1
|
Kastratovic N, Markovic V, Arsenijevic A, Volarevic A, Zdravkovic N, Zdravkovic M, Brankovic M, Gmizic T, Harrell CR, Jakovljevic V, Djonov V, Volarevic V. The Effects of Combustible Cigarettes and Electronic Nicotine Delivery Systems on Immune Cell-Driven Inflammation and Mucosal Healing in Ulcerative Colitis. Nicotine Tob Res 2025; 27:542-552. [PMID: 39101540 DOI: 10.1093/ntr/ntae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
INTRODUCTION The effects of combustible cigarettes (CCs) and electronic nicotine delivery systems (ENDS) on immune cell-driven colon inflammation and intestinal healing of patients with ulcerative colitis (UC) are still unknown and, therefore, were examined in this study. AIMS AND METHODS Intracellular staining and flow cytometry analysis of immune cells isolated from UC patients who used ENDS (UCENDS), CCs (UCCC) and who were nonsmokers (UCAIR) were performed to elucidate cellular mechanisms which were responsible for CCs and ENDS-dependent modulation of immune response during UC progression. Additionally, dextran sulfate sodium (DSS)-colitis was induced in ENDS/CC/air-exposed mice (DSSENDS/ DSSCC/DSSAIR groups) to support clinical findings. RESULTS Significantly increased number of immunosuppressive, IL-10, TGF-β, and IL-35-producing, FoxP3-expressing CD3 + CD4 + T regulatory cells (Tregs) was observed in the blood of UCENDS patients while the reduced presence of inflammatory, TNF-α and IFN-γ-producing, Tbx21-expressing CD3 + CD4 + Th1, IL-4-producing Gata3-expresing Th2 and IL-17, IL-22-producing, RORγT, IL-23R-expressing Th17 cells were noticed in the blood of UCCC patients. Exposure to either CCs or ENDS was associated with enhanced mucosal healing, ameliorated spontaneous recovery, and improved survival of DSS-treated mice. An expansion of immunosuppressive cells (IL-10-producing tolerogenic CD11c + dendritic cells, alternatively activated CD206, Arginase 1-expressing, IL-10-producing F4/80 + macrophages, IL-10-producing FoxP3-expressing Tregs) was noticed in the colons of DSSENDS-treated mice, while reduced number of inflammatory, IL-17- and IL-4-producing T lymphocytes was observed in the colons of DSSCC-compared to DSSAIR-treated mice. CONCLUSIONS Despite different mechanisms of action, both ENDS and CCs attenuated ongoing colon inflammation, enhanced healing, and ameliorated recovery of injured intestines of DSS-treated mice and UC patients. IMPLICATIONS This is the first study that compared the effects of CCs and ENDS on immune cells of patients suffering from UC, providing new information about molecular and cellular mechanisms which were responsible for ENDS and CCs-dependent modulation of immune cell-driven colon injury and inflammation. Obtained results showed that both ENDS and CCs had the capacity to attenuate detrimental immune response, enhance healing, and ameliorate recovery of injured intestines.
Collapse
Affiliation(s)
- Nikolina Kastratovic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Markovic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandar Arsenijevic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Ana Volarevic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Psychology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Natasa Zdravkovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center for Gastroenterology, Unversity Clinical Center Kragujevac, Kragujevac, Serbia
| | - Marija Zdravkovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Department of Cardiology, University Medical Center "Bežanijska Kosa," Dr Zoza Matea bb, Belgrade, Serbia
| | - Marija Brankovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Department of Gastroenterology, University Medical Center "Bežanijska Kosa," Dr Zoza Matea bb, Belgrade, Serbia
| | - Tijana Gmizic
- Department of Gastroenterology, University Medical Center "Bežanijska Kosa," Dr Zoza Matea bb, Belgrade, Serbia
| | | | - Vladimir Jakovljevic
- Department of Physiology, Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | | | - Vladislav Volarevic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Biology and Human Genetics, Phaculty of Pharmacy Novi Sad, Novi Sad, Serbia
| |
Collapse
|
2
|
