1
|
Paganelli F, Poli A, Truocchio S, Martelli AM, Palumbo C, Lattanzi G, Chiarini F. At the nucleus of cancer: how the nuclear envelope controls tumor progression. MedComm (Beijing) 2025; 6:e70073. [PMID: 39866838 PMCID: PMC11758262 DOI: 10.1002/mco2.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/28/2025] Open
Abstract
Historically considered downstream effects of tumorigenesis-arising from changes in DNA content or chromatin organization-nuclear alterations have long been seen as mere prognostic markers within a genome-centric model of cancer. However, recent findings have placed the nuclear envelope (NE) at the forefront of tumor progression, highlighting its active role in mediating cellular responses to mechanical forces. Despite significant progress, the precise interplay between NE components and cancer progression remains under debate. In this review, we provide a comprehensive and up-to-date overview of how changes in NE composition affect nuclear mechanics and facilitate malignant transformation, grounded in the latest molecular and functional studies. We also review recent research that uses advanced technologies, including artificial intelligence, to predict malignancy risk and treatment outcomes by analyzing nuclear morphology. Finally, we discuss how progress in understanding nuclear mechanics has paved the way for mechanotherapy-a promising cancer treatment approach that exploits the mechanical differences between cancerous and healthy cells. Shifting the perspective on NE alterations from mere diagnostic markers to potential therapeutic targets, this review calls for further investigation into the evolving role of the NE in cancer, highlighting the potential for innovative strategies to transform conventional cancer therapies.
Collapse
Affiliation(s)
- Francesca Paganelli
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Alessandro Poli
- IFOM ETS ‐ The AIRC Institute of Molecular OncologyMilanItaly
| | - Serena Truocchio
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Carla Palumbo
- Department of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli‐Sforza”Unit of BolognaBolognaItaly
- IRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Francesca Chiarini
- Department of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| |
Collapse
|
2
|
Jiang J, Li X, Wang J, Chen S, Chen L. SLC25A19 drives colorectal cancer progression by regulating p53. Cancer Med 2024; 13:e70253. [PMID: 39344563 PMCID: PMC11440145 DOI: 10.1002/cam4.70253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Investigating the molecular mechanism of colorectal cancer (CRC), a common lethal malignancies worldwide, is of great clinical significance. Solute carrier family 25 member 19 (SLC25A19) is a member of the solute carrier family that contribute to cellular functions, including tumor biology. Recently, many studies have attention on uncovering the relationship of SLC25A19 with malignant cancers, but its precise involvement in the regulation of CRC has not been thoroughly understood. This study sought to uncover the role and mechanism of SLC25A19 in CRC development. METHODS The GEPIA database and immunohistochemical staining were utilized to detect the expression of SLC25A19 in CRC tissues. The functional influences of SLC25A19 on CRC cell phenotypes were evaluated through a series of assays including celigo cell count, colony formation, CCK-8, flow cytometry, wound healing, and transwell assays following knocking down SLC25A19. Subsequently, the xenograft tumor model was constructed to evaluate the effect of SLC25A19 on tumor growth in vivo. The underlying mechanisms of SLC25A19 silencing were investigated using the human phospho-kinase array. RESULTS This study demonstrated the upregulation of SLC25A19 in CRC and its significant correlation with unfavorable prognosis in CRC patients. Suppression of SLC25A19 resulted in significant inhibition of cell proliferation, colony formation, and cell migration, alongside a boost in cell apoptosis. In vivo experiments revealed that silenced SLC25A19 displayed reduced growth rates and formed smaller xenografts. Mechanistically, the p53 pathway was found to be upregulated by SLC25A19 knockdown and mediated the function of SLC25A19. CONCLUSIONS Consequently, SLC25A19 was identified as a novel molecule with key regulatory ability in CRC development.
Collapse
Affiliation(s)
- Jinbo Jiang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xuemei Li
- Advanced Medical Research Institute, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Jiayong Wang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Shaofei Chen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingjuan Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Kaczmarczyk LS, Babele D, Levi N, Gunasekaran G, Salmon-Divon M, Gerlitz G. Regulation of cholesterol biosynthesis by CTCF and H3K27 methylation is critical for cell migration. Eur J Cell Biol 2024; 103:151454. [PMID: 39232451 DOI: 10.1016/j.ejcb.2024.151454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/06/2024] Open
Abstract
CTCF is a key factor in three-dimensional chromatin folding and transcriptional control that was found to affect cancer cell migration by a mechanism that is still poorly understood. To identify this mechanism, we used mouse melanoma cells with a partial loss of function (pLoF) of CTCF. We found that CTCF pLoF inhibits cell migration rate while leading to an increase in the expression of multiple enzymes in the cholesterol biosynthesis pathway along with an elevation in the cellular cholesterol level. In agreement with the cholesterol change we detected altered membrane dynamics in CTCF pLoF cells as measured by reduced formation of migrasomes, extracellular vesicles formed at the rear side of migrating cells. Inhibition of cholesterol synthesis in CTCF pLoF cells restored the cellular migration rate and migrasome formation, suggesting that CTCF supports cell migration by suppressing cholesterol synthesis. Detailed analysis of the promoter of Hmgcs1, an early enzyme in the cholesterol synthesis pathway, revealed that CTCF prevents formation of a loop between that promoter and another promoter 200 kb away. CTCF also supports PRC2 recruitment to the promoter and deposition of H3K27me3. H3K27me3 at the promoter of Hmgcs1 prevents SREBP2 binding and activation of transcription. By this mechanism, CTCF fine-tunes cholesterol levels to support cell migration. Notably, genome wide association studies suggest a link between CTCF and cholesterol-associated diseases, thus CTCF emerges as a new regulator of cholesterol biosynthesis.
