accomplished through post-translational modification of mitochondrial fission and fusion enzymes, in turn influencing mitochondrial bioenergetics and transport. The importance of post-translational regulation is highlighted by numerous neurodegenerative disorders associated with post-translational modification of the mitochondrial fission enzyme Drp1. Not surprisingly, mitochondrial dynamics also play an important physiological role in the development of the nervous system and synaptic plasticity. Here, we highlight recent findings underlying the mechanisms and regulation of mitochondrial dynamics in relation to neurological disease, as well as the development and plasticity of the nervous system.
Collapse
Affiliation(s)
- Kyle H Flippo
- Department of Pharmacology, University of Iowa, Iowa City, USA
| | - Stefan Strack
- Department of Pharmacology, University of Iowa, Iowa City, USA
| |
Collapse
|