Ran C, Olofsgård FJ, Wellfelt K, Steinberg A, Belin AC. Elevated cytokine levels in the central nervous system of cluster headache patients in bout and in remission. J Headache Pain 2024; 25:121. [PMID: 39044165 PMCID: PMC11267889 DOI: 10.1186/s10194-024-01829-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Cluster headache is characterized by activation of the trigeminovascular pathway with subsequent pain signalling in the meningeal vessels, and inflammation has been suggested to play a role in the pathophysiology. To further investigate inflammation in cluster headache, inflammatory markers were analysed in patients with cluster headache and controls. METHODS We performed a case-control study, collecting cerebrospinal fluid and serum samples from healthy controls, cluster headache patients in remission, active bout, and during an attack to cover the dynamic range of the cluster headache phenotype. Inflammatory markers were quantified using Target 48 OLINK cytokine panels. RESULTS Altered levels of several cytokines were found in patients with cluster headache compared to controls. CCL8, CCL13, CCL11, CXCL10, CXCL11, HGF, MMP1, TNFSF10 and TNFSF12 levels in cerebrospinal fluid were comparable in active bout and remission, though significantly higher than in controls. In serum samples, CCL11 and CXCL11 displayed decreased levels in patients. Only one cytokine, IL-13 was differentially expressed in serum during attacks. CONCLUSION AND INTERPRETATION Our data shows signs of possible neuroinflammation occurring in biological samples from cluster headache patients. Increased cerebrospinal fluid cytokine levels are detectable in active bout and during remission, indicating neuroinflammation could be considered a marker for cluster headache and is unrelated to the different phases of the disorder.
Collapse
Affiliation(s)
- Caroline Ran
- Centre for Cluster Headache, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | - Katrin Wellfelt
- Centre for Cluster Headache, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Anna Steinberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Andrea Carmine Belin
- Centre for Cluster Headache, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Kastratovic N, Zdravkovic N, Cekerevac I, Sekerus V, Harrell CR, Mladenovic V, Djukic A, Volarevic A, Brankovic M, Gmizic T, Zdravkovic M, Bjekic-Macut J, Zdravkovic N, Djonov V, Volarevic V. Effects of Combustible Cigarettes and Heated Tobacco Products on Systemic Inflammatory Response in Patients with Chronic Inflammatory Diseases. Diseases 2024; 12:144. [PMID: 39057115 PMCID: PMC11276168 DOI: 10.3390/diseases12070144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Smoke derived from combustible cigarettes (CCs) contains numerous harmful chemicals that can impair the viability, proliferation, and activation of immune cells, affecting the progression of chronic inflammatory diseases. In order to avoid the detrimental effects of cigarette smoking, many CC users have replaced CCs with heated tobacco products (HTPs). Due to different methods of tobacco processing, CC-sourced smoke and HTP-derived aerosols contain different chemical constituents. With the exception of nicotine, HTP-sourced aerosols contain significantly lower amounts of harmful constituents than CC-derived smoke. Since HTP-dependent effects on immune-cell-driven inflammation are still unknown, herein we used flow cytometry analysis, intracellular staining, and an enzyme-linked immunosorbent assay to determine the impact of CCs and HTPs on systemic inflammatory response in patients suffering from ulcerative colitis (UC), diabetes mellitus (DM), and chronic obstructive pulmonary disease (COPD). Both CCs and HTPs significantly modulated cytokine production in circulating immune cells, affecting the systemic inflammatory response in COPD, DM, and UC patients. Compared to CCs, HTPs had weaker capacity to induce the synthesis of inflammatory cytokines (IFN-γ, IL-1β, IL-5, IL-6, IL-12, IL-23, IL-17, TNF-α), but more efficiently induced the production of immunosuppressive IL-10 and IL-35. Additionally, HTPs significantly enhanced the synthesis of pro-fibrotic TGF-β. The continuous use of CCs and HTPs aggravated immune-cell-driven systemic inflammation in COPD and DM patients, but not in UC patients, suggesting that the immunomodulatory effects of CC-derived smoke and HTP-sourced aerosols are disease-specific, and need to be determined for specific immune-cell-driven inflammatory diseases.
Collapse
Affiliation(s)
- Nikolina Kastratovic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; (N.K.); (N.Z.); (I.C.); (A.V.); (N.Z.)
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
| | - Natasa Zdravkovic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; (N.K.); (N.Z.); (I.C.); (A.V.); (N.Z.)
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; (V.M.); (A.D.)
- Center for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center Kragujevac, 30 Zmaj Jovina Street, 34000 Kragujevac, Serbia
| | - Ivan Cekerevac
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; (N.K.); (N.Z.); (I.C.); (A.V.); (N.Z.)