Collapse
Affiliation(s)
- Lukasz Stanislaw Kaczmarczyk
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, Ariel 40700, Israel
| | - Dagmawit Babele
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, Ariel 40700, Israel
| | - Nehora Levi
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, Ariel 40700, Israel
| | - Gowthaman Gunasekaran
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, Ariel 40700, Israel
| | - Mali Salmon-Divon
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, Ariel 40700, Israel; Adelson School of Medicine, Ariel University, Ariel 40700, Israel.
| | - Gabi Gerlitz
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, Ariel 40700, Israel.
| |
Collapse
|
4
|
González-Novo R, de Lope-Planelles A, Cruz Rodríguez MP, González-Murillo Á, Madrazo E, Acitores D, García de Lacoba M, Ramírez M, Redondo-Muñoz J. 3D environment controls H3K4 methylation and the mechanical response of the nucleus in acute lymphoblastic leukemia cells. Eur J Cell Biol 2023; 102:151343. [PMID: 37494871 DOI: 10.1016/j.ejcb.2023.151343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/30/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer, and the infiltration of leukemic cells is critical for disease progression and relapse. Nuclear deformability plays a critical role in cancer cell invasion through confined spaces; however, the direct impact of epigenetic changes on the nuclear deformability of leukemic cells remains unclear. Here, we characterized how 3D collagen matrix conditions induced H3K4 methylation in ALL cell lines and clinical samples. We used specific shRNA and chemical inhibitors to target WDR5 (a core subunit involved in H3K4 methylation) and determined that targeting WDR5 reduced the H3K4 methylation induced by the 3D environment and the invasiveness of ALL cells in vitro and in vivo. Intriguingly, targeting WDR5 did not reduce the adhesion or the chemotactic response of leukemia cells, suggesting a different mechanism by which H3K4 methylation might govern ALL cell invasiveness. Finally, we conducted biochemical, and biophysical experiments to determine that 3D environments promoted the alteration of the chromatin, the morphology, and the mechanical behavior of the nucleus in ALL cells. Collectively, our data suggest that 3D environments control an upregulation of H3K4 methylation in ALL cells, and targeting WDR5 might serve as a promising therapeutic target against ALL invasiveness in vivo.
Collapse
Affiliation(s)
- Raquel González-Novo
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - Ana de Lope-Planelles
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - María Pilar Cruz Rodríguez
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - África González-Murillo
- Oncolohematology Unit, Hospital Universitario Niño Jesús, Madrid, Spain; Health Research Institute La Princesa, Madrid, Spain
| | - Elena Madrazo
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - David Acitores
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Mario García de Lacoba
- Bioinformatics and Biostatistics Unit, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - Manuel Ramírez
- Oncolohematology Unit, Hospital Universitario Niño Jesús, Madrid, Spain; Health Research Institute La Princesa, Madrid, Spain
| | - Javier Redondo-Muñoz
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain.
| |
Collapse
|
5
|
Nishino M, Imaizumi H, Yokoyama Y, Katahira J, Kimura H, Matsuura N, Matsumura M. Histone methyltransferase SUV39H1 regulates the Golgi complex via the nuclear envelope-spanning LINC complex. PLoS One 2023; 18:e0283490. [PMID: 37437070 DOI: 10.1371/journal.pone.0283490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
Cell motility is related to the higher-order structure of chromatin. Stimuli that induce cell migration change chromatin organization; such stimuli include elevated histone H3 lysine 9 trimethylation (H3K9me3). We previously showed that depletion of histone H3 lysine 9 methyltransferase, SUV39H1, suppresses directional cell migration. However, the molecular mechanism underlying this association between chromatin and cell migration remains elusive. The Golgi apparatus is a cell organelle essential for cell motility. In this study, we show that loss of H3K9 methyltransferase SUV39H1 but not SETDB1 or SETDB2 causes dispersion of the Golgi apparatus throughout the cytoplasm. The Golgi dispersion triggered by SUV39H1 depletion is independent of transcription, centrosomes, and microtubule organization, but is suppressed by depletion of any of the following three proteins: LINC complex components SUN2, nesprin-2, or microtubule plus-end-directed kinesin-like protein KIF20A. In addition, SUN2 is closely localized to H3K9me3, and SUV39H1 affects the mobility of SUN2 in the nuclear envelope. Further, inhibition of cell motility caused by SUV39H1 depletion is restored by suppression of SUN2, nesprin-2, or KIF20A. In summary, these results show the functional association between chromatin organization and cell motility via the Golgi organization regulated by the LINC complex.
Collapse
Affiliation(s)
- Miyu Nishino
- Graduate School of Health Sciences, Ehime Prefectural University of Health Sciences, Ehime, Japan
| | - Hiromasa Imaizumi
- Graduate School of Medicine and Health Science, Osaka University, Osaka, Japan
- Department of Radiological Technology, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Okayama, Japan
| | - Yuhki Yokoyama
- Graduate School of Medicine and Health Science, Osaka University, Osaka, Japan
| | - Jun Katahira
- Laboratories of Cellular Molecular Biology, Graduate School of Veterinary Sciences, Osaka Metropolitan University, Osaka, Japan
| | - Hiroshi Kimura
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Nariaki Matsuura
- Graduate School of Medicine and Health Science, Osaka University, Osaka, Japan
- Osaka International Cancer Institute, Osaka, Japan
| | - Miki Matsumura
- Graduate School of Health Sciences, Ehime Prefectural University of Health Sciences, Ehime, Japan
- Graduate School of Medicine and Health Science, Osaka University, Osaka, Japan
| |
Collapse
|
6
|
Simper MS, Coletta LD, Gaddis S, Lin K, Mikulec CD, Takata T, Tomida MW, Zhang D, Tang DG, Estecio MR, Shen J, Lu Y. Commercial ChIP-Seq Library Preparation Kits Performed Differently for Different Classes of Protein Targets. J Biomol Tech 2022; 33:3fc1f5fe.7910785e. [PMID: 36910579 PMCID: PMC10001930 DOI: 10.7171/3fc1f5fe.7910785e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq) is a powerful method commonly used to study global protein-DNA interactions including both transcription factors and histone modifications. We have found that the choice of ChIP-Seq library preparation protocol plays an important role in overall ChIP-Seq data quality. However, very few studies have compared ChIP-Seq libraries prepared by different protocols using multiple targets and a broad range of input DNA levels. Results In this study, we evaluated the performance of 4 ChIP-Seq library preparation protocols (New England Biolabs [NEB] NEBNext Ultra II, Roche KAPA HyperPrep, Diagenode MicroPlex, and Bioo [now PerkinElmer] NEXTflex) on 3 target proteins, chosen to represent the 3 typical signal enrichment patterns in ChIP-Seq experiments: sharp peaks (H3K4me3), broad domains (H3K27me3), and punctate peaks with a protein binding motif (CTCF). We also tested a broad range of different input DNA levels from 0.10 to 10 ng for H3K4me3 and H3K27me3 experiments. Conclusions Our results suggest that the NEB protocol may be better for preparing H3K4me3 (and potentially other histone modifications with sharp peak enrichment) libraries; the Bioo protocol may be better for preparing H3K27me3 (and potentially other histone modifications with broad domain enrichment) libraries, and the Diagenode protocol may be better for preparing CTCF (and potentially other transcription factors with well-defined binding motifs) libraries. For ChIP-Seq experiments using novel targets without a known signal enrichment pattern, the NEB protocol might be the best choice, as it performed well for each of the 3 targets we tested across a wide array of input DNA levels.
Collapse
Affiliation(s)
- M S Simper
- Department of Epigenetics and Molecular Carcinogenesis The University of Texas MD Anderson Cancer Center Science ParkSmithvilleTexas78957 USA
| | - L Della Coletta
- Department of Epigenetics and Molecular Carcinogenesis The University of Texas MD Anderson Cancer Center Science ParkSmithvilleTexas78957 USA
| | - S Gaddis
- Department of Epigenetics and Molecular Carcinogenesis The University of Texas MD Anderson Cancer Center Science ParkSmithvilleTexas78957 USA
| | - K Lin
- Department of Epigenetics and Molecular Carcinogenesis The University of Texas MD Anderson Cancer Center Science ParkSmithvilleTexas78957 USA
| | - C D Mikulec
- Department of Epigenetics and Molecular Carcinogenesis The University of Texas MD Anderson Cancer Center Science ParkSmithvilleTexas78957 USA
| | - True Takata
- Department of Epigenetics and Molecular Carcinogenesis The University of Texas MD Anderson Cancer Center Science ParkSmithvilleTexas78957 USA
| | - M W Tomida
- Department of Epigenetics and Molecular Carcinogenesis The University of Texas MD Anderson Cancer Center Science ParkSmithvilleTexas78957 USA
| | - D Zhang
- Department of Epigenetics and Molecular Carcinogenesis The University of Texas MD Anderson Cancer Center Science ParkSmithvilleTexas78957 USA.,Present Address: College of Biology Hunan University Changsha410082 China
| | - D G Tang
- Department of Epigenetics and Molecular Carcinogenesis The University of Texas MD Anderson Cancer Center Science ParkSmithvilleTexas78957 USA.,Present Address: Department of Pharmacology and Therapeutics Roswell Park Cancer Institute BuffaloNew York14263 USA
| | - M R Estecio
- Department of Epigenetics and Molecular Carcinogenesis The University of Texas MD Anderson Cancer Center Science ParkSmithvilleTexas78957 USA
| | - J Shen
- Department of Epigenetics and Molecular Carcinogenesis.,Department of Epigenetics and Molecular Carcinogenesis The University of Texas MD Anderson Cancer Center Science ParkSmithvilleTexas78957 USA.,Program in Genetics and Epigenetics MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences The University of Texas MD Anderson Cancer Center SmithvilleTexas78957 USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis The University of Texas MD Anderson Cancer Center Science ParkSmithvilleTexas78957 USA
| |
Collapse
|
7
|
Golloshi R, Playter C, Freeman TF, Das P, Raines TI, Garretson JH, Thurston D, McCord RP. Constricted migration is associated with stable 3D genome structure differences in cancer cells. EMBO Rep 2022; 23:e52149. [PMID: 35969179 PMCID: PMC9535800 DOI: 10.15252/embr.202052149] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 01/14/2023] Open
Abstract
To spread from a localized tumor, metastatic cancer cells must squeeze through constrictions that cause major nuclear deformations. Since chromosome structure affects nucleus stiffness, gene regulation, and DNA repair, here, we investigate the relationship between 3D genome structure and constricted migration in cancer cells. Using melanoma (A375) cells, we identify phenotypic differences in cells that have undergone multiple rounds of constricted migration. These cells display a stably higher migration efficiency, elongated morphology, and differences in the distribution of Lamin A/C and heterochromatin. Hi-C experiments reveal differences in chromosome spatial compartmentalization specific to cells that have passed through constrictions and related alterations in expression of genes associated with migration and metastasis. Certain features of the 3D genome structure changes, such as a loss of B compartment interaction strength, are consistently observed after constricted migration in clonal populations of A375 cells and in MDA-MB-231 breast cancer cells. Our observations suggest that consistent types of chromosome structure changes are induced or selected by passage through constrictions and that these may epigenetically encode stable differences in gene expression and cellular migration phenotype.
Collapse
Affiliation(s)
- Rosela Golloshi
- Biochemistry & Cellular and Molecular Biology DepartmentUniversity of TennesseeKnoxvilleTNUSA
| | - Christopher Playter
- Biochemistry & Cellular and Molecular Biology DepartmentUniversity of TennesseeKnoxvilleTNUSA
| | - Trevor F Freeman
- Biochemistry & Cellular and Molecular Biology DepartmentUniversity of TennesseeKnoxvilleTNUSA
| | - Priyojit Das
- UT‐ORNL Graduate School of Genome Science and TechnologyUniversity of TennesseeKnoxvilleTNUSA
| | - Thomas Isaac Raines
- Biochemistry & Cellular and Molecular Biology DepartmentUniversity of TennesseeKnoxvilleTNUSA
| | - Joshua H Garretson
- Biochemistry & Cellular and Molecular Biology DepartmentUniversity of TennesseeKnoxvilleTNUSA
| | - Delaney Thurston
- Biochemistry & Cellular and Molecular Biology DepartmentUniversity of TennesseeKnoxvilleTNUSA
| | - Rachel Patton McCord
- Biochemistry & Cellular and Molecular Biology DepartmentUniversity of TennesseeKnoxvilleTNUSA
| |
Collapse
|
8
|
Hsia CR, McAllister J, Hasan O, Judd J, Lee S, Agrawal R, Chang CY, Soloway P, Lammerding J. Confined migration induces heterochromatin formation and alters chromatin accessibility. iScience 2022; 25:104978. [PMID: 36117991 PMCID: PMC9474860 DOI: 10.1016/j.isci.2022.104978] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 06/14/2022] [Accepted: 08/15/2022] [Indexed: 01/17/2023] Open
Abstract
During migration, cells often squeeze through small constrictions, requiring extensive deformation. We hypothesized that nuclear deformation associated with such confined migration could alter chromatin organization and function. By studying cells migrating through microfluidic devices that mimic interstitial spaces in vivo, we found that confined migration results in increased H3K9me3 and H3K27me3 heterochromatin marks that persist for days. This "confined migration-induced heterochromatin" (CMiH) was distinct from heterochromatin formation during migration initiation. Confined migration decreased chromatin accessibility at intergenic regions near centromeres and telomeres, suggesting heterochromatin spreading from existing sites. Consistent with the overall decrease in accessibility, global transcription was decreased during confined migration. Intriguingly, we also identified increased accessibility at promoter regions of genes linked to chromatin silencing, tumor invasion, and DNA damage response. Inhibiting CMiH reduced migration speed, suggesting that CMiH promotes confined migration. Together, our findings indicate that confined migration induces chromatin changes that regulate cell migration and other functions.