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; (V.M.); (A.D.)
- Pulmonology Clinic, University Clinical Center Kragujevac, 30 Zmaj Jovina Street, 34000 Kragujevac, Serbia
| | - Vanesa Sekerus
- Institute for Pulmonary Diseases of Vojvodina, 4 Institutski Put, 21204 Novi Sad, Serbia;
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, 3 Hajduk Veljkova Street, 21000 Novi Sad, Serbia
| | - Carl Randall Harrell
- Regenerative Processing Plant, LLC, 34176 US Highway 19 N, Palm Harbor, FL 34684, USA;
| | - Violeta Mladenovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; (V.M.); (A.D.)
- Center for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center Kragujevac, 30 Zmaj Jovina Street, 34000 Kragujevac, Serbia
| | - Aleksandar Djukic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; (V.M.); (A.D.)
- Center for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center Kragujevac, 30 Zmaj Jovina Street, 34000 Kragujevac, Serbia
| | - Ana Volarevic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; (N.K.); (N.Z.); (I.C.); (A.V.); (N.Z.)
- Department of Psychology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
| | - Marija Brankovic
- Department of Gastroenterology, University Medical Center “Bežanijska Kosa”, Dr Zoza Matea bb, 11080 Belgrade, Serbia; (M.B.); (T.G.)
- Faculty of Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia;
| | - Tijana Gmizic
- Department of Gastroenterology, University Medical Center “Bežanijska Kosa”, Dr Zoza Matea bb, 11080 Belgrade, Serbia; (M.B.); (T.G.)
- Faculty of Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia;
| | - Marija Zdravkovic
- Faculty of Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia;
- Department of Cardiology, University Medical Center “Bežanijska Kosa”, Dr Zoza Matea bb, 11080 Belgrade, Serbia
| | - Jelica Bjekic-Macut
- Department of Endocrinology, University Medical Center “Bežanijska Kosa”, Dr Zoza Matea bb, 11080 Belgrade, Serbia;
| | - Nebojsa Zdravkovic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; (N.K.); (N.Z.); (I.C.); (A.V.); (N.Z.)
- Department of Statistics, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland;
| | - Vladislav Volarevic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; (N.K.); (N.Z.); (I.C.); (A.V.); (N.Z.)
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
- Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
- Faculty of Pharmacy Novi Sad, Trg Mladenaca 5, 21000 Novi Sad, Serbia
| |
Collapse
|
4
|
Bajraktari G, Elger T, Huss M, Loibl J, Albert A, Kandulski A, Müller M, Tews HC, Buechler C. Serum Galectin-3 as a Non-Invasive Marker for Primary Sclerosing Cholangitis. Int J Mol Sci 2024; 25:4765. [PMID: 38731984 PMCID: PMC11084718 DOI: 10.3390/ijms25094765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Primary sclerosing cholangitis (PSC) is a serious liver disease associated with inflammatory bowel disease (IBD). Galectin-3, an inflammatory and fibrotic molecule, has elevated circulating levels in patients with chronic liver disease and inflammatory bowel disease (IBD). This study aims to clarify whether galectin-3 can differentiate between patients with IBD, PSC, and PSC-IBD. Our study measured serum galectin-3 levels in 38 healthy controls, 55 patients with IBD, and 22 patients with PSC (11 patients had underlying IBD and 11 patients did not), alongside the urinary galectin-3 of these patients and 18 controls. Serum and urinary galectin-3 levels in IBD patients were comparable to those in controls. Among IBD patients, those with high fecal calprotectin, indicating severe disease, exhibited lower serum and elevated urinary galectin-3 levels compared to those with low calprotectin levels. Serum galectin-3 levels were inversely correlated with C-reactive protein levels. PSC patients displayed higher serum and urinary galectin-3 levels than IBD patients, with the highest serum levels observed in PSC patients with coexisting IBD. There was no correlation between serum and urinary galectin-3 levels and laboratory indicators of liver injury in both IBD and PSC patients. In conclusion, this study demonstrates that serum and urinary galectin-3 levels can distinguish IBD from PSC patients, and also reveals higher serum galectin-3 levels in PSC-IBD patients compared to those with isolated PSC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Christa Buechler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (G.B.); (T.E.); (M.H.); (J.L.); (A.A.); (A.K.); (M.M.); (H.C.T.)