Collapse
Affiliation(s)
- Chieh-Ren Hsia
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jawuanna McAllister
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Ovais Hasan
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Julius Judd
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Seoyeon Lee
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Richa Agrawal
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Chao-Yuan Chang
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Paul Soloway
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
9
|
Liu W, Padhi A, Zhang X, Narendran J, Anastasio MA, Nain AS, Irudayaraj J. Dynamic Heterochromatin States in Anisotropic Nuclei of Cells on Aligned Nanofibers. ACS NANO 2022; 16:10754-10767. [PMID: 35803582 PMCID: PMC9332347 DOI: 10.1021/acsnano.2c02660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The cancer cell nucleus deforms as it invades the interstitial spaces in tissues and the tumor microenvironment. While alteration of the chromatin structure in a deformed nucleus is expected and documented, the chromatin structure in the nuclei of cells on aligned matrices has not been elucidated. In this work we elucidate the spatiotemporal organization of heterochromatin in the elongated nuclei of cells on aligned nanofibers with stimulated emission depletion nanoscopy and fluorescence correlation spectroscopy. We show that the anisotropy of nuclei is sufficient to drive H3K9me3-heterochromatin alterations, with enhanced H3K9me3 nanocluster compaction and aggregation states that otherwise are indistinguishable from diffraction-limited microscopy. We interrogated the higher-order heterochromatin structures within major chromatin compartments in anisotropic nuclei and discovered a wider spatial dispersion of nanodomain clusters in the nucleoplasm and condensed larger nanoclusters near the periphery and pericentromeric heterochromatin. Upon examining the spatiotemporal dynamics of heterochromatin in anisotropic nuclei, we observed reduced mobility of the constitutive heterochromatin mark H3K9me3 and the associated heterochromatin protein 1 (HP1α) at the nucleoplasm and periphery regions, correlating with increased viscosity and changes in gene expression. Since heterochromatin remodeling is crucial to genome integrity, our results reveal an unconventional H3K9me3 heterochromatin distribution, providing cues to an altered chromatin state due to perturbations of the nuclei in aligned fiber configurations.
Collapse
Affiliation(s)
- Wenjie Liu
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1102 Everitt Lab, 1406 W. Green Street, Urbana, Illinois 61801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Cancer Center at Illinois,
Micro and Nanotechnology Laboratory, Beckman
Institute, Carl Woese Institute for Genomic Biology, Urbana, Illinois 61801, United States
| | - Abinash Padhi
- Department
of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Xiaohui Zhang
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1102 Everitt Lab, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Jairaj Narendran
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1102 Everitt Lab, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Mark A. Anastasio
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1102 Everitt Lab, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Amrinder S. Nain
- Department
of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Joseph Irudayaraj
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1102 Everitt Lab, 1406 W. Green Street, Urbana, Illinois 61801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Cancer Center at Illinois,
Micro and Nanotechnology Laboratory, Beckman
Institute, Carl Woese Institute for Genomic Biology, Urbana, Illinois 61801, United States
| |
Collapse
|
10
|
Recoules L, Heurteau A, Raynal F, Karasu N, Moutahir F, Bejjani F, Jariel-Encontre I, Cuvier O, Sexton T, Lavigne AC, Bystricky K. The histone variant macroH2A1.1 regulates RNA Polymerase II paused genes within defined chromatin interaction landscapes. J Cell Sci 2022; 135:275002. [PMID: 35362516 PMCID: PMC9016624 DOI: 10.1242/jcs.259456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/28/2022] [Indexed: 11/29/2022] Open
Abstract
The histone variant macroH2A1.1 plays a role in cancer development and metastasis. To determine the underlying molecular mechanisms, we mapped the genome-wide localization of endogenous macroH2A1.1 in the human breast cancer cell line MDA-MB-231. We demonstrate that macroH2A1.1 specifically binds to active promoters and enhancers in addition to facultative heterochromatin. Selective knock down of macroH2A1.1 deregulates the expression of hundreds of highly active genes. Depending on the chromatin landscape, macroH2A1.1 acts through two distinct molecular mechanisms. The first mitigates excessive transcription by binding over domains including the promoter and the gene body. The second stimulates expression of RNA polymerase II (Pol II)-paused genes, including genes regulating mammary tumor cell migration. In contrast to the first mechanism, macroH2A1.1 specifically associates with the transcription start site of Pol II-paused genes. These processes occur in a predefined local 3D genome landscape, but do not require rewiring of enhancer-promoter contacts. We thus propose that macroH2A1.1 serves as a transcriptional modulator with a potential role in assisting the conversion of promoter-locked Pol II into a productive, elongating Pol II. Summary: Histone variant macroH2A1.1 binding to the TSS of genes dependent on Pol II pausing stimulates transcription by promoting Pol II release in a human triple-negative breast cancer cell model.
Collapse
Affiliation(s)
- Ludmila Recoules
- Molecular, Cellular and Developmental biology unit (MCD), UMR5077, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Alexandre Heurteau
- Molecular, Cellular and Developmental biology unit (MCD), UMR5077, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Flavien Raynal
- Molecular, Cellular and Developmental biology unit (MCD), UMR5077, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Nezih Karasu
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC); CNRS, UMR7104; INSERM U1258; University of Strasbourg; Illkirch, France
| | - Fatima Moutahir
- Molecular, Cellular and Developmental biology unit (MCD), UMR5077, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Fabienne Bejjani
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS, UMR5535, F-34293 3# Equipe Labellisée Ligue Nationale contre le Cancer, France
| | - Isabelle Jariel-Encontre
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS, UMR5535, F-34293 3# Equipe Labellisée Ligue Nationale contre le Cancer, France
| | - Olivier Cuvier
- Molecular, Cellular and Developmental biology unit (MCD), UMR5077, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Thomas Sexton
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC); CNRS, UMR7104; INSERM U1258; University of Strasbourg; Illkirch, France
| | - Anne-Claire Lavigne
- Molecular, Cellular and Developmental biology unit (MCD), UMR5077, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Kerstin Bystricky
- Molecular, Cellular and Developmental biology unit (MCD), UMR5077, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France.,Institut Universitaire de France (IUF), France
| |
Collapse
|
11
|
Does the Expression and Epigenetics of Genes Involved in Monogenic Forms of Parkinson’s Disease Influence Sporadic Forms? Genes (Basel) 2022; 13:genes13030479. [PMID: 35328033 PMCID: PMC8951612 DOI: 10.3390/genes13030479] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/25/2022] Open
Abstract
Parkinson’s disease (PD) is a disorder characterized by a triad of motor symptoms (akinesia, rigidity, resting tremor) related to loss of dopaminergic neurons mainly in the Substantia nigra pars compacta. Diagnosis is often made after a substantial loss of neurons has already occurred, and while dopamine replacement therapies improve symptoms, they do not modify the course of the disease. Although some biological mechanisms involved in the disease have been identified, such as oxidative stress and accumulation of misfolded proteins, they do not explain entirely PD pathophysiology, and a need for a better understanding remains. Neurodegenerative diseases, including PD, appear to be the result of complex interactions between genetic and environmental factors. The latter can alter gene expression by causing epigenetic changes, such as DNA methylation, post-translational modification of histones and non-coding RNAs. Regulation of genes responsible for monogenic forms of PD may be involved in sporadic PD. This review will focus on the epigenetic mechanisms regulating their expression, since these are the genes for which we currently have the most information available. Despite technical challenges, epigenetic epidemiology offers new insights on revealing altered biological pathways and identifying predictive biomarkers for the onset and progression of PD.
Collapse
|
12
|
Kaczmarczyk LS, Levi N, Segal T, Salmon-Divon M, Gerlitz G. CTCF supports preferentially short lamina-associated domains. Chromosome Res 2022; 30:123-136. [PMID: 35239049 DOI: 10.1007/s10577-022-09686-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 01/06/2023]
Abstract
More than one third of the mammalian genome is in a close association with the nuclear lamina, thus these genomic regions were termed lamina-associated domains (LADs). This association is fundamental for many aspects of chromatin biology including transcription, replication, and DNA damage repair. LADs association with the nuclear envelope is thought to be dependent on two major mechanisms: The first mechanism is the interaction between nuclear membrane proteins such as LBR with heterochromatin modifications that are enriched in LADs chromatin. The second mechanism is based on proteins that bind the borders of the LADs and support the association of the LADs with the nuclear envelope. Two factors were suggested to support the second mechanism: CCCTC-binding factor (CTCF) and YY1 based on their enriched binding to LADs borders. However, this mechanism has not been proven yet at a whole genome level. Here, to test if CTCF supports the LADs landscape, we generated melanoma cells with a partial loss of function (pLoF) of CTCF by the CRISPR-Cas9 system and determined the LADs landscape by lamin B ChIP-seq analysis. We found that under regular growth conditions, CTCF pLoF led to modest changes in the LADs landscape that included an increase in the signal of 2% of the LADs and a decrease in the signal of 8% of the LADs. However, CTCF importance for the LADs landscape was much higher upon induction of a chromatin stress. We induced chromatin stress by inhibiting RNA polymerase II, an intervention that is known to alter chromatin compaction and supercoiling. Notably, only in CTCF pLoF cells, the chromatin stress led to the dissociation of 7% of the LADs from the lamina. The CTCF-dependent LADs had almost three times shorter median length than the non-affected LADs, were enriched in CTCF binding at their borders, and were higher in their facultative-status (cell-type specific). Thus, it appears that CTCF is a key factor in facilitating the association of short facultative LADs with the nuclear lamina upon chromatin stress.
Collapse
Affiliation(s)
- Lukasz Stanislaw Kaczmarczyk
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, 40700, Ariel, Israel
| | - Nehora Levi
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, 40700, Ariel, Israel
| | - Tamar Segal
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, 40700, Ariel, Israel
| | - Mali Salmon-Divon
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, 40700, Ariel, Israel.
- Adelson School of Medicine, Ariel University, 40700, Ariel, Israel.
| | - Gabi Gerlitz
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, 40700, Ariel, Israel.
| |
Collapse
|
13
|
Chromatin remodelers and lineage-specific factors interact to target enhancers to establish proneurosensory fate within otic ectoderm. Proc Natl Acad Sci U S A 2021; 118:2025196118. [PMID: 33723076 DOI: 10.1073/pnas.2025196118] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Specification of Sox2+ proneurosensory progenitors within otic ectoderm is a prerequisite for the production of sensory cells and neurons for hearing. However, the underlying molecular mechanisms driving this lineage specification remain unknown. Here, we show that the Brg1-based SWI/SNF chromatin-remodeling complex interacts with the neurosensory-specific transcriptional regulators Eya1/Six1 to induce Sox2 expression and promote proneurosensory-lineage specification. Ablation of the ATPase-subunit Brg1 or both Eya1/Six1 results in loss of Sox2 expression and lack of neurosensory identity, leading to abnormal apoptosis within the otic ectoderm. Brg1 binds to two of three distal 3' Sox2 enhancers occupied by Six1, and Brg1-binding to these regions depends on Eya1-Six1 activity. We demonstrate that the activity of these Sox2 enhancers in otic neurosensory cells specifically depends on binding to Six1. Furthermore, genome-wide and transcriptome profiling indicate that Brg1 may suppress apoptotic factor Map3k5 to inhibit apoptosis. Together, our findings reveal an essential role for Brg1, its downstream pathways, and their interactions with Six1/Eya1 in promoting proneurosensory fate induction in the otic ectoderm and subsequent neuronal lineage commitment and survival of otic cells.