| |
Collapse
|
5
|
Jiménez-Cortegana C, Palomares F, Alba G, Santa-María C, de la Cruz-Merino L, Sánchez-Margalet V, López-Enríquez S. Dendritic cells: the yin and yang in disease progression. Front Immunol 2024; 14:1321051. [PMID: 38239364 PMCID: PMC10794555 DOI: 10.3389/fimmu.2023.1321051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
Dendritic cells (DCs) are antigen presenting cells that link innate and adaptive immunity. DCs have been historically considered as the most effective and potent cell population to capture, process and present antigens to activate naïve T cells and originate favorable immune responses in many diseases, such as cancer. However, in the last decades, it has been observed that DCs not only promote beneficial responses, but also drive the initiation and progression of some pathologies, including inflammatory bowel disease (IBD). In line with those notions, different therapeutic approaches have been tested to enhance or impair the concentration and role of the different DC subsets. The blockade of inhibitory pathways to promote DCs or DC-based vaccines have been successfully assessed in cancer, whereas the targeting of DCs to inhibit their functionality has proved to be favorable in IBD. In this review, we (a) described the general role of DCs, (b) explained the DC subsets and their role in immunogenicity, (c) analyzed the role of DCs in cancer and therapeutic approaches to promote immunogenic DCs and (d) analyzed the role of DCs in IBD and therapeutic approaches to reduced DC-induced inflammation. Therefore, we aimed to highlight the "yin-yang" role of DCs to improve the understand of this type of cells in disease progression.
Collapse
Affiliation(s)
- Carlos Jiménez-Cortegana
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Francisca Palomares
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Gonzalo Alba
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Consuelo Santa-María
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, Seville, Spain
| | - Luis de la Cruz-Merino
- Clinical Oncology Dept. Medicine Department, University of Seville, Virgen Macarena University Hospital, Seville, Spain
| | - Victor Sánchez-Margalet
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Soledad López-Enríquez
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
6
|
Pavlovic D, Miloradovic D, Stojanovic MD, Harrell CR, Polosa R, Rust S, Volti GL, Caruso M, Jakovljevic V, Djonov V, Volarevic V. Cigarette smoke attenuates mesenchymal stem cell-based suppression of immune cell-driven acute liver failure. Toxicol Lett 2023; 385:12-20. [PMID: 37572970 DOI: 10.1016/j.toxlet.2023.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/22/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Detrimental effects of smoking on mesenchymal stem cell (MSC)-dependent immunosuppression and hepatoprotection are unknown. Herewith, by using α-galactosylceramide (α-GalCer)-induced liver injury, a well-established murine model of fulminant hepatitis, we examined molecular mechanisms which were responsible for negative effects of cigarette smoke on MSC-dependent immunomodulation. MSC which were grown in cigarette smoke-exposed medium (MSCWS-CM) obtained pro-inflammatory phenotype, were not able to optimally produce hepatoprotective and immunosuppressive cytokines (TGF-β, HGF, IL-10, NO, KYN), and secreted significantly higher amounts of inflammatory cytokines (IFN-γ, TNF-α, IL-17, IL-6) than MSC that were cultured in standard medium never exposed to cigarette smoke (MSCCM). In contrast to MSCCM, which efficiently attenuated α-GalCer-induced hepatitis, MSCWS-CM were not able to prevent hepatocyte injury and liver inflammation. MSCWS-CM had reduced capacity for the suppression of liver-infiltrated inflammatory macrophages, dendritic cells (DCs) and lymphocytes. Although significantly lower number of IL-12-producing macrophages and DCs, TNF-α, IFN-γ or IL-17-producing CD4 + and CD8 +T lymphocytes, NK and NKT cells were noticed in the livers of α-GalCer+MSCCM-treated mice compared to α-GalCer+saline-treated animals, this phenomenon was not observed in α-GalCer-injured mice that received MSCWS-CM. MSCWS-CM could not induce expansion of anti-inflammatory IL-10-producing FoxP3 +CD4 + and CD8 + T regulatory cells and were not able to create immunosuppressive microenvironment in the liver as MSCCM. Similarly as it was observed in mice, MSCWS-CM were not able to optimally inhibit production of inflammatory and hepatototoxic cytokines in activated human Th1/Th17 and NKT1/NKT17 cells, confirming the hypothesis that cigarette smoke significantly attenuates therapeutic potential of MSC in cell-based immunotherapy of inflammatory liver diseases.