Collapse
|
14
|
Kim MH, Ayuningtyas FD, Kino-Oka M. Novel approach to enhance aggregate migration-driven epigenetic memory which induces cardiomyogenic differentiation on a dendrimer-immobilized surface. J Biosci Bioeng 2021; 132:390-398. [PMID: 34284946 DOI: 10.1016/j.jbiosc.2021.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 10/20/2022]
Abstract
The dynamic migratory behavior of human mesenchymal stem cells (hMSCs) has a significant impact on the epigenetic profiles that determine fate choice and lineage commitment during differentiation. Here we report a novel approach to enhance repeated migration-driven epigenetic memory which induces cardiomyogenic differentiation on a dendrimer surface with fifth generation (G5). Cells exhibited the formation of cell aggregates on the G5 surface through active migration with morphological changes, and these aggregates showed strong expression of the cardiac-specific marker cardiac troponin T (cTnT) at 10 days. When cell aggregates were passaged onto a fresh G5 surface over three passages of 40 days, the expression levels of the multiple cardiac-specific markers including GATA4, NKX2.5, MYH7, and TNNT2 were higher compared to those passaged as single cells. To investigate whether cardiomyogenic differentiation of hMSCs was enhanced by repeated aggregate migration-driven epigenetic memory, cells on the G5 surface were reseeded onto a fresh G5 surface during three passages using aggregate-based and single cell-based passage methods. Analyses of global changes in H3 histone modifications exhibited pattern of increased H3K9ac and H3K27me3, and decreased H3K9me3 in aggregate-based passage cultures during three passages. However, the pattern of their histone modification on the PS surface was repeated after the initialization and reformation during three passages in single cell-based passage cultures. Thus, repetitive aggregate migratory behavior during aggregate-based passage led to a greater degree of histone modification, as well as gene expression changes suggestive of cardiomyogenic differentiation.
Collapse
Affiliation(s)
- Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Fitria Dwi Ayuningtyas
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
15
|
Hallal M, Awad M, Khoueiry P. TempoMAGE: a deep learning framework that exploits the causal dependency between time-series data to predict histone marks in open chromatin regions at time-points with missing ChIP-seq datasets. Bioinformatics 2021; 37:4336-4342. [PMID: 34255822 DOI: 10.1093/bioinformatics/btab513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Identifying histone tail modifications using ChIP-seq is commonly used in time-series experiments in development and disease. These assays, however, cover specific time-points leaving intermediate or early stages with missing information. Although several machine learning methods were developed to predict histone marks, none exploited the dependence that exists in time-series experiments between data generated at specific time-points to extrapolate these findings to time-points where data cannot be generated for lack or scarcity of materials (i.e., early developmental stages). RESULTS Here, we train a deep learning model named TempoMAGE, to predict the presence or absence of H3K27ac in open chromatin regions by integrating information from sequence, gene expression, chromatin accessibility and the estimated change in H3K27ac state from a reference time-point. We show that adding reference time-point information systematically improves the overall model's performance. Additionally, sequence signatures extracted from our method were exclusive to the training dataset indicating that our model learned data-specific features. As an application, TempoMAGE was able to predict the activity of enhancers from pre-validated in-vivo dataset highlighting its ability to be used for functional annotation of putative enhancers. AVAILABILITY TempoMAGE is freely available through GitHub at https://github.com/pkhoueiry/TempoMAGE. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Mohammad Hallal
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon.,Biomedical Engineering Program, American University of Beirut, Lebanon
| | - Mariette Awad
- Department of Electrical and Computer Engineering, American University of Beirut, Lebanon
| | - Pierre Khoueiry
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon.,Pillar Genomics Institute, Faculty of Medicine, American University of Beirut, Lebanon
| |
Collapse
|
16
|
Ehlinger C, Mathieu E, Rabineau M, Ball V, Lavalle P, Haikel Y, Vautier D, Kocgozlu L. Insensitivity of dental pulp stem cells migration to substrate stiffness. Biomaterials 2021; 275:120969. [PMID: 34157563 DOI: 10.1016/j.biomaterials.2021.120969] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/26/2021] [Accepted: 06/09/2021] [Indexed: 12/16/2022]
Abstract
Dental pulp stem cells (DPSCs) are a promising cell source for regeneration of dental pulp. Migration is a key event but influence of the microenvironment rigidity (5 kPa at the center of dental pulp to 20 GPa for the dentin) is largely unknown. Mechanical signals are transmitted from the extracellular matrix to the cytoskeleton, to the nuclei, and to the chromatin, potentially regulating gene expression. To identify the microenvironmental influence on migration, we analyzed motility on PDMS substrates with stiffness increasing from 1.5 kPa up to 2.5 MPa. We found that migration speed slightly increases as substrate stiffness decreases in correlation with decreasing focal adhesion size. Motility is relatively insensitive to substrate stiffness, even on a bi-rigidity PDMS substrate where DPSCs migrate without preferential direction. Migration is independent of both myosin II activity and YAP translocation after myosin II inhibition. Additionally, inhibition of Arp2/3 complex leads to significant speed decrease for all rigidities, suggesting contribution of the lamellipodia in the migration. Interestingly, the chromatin architecture remains stable after a 7-days exposure on the PDMS substrates for all rigidity. To design scaffold mimicking dental pulp environment, similar DPSCs migration for all rigidity, leaves field open to choose this mechanical parameter.
Collapse
Affiliation(s)
- Claire Ehlinger
- Inserm UMR-S1121, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 1 rue Eugène Boeckel, 67084, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000, Strasbourg, France; Fédération de Médecine Translationnelle, Strasbourg, France
| | - Eric Mathieu
- Inserm UMR-S1121, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 1 rue Eugène Boeckel, 67084, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000, Strasbourg, France; Fédération de Médecine Translationnelle, Strasbourg, France
| | - Morgane Rabineau
- Inserm UMR-S1121, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 1 rue Eugène Boeckel, 67084, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000, Strasbourg, France; Fédération de Médecine Translationnelle, Strasbourg, France
| | - Vincent Ball
- Inserm UMR-S1121, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 1 rue Eugène Boeckel, 67084, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000, Strasbourg, France; Fédération de Médecine Translationnelle, Strasbourg, France
| | - Philippe Lavalle
- Inserm UMR-S1121, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 1 rue Eugène Boeckel, 67084, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000, Strasbourg, France; Fédération de Médecine Translationnelle, Strasbourg, France
| | - Youssef Haikel
- Inserm UMR-S1121, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 1 rue Eugène Boeckel, 67084, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000, Strasbourg, France; Fédération de Médecine Translationnelle, Strasbourg, France
| | - Dominique Vautier
- Inserm UMR-S1121, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 1 rue Eugène Boeckel, 67084, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000, Strasbourg, France; Fédération de Médecine Translationnelle, Strasbourg, France.
| | - Leyla Kocgozlu
- Inserm UMR-S1121, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 1 rue Eugène Boeckel, 67084, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000, Strasbourg, France; Fédération de Médecine Translationnelle, Strasbourg, France.
| |
Collapse
|
17
|
Zhang LQ, Fan GL, Liu JJ, Liu L, Li QZ, Lin H. Identification of Key Histone Modifications and Their Regulatory Regions on Gene Expression Level Changes in Chronic Myelogenous Leukemia. Front Cell Dev Biol 2021; 8:621578. [PMID: 33511133 PMCID: PMC7835480 DOI: 10.3389/fcell.2020.621578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic myelogenous leukemia (CML) is a type of cancer with a series of characteristics that make it particularly suitable for observations on leukemogenesis. Research have exhibited that the occurrence and progression of CML are associated with the dynamic alterations of histone modification (HM) patterns. In this study, we analyze the distribution patterns of 11 HM signals and calculate the signal changes of these HMs in CML cell lines as compared with that in normal cell lines. Meanwhile, the impacts of HM signal changes on expression level changes of CML-related genes are investigated. Based on the alterations of HM signals between CML and normal cell lines, the up- and down-regulated genes are predicted by the random forest algorithm to identify the key HMs and their regulatory regions. Research show that H3K79me2, H3K36me3, and H3K27ac are key HMs to expression level changes of CML-related genes in leukemogenesis. Especially H3K79me2 and H3K36me3 perform their important functions in all 100 bins studied. Our research reveals that H3K79me2 and H3K36me3 may be the core HMs for the clinical treatment of CML.
Collapse
Affiliation(s)
- Lu-Qiang Zhang
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| | - Guo-Liang Fan
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| | - Jun-Jie Liu
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| | - Li Liu
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| | - Qian-Zhong Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, China.,The Research Center for Laboratory Animal Science, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Hao Lin
- Key Laboratory for Neuro-Information of Ministry of Education, Center for Informational Biology, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
18
|
Fracchia A, Asraf T, Salmon-Divon M, Gerlitz G. Increased Lamin B1 Levels Promote Cell Migration by Altering Perinuclear Actin Organization. Cells 2020; 9:E2161. [PMID: 32987785 PMCID: PMC7598699 DOI: 10.3390/cells9102161] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/06/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Cell migration requires reposition and reshaping of the cell nucleus. The nuclear lamina is highly important for migration of both primary and cancer cells. B-type lamins are important for proper migration of epicardial cells and neurons and increased lamin B to lamin A ratio accelerates cancer cell migration through confined spaces. Moreover, a positive association between lamin B1 levels and tumor formation and progression is found in various cancer types. Still, the molecular mechanism by which B-type lamins promote cell migration is not fully understood. To better understand this mechanism, we tested the effects of lamin B1 on perinuclear actin organization. Here we show that induction of melanoma cell migration leads to the formation of a cytosolic Linker of Nucleoskeleton and Cytoskeleton (LINC) complex-independent perinuclear actin rim, which has not been detected in migrating cells, yet. Significantly, increasing the levels of lamin B1 but not the levels of lamin A prevented perinuclear actin rim formation while accelerated the cellular migration rate. To interfere with the perinuclear actin rim, we generated a chimeric protein that is localized to the outer nuclear membrane and cleaves perinuclear actin filaments in a specific manner without disrupting other cytosolic actin filaments. Using this tool, we found that disruption of the perinuclear actin rim accelerated the cellular migration rate in a similar manner to lamin B1 over-expression. Taken together, our results suggest that increased lamin B1 levels can accelerate cell migration by inhibiting the association of the nuclear envelope with actin filaments that may reduce nuclear movement and deformability.
Collapse
Affiliation(s)
- Andrea Fracchia
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, Ariel 40700, Israel; (A.F.); (T.A.); (M.S.-D.)
| | - Tal Asraf
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, Ariel 40700, Israel; (A.F.); (T.A.); (M.S.-D.)
| | - Mali Salmon-Divon
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, Ariel 40700, Israel; (A.F.); (T.A.); (M.S.-D.)
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Gabi Gerlitz
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, Ariel 40700, Israel; (A.F.); (T.A.); (M.S.-D.)
| |
Collapse
|
19
|
Luo C, Balsa E, Perry EA, Liang J, Tavares CD, Vazquez F, Widlund HR, Puigserver P. H3K27me3-mediated PGC1α gene silencing promotes melanoma invasion through WNT5A and YAP. J Clin Invest 2020; 130:853-862. [PMID: 31929186 DOI: 10.1172/jci130038] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022] Open
Abstract
Oncogene-targeted and immune checkpoint therapies have revolutionized the clinical management of malignant melanoma and now offer hope to patients with advanced disease. Intimately connected to patients' overall clinical risk is whether the initial primary melanoma lesion will metastasize and cause advanced disease, but underlying mechanisms are not entirely understood. A subset of melanomas display heightened peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1α) expression that maintains cell survival cues by promoting mitochondrial function, but also suppresses metastatic spread. Here, we show that PGC1α expression in melanoma cells was silenced by chromatin modifications that involve promoter H3K27 trimethylation. Pharmacological EZH2 inhibition diminished H3K27me3 histone markers, increased PGC1α expression, and functionally suppressed invasion within PGC1α-silenced melanoma cells. Mechanistically, PGC1α silencing activated transcription factor 12 (TCF12), to increase expression of WNT5A, which in turn stabilized YAP protein levels to promote melanoma migration and metastasis. Accordingly, inhibition of components of this transcription-signaling axis, including TCF12, WNT5A, or YAP, blocked melanoma migration in vitro and metastasis in vivo. These results indicate that epigenetic control of melanoma metastasis involved altered expression of PGC1α and an association with the inherent metabolic state of the tumor.
Collapse
Affiliation(s)
- Chi Luo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Eduardo Balsa
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth A Perry
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jiaxin Liang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Clint D Tavares
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Hans R Widlund
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Gerlitz G. The Emerging Roles of Heterochromatin in Cell Migration. Front Cell Dev Biol 2020; 8:394. [PMID: 32528959 PMCID: PMC7266953 DOI: 10.3389/fcell.2020.00394] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022] Open
Abstract
Cell migration is a key process in health and disease. In the last decade an increasing attention is given to chromatin organization in migrating cells. In various types of cells induction of migration leads to a global increase in heterochromatin levels. Heterochromatin is required for optimal cell migration capabilities, since various interventions with heterochromatin formation impeded the migration rate of numerous cell types. Heterochromatin supports the migration process by affecting both the mechanical properties of the nucleus as well as the genetic processes taking place within it. Increased heterochromatin levels elevate nuclear rigidity in a manner that allows faster cell migration in 3D environments. Condensed chromatin and a more rigid nucleus may increase nuclear durability to shear stress and prevent DNA damage during the migration process. In addition, heterochromatin reorganization in migrating cells is important for induction of migration-specific transcriptional plan together with inhibition of many other unnecessary transcriptional changes. Thus, chromatin organization appears to have a key role in the cellular migration process.