Collapse
Affiliation(s)
- Dragica Pavlovic
- Department of Genetics, Center for harm reduction of biological and chemical hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
| | - Dragana Miloradovic
- Department of Genetics, Center for harm reduction of biological and chemical hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
| | - Milica Dimitrijevic Stojanovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
| | - Carl Randall Harrell
- Regenerative Processing Plant, LLC, 34176 US Highway 19 N Palm Harbor, Palm Harbor, FL 34684, USA
| | - Riccardo Polosa
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 89, 95123 Catania, Italy; Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia, 89, 95123 Catania, Italy
| | - Sonja Rust
- ECLAT Srl, University of Catania, Via S. Sofia, 89, 95123 Catania, Italy
| | - Giovanni Li Volti
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 89, 95123 Catania, Italy; Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 89, 95123 Catania, Italy
| | - Massimo Caruso
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 89, 95123 Catania, Italy; Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 89, 95123 Catania, Italy
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Vladislav Volarevic
- Department of Genetics, Center for harm reduction of biological and chemical hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; Departments of Genetics and Department of Microbiology and Immunology, Center for harm reduction of biological and chemical hazards, Faculty of Medical Sciences University of Kragujevac, Serbia.
| |
Collapse
|
7
|
Tews HC, Elger T, Grewal T, Weidlich S, Vitali F, Buechler C. Fecal and Urinary Adipokines as Disease Biomarkers. Biomedicines 2023; 11:biomedicines11041186. [PMID: 37189804 DOI: 10.3390/biomedicines11041186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
The use of biomarkers is of great clinical value for the diagnosis and prognosis of disease and the assessment of treatment efficacy. In this context, adipokines secreted from adipose tissue are of interest, as their elevated circulating levels are associated with a range of metabolic dysfunctions, inflammation, renal and hepatic diseases and cancers. In addition to serum, adipokines can also be detected in the urine and feces, and current experimental evidence on the analysis of fecal and urinary adipokine levels points to their potential as disease biomarkers. This includes increased urinary adiponectin, lipocalin-2, leptin and interleukin-6 (IL-6) levels in renal diseases and an association of elevated urinary chemerin as well as urinary and fecal lipocalin-2 levels with active inflammatory bowel diseases. Urinary IL-6 levels are also upregulated in rheumatoid arthritis and may become an early marker for kidney transplant rejection, while fecal IL-6 levels are increased in decompensated liver cirrhosis and acute gastroenteritis. In addition, galectin-3 levels in urine and stool may emerge as a biomarker for several cancers. With the analysis of urine and feces from patients being cost-efficient and non-invasive, the identification and utilization of adipokine levels as urinary and fecal biomarkers could become a great advantage for disease diagnosis and predicting treatment outcomes. This review article highlights data on the abundance of selected adipokines in urine and feces, underscoring their potential to serve as diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Hauke C Tews
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Tanja Elger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Simon Weidlich
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Francesco Vitali
- Department of Medicine 1, Gastroenterology, Pneumology and Endocrinology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
8
|
Highlights on the Role of Galectin-3 in Colorectal Cancer and the Preventive/Therapeutic Potential of Food-Derived Inhibitors. Cancers (Basel) 2022; 15:cancers15010052. [PMID: 36612048 PMCID: PMC9817985 DOI: 10.3390/cancers15010052] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of death worldwide. Despite advances in surgical and therapeutic management, tumor metastases and resistance to therapy still represent major hurdles. CRC risk is highly modifiable by lifestyle factors, including diet, which strongly influences both cancer incidence and related mortality. Galectin-3 (Gal-3) is a multifaceted protein involved in multiple pathophysiological pathways underlying chronic inflammation and cancer. Its versatility is given by the ability to participate in a wide range of tumor-promoting processes, including cell-cell/cell-matrix interactions, cell growth regulation and apoptosis, and the immunosuppressive tumor microenvironment. This review provides an updated summary of preclinical and observational human studies investigating the pathogenetic role of Gal-3 in intestinal inflammation and CRC, as well as the potential of Gal-3 activity inhibition by plant-source food-derived bioactive compounds to control CRC onset/growth. These studies highlight both direct and immuno-mediated effects of Gal-3 on tumor growth and invasiveness and its potential role as a CRC prognostic biomarker. Substantial evidence indicates natural food-derived Gal-3 inhibitors as promising candidates for CRC prevention and therapy. However, critical issues, such as their bioavailability and efficacy, in controlled human studies need to be addressed to translate research progress into clinical applications.
Collapse
|
9
|
Therapeutic Potential of d-MAPPS™ for Ocular Inflammatory Diseases and Regeneration of Injured Corneal and Retinal Tissue. Int J Mol Sci 2022; 23:ijms232113528. [DOI: 10.3390/ijms232113528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022] Open
Abstract
The invasion of microbial pathogens and/or sterile inflammation caused by physical/chemical injuries, increased ocular pressure, oxidative stress, and ischemia could lead to the generation of detrimental immune responses in the eyes, which result in excessive tissue injury and vision loss. The bioavailability of eye drops that are enriched with immunoregulatory and trophic factors which may concurrently suppress intraocular inflammation and promote tissue repair and regeneration is generally low. We recently developed “derived- Multiple Allogeneic Proteins Paracrine Signaling regenerative biologics platform technology d-MAPPS™”, a bioengineered biological product which is enriched with immunomodulatory and trophic factors that can efficiently suppress detrimental immune responses in the eye and promote the repair and regeneration of injured corneal and retinal tissues. The results obtained in preclinical and clinical studies showed that d-MAPPS™ increased the viability of injured corneal cells, inhibited the production of inflammatory cytokines in immune cells, alleviated inflammation, and restored vision loss in patients suffering from meibomian gland dysfunction and dry eye disease. Herewith, we emphasized molecular mechanisms responsible for the therapeutic efficacy of d-MAPPS™ and we presented the main beneficial effects of d-MAPPS™ in clinical settings, indicating that the topical administration of d-MAPPS™ could be considered a new therapeutic approach for the treatment of ocular inflammatory diseases and for the repair and regeneration of injured corneal and retinal tissues.
Collapse
|
10
|
Xu Y, Li X, Wang H. Protective Roles of Apigenin Against Cardiometabolic Diseases: A Systematic Review. Front Nutr 2022; 9:875826. [PMID: 35495935 PMCID: PMC9051485 DOI: 10.3389/fnut.2022.875826] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022] Open
Abstract
Apigenin is a flavonoid with antioxidant, anti-inflammatory, and anti-apoptotic activity. In this study, the potential effects of apigenin on cardiometabolic diseases were investigated in vivo and in vitro. Potential signaling networks in different cell types induced by apigenin were identified, suggesting that the molecular mechanisms of apigenin in cardiometabolic diseases vary with cell types. Additionally, the mechanisms of apigenin-induced biological response in different cardiometabolic diseases were analyzed, including obesity, diabetes, hypertension and cardiovascular diseases. This review provides novel insights into the potential role of apigenin in cardiometabolic diseases.
Collapse
Affiliation(s)
- Yajie Xu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Xue Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xue Li,
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Hui Wang,
| |
Collapse
|
11
|
Exo-D-Mapps Attenuates Production of Inflammatory Cytokines and Promoted Generation of Immunosuppressive Phenotype in Peripheral Blood Mononuclear Cells. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022. [DOI: 10.2478/sjecr-2019-0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Mesenchymal stem cells (MSCs) produce immunomodulatory factors that regulate production of cytokines and chemokines in immune cells affecting their functional properties. Administration of MSCs-sourced secretome, including MSC-derived conditioned medium (MSC-CM) and MSC-derived exosomes (MSC-Exos), showed beneficial effects similar to those observed after transplantation of MSCs. Due to their nano-size dimension, MSC-Exos easily penetrate through the tissue and in paracrine and endocrine manner, may deliver MSC-sourced factors to the target immune cells modulating their function. MSCs derived from amniotic fluid (AF-MSCs) had superior cell biological properties than MSCs derived from bone marrow. We recently developed “Exosomes Derived Multiple Allogeneic Proteins Paracrine Signaling (Exo-d-MAPPS)”, a biological product in which the activity is based on AF-MSC-derived Exos capable to deliver immunomodulatory molecules and growth factors to the target cells. Herewith, we analyzed immunosuppressive capacity of Exo-d-MAPPS against human peripheral blood mononuclear cells (pbMNCs) and demonstrated that Exo-d-MAPPS efficiently suppressed generation of inflammatory phenotype in activated pbMNCs. Exo-d-MAPPS attenuated production of inflammatory cytokines and promoted generation of immunosuppressive phenotype in Lipopolysaccharide-primed pbMNCs. Exo-d-MAPPS treatment reduced expansion of inflammatory Th1 and Th17 cells and promoted generation of immunosuppressive T regulatory cells in the population of Concanavalin A-primed pbMNCs. Similarly, Exod-MAPPS treatment suppressed pro-inflammatory and promoted anti-inflammatory properties of α-GalCer-primed pbMNCs. In summing up, due to its capacity for suppression of activated pbMNCs, Exo-d-MAPPS should be further explored in animal models of acute and chronic inflammatory diseases as a potentially new remedy for the attenuation of detrimental immune response.
Collapse
|
12
|
Menkhorst E, Than NG, Jeschke U, Barrientos G, Szereday L, Dveksler G, Blois SM. Medawar's PostEra: Galectins Emerged as Key Players During Fetal-Maternal Glycoimmune Adaptation. Front Immunol 2022; 12:784473. [PMID: 34975875 PMCID: PMC8715898 DOI: 10.3389/fimmu.2021.784473] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Lectin-glycan interactions, in particular those mediated by the galectin family, regulate many processes required for a successful pregnancy. Over the past decades, increasing evidence gathered from in vitro and in vivo experiments indicate that members of the galectin family specifically bind to both intracellular and membrane bound carbohydrate ligands regulating angiogenesis, immune-cell adaptations required to tolerate the fetal semi-allograft and mammalian embryogenesis. Therefore, galectins play important roles in fetal development and placentation contributing to maternal and fetal health. This review discusses the expression and role of galectins during the course of pregnancy, with an emphasis on maternal immune adaptions and galectin-glycan interactions uncovered in the recent years. In addition, we summarize the galectin fingerprints associated with pathological gestation with particular focus on preeclampsia.
Collapse
Affiliation(s)
- Ellen Menkhorst
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia.,Gynaecological Research Centre, The Women's Hospital, Melbourne, VIC, Australia
| | - Nandor Gabor Than
- Systems Biology of Reproduction Research Group, Institute of Enyzmology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Augsburg, Germany
| | - Gabriela Barrientos
- Laboratorio de Medicina Experimental, Hospital Alemán-Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Laszlo Szereday
- Medical School, Department of Medical Microbiology and Immunology, University of Pecs, Pecs, Hungary
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University, Bethesda, MD, United States
| | - Sandra M Blois
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
13
|
Therapeutic Potential of „Derived-Multiple Allogeneic Proteins Paracrine Signaling-D-Mapps” in the Treatment of Dry Eye Disease. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2021. [DOI: 10.2478/sjecr-2019-0072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Abstract
Dry eye disease (DED) is a chronic inflammatory disease of the lacrimal system and ocular surface. Considering the important role of inflammation in DED development, the main treatment strategy has shifted from hydration and lubrication of dry ocular surface to the immunomodulation and immunoregulationapproach that should address the main pathologic processes responsible for disease progression. Due to their capacity for production of immunosuppressive factors, mesenchymal stem cells (MSCs) and their secretome have been considered as potentially new agents in DED therapy. We recently developed an immunomodulatory ophthalmic solution “derived- Multiple Allogeneic Proteins Paracrine Signaling (d-MAPPS)” which activity is relied on immunosuppressive capacity of MSC-derived secretome. d-MAPPS contains MSC-derived exosomes, growth factors and immunosuppressive cytokines that are able to efficiently suppress generation of inflammatory phenotype in T cells and macrophages. Herewith, we demonstrated that d-MAPPS protected human corneal epithelial cells from chemical injury and efficiently alleviated ocular discomfort and pain in 131 DED patients during the 12-month follow-up, indicating d-MAPPS eye drops as potentially new remedy for the treatment of DED patients.
Collapse
|
14
|
Porphyromonas gingivalis exacerbates ulcerative colitis via Porphyromonas gingivalis peptidylarginine deiminase. Int J Oral Sci 2021; 13:31. [PMID: 34593756 PMCID: PMC8484350 DOI: 10.1038/s41368-021-00136-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 11/09/2022] Open
Abstract
Ulcerative Colitis (UC) has been reported to be related to Porphyromonas gingivalis (P. gingivalis). Porphyromonas gingivalis peptidylarginine deiminase