Collapse
Affiliation(s)
- Gabi Gerlitz
- Department of Molecular Biology and Ariel Center for Applied Cancer Research, Faculty of Life Sciences, Ariel University, Ariel, Israel
| |
Collapse
|
21
|
Li J, Zhang T, Ramakrishnan A, Fritzsch B, Xu J, Wong EYM, Loh YHE, Ding J, Shen L, Xu PX. Dynamic changes in cis-regulatory occupancy by Six1 and its cooperative interactions with distinct cofactors drive lineage-specific gene expression programs during progressive differentiation of the auditory sensory epithelium. Nucleic Acids Res 2020; 48:2880-2896. [PMID: 31956913 PMCID: PMC7102962 DOI: 10.1093/nar/gkaa012] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/16/2019] [Accepted: 01/17/2020] [Indexed: 12/23/2022] Open
Abstract
The transcription factor Six1 is essential for induction of sensory cell fate and formation of auditory sensory epithelium, but how it activates gene expression programs to generate distinct cell-types remains unknown. Here, we perform genome-wide characterization of Six1 binding at different stages of auditory sensory epithelium development and find that Six1-binding to cis-regulatory elements changes dramatically at cell-state transitions. Intriguingly, Six1 pre-occupies enhancers of cell-type-specific regulators and effectors before their expression. We demonstrate in-vivo cell-type-specific activity of Six1-bound novel enhancers of Pbx1, Fgf8, Dusp6, Vangl2, the hair-cell master regulator Atoh1 and a cascade of Atoh1's downstream factors, including Pou4f3 and Gfi1. A subset of Six1-bound sites carry consensus-sequences for its downstream factors, including Atoh1, Gfi1, Pou4f3, Gata3 and Pbx1, all of which physically interact with Six1. Motif analysis identifies RFX/X-box as one of the most significantly enriched motifs in Six1-bound sites, and we demonstrate that Six1-RFX proteins cooperatively regulate gene expression through binding to SIX:RFX-motifs. Six1 targets a wide range of hair-bundle regulators and late Six1 deletion disrupts hair-bundle polarity. This study provides a mechanistic understanding of how Six1 cooperates with distinct cofactors in feedforward loops to control lineage-specific gene expression programs during progressive differentiation of the auditory sensory epithelium.
Collapse
Affiliation(s)
- Jun Li
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ting Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aarthi Ramakrishnan
- Department of Neurosciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa, IA 52242-1324
| | - Jinshu Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elaine Y M Wong
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yong-Hwee Eddie Loh
- Department of Neurosciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jianqiang Ding
- Department of Infectious Diseases, Shunde Hospital, Southern Medical University, Shunde 528308, Guangdong, China
| | - Li Shen
- Department of Neurosciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
22
|
Stephens AD, Liu PZ, Kandula V, Chen H, Almassalha LM, Herman C, Backman V, O’Halloran T, Adam SA, Goldman RD, Banigan EJ, Marko JF. Physicochemical mechanotransduction alters nuclear shape and mechanics via heterochromatin formation. Mol Biol Cell 2019; 30:2320-2330. [PMID: 31365328 PMCID: PMC6743459 DOI: 10.1091/mbc.e19-05-0286] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
The nucleus houses, organizes, and protects chromatin to ensure genome integrity and proper gene expression, but how the nucleus adapts mechanically to changes in the extracellular environment is poorly understood. Recent studies have revealed that extracellular physical stresses induce chromatin compaction via mechanotransductive processes. We report that increased extracellular multivalent cations lead to increased heterochromatin levels through activation of mechanosensitive ion channels (MSCs), without large-scale cell stretching. In cells with perturbed chromatin or lamins, this increase in heterochromatin suppresses nuclear blebbing associated with nuclear rupture and DNA damage. Through micromanipulation force measurements, we show that this increase in heterochromatin increases chromatin-based nuclear rigidity, which protects nuclear morphology and function. In addition, transduction of elevated extracellular cations rescues nuclear morphology in model and patient cells of human diseases, including progeria and the breast cancer model cell line MDA-MB-231. We conclude that nuclear mechanics, morphology, and function can be modulated by cell sensing of the extracellular environment through MSCs and consequent changes to histone modification state and chromatin-based nuclear rigidity.
Collapse
Affiliation(s)
- Andrew D. Stephens
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Patrick Z. Liu
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Viswajit Kandula
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Haimei Chen
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Luay M. Almassalha
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208
| | - Cameron Herman
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208
| | - Thomas O’Halloran
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Stephen A. Adam
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Robert D. Goldman
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Edward J. Banigan
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - John F. Marko
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
| |
Collapse
|
23
|
Stephens AD, Banigan EJ, Marko JF. Chromatin's physical properties shape the nucleus and its functions. Curr Opin Cell Biol 2019; 58:76-84. [PMID: 30889417 PMCID: PMC6692209 DOI: 10.1016/j.ceb.2019.02.006] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/06/2019] [Accepted: 02/20/2019] [Indexed: 12/13/2022]
Abstract
The cell nucleus encloses, organizes, and protects the genome. Chromatin maintains nuclear mechanical stability and shape in coordination with lamins and the cytoskeleton. Abnormal nuclear shape is a diagnostic marker for human diseases, and it can cause nuclear dysfunction. Chromatin mechanics underlies this link, as alterations to chromatin and its physical properties can disrupt or rescue nuclear shape. The cell can regulate nuclear shape through mechanotransduction pathways that sense and respond to extracellular cues, thus modulating chromatin compaction and rigidity. These findings reveal how chromatin's physical properties can regulate cellular function and drive abnormal nuclear morphology and dysfunction in disease.
Collapse
Affiliation(s)
- Andrew D Stephens
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, United States.
| | - Edward J Banigan
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - John F Marko
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, United States; Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, United States.
| |
Collapse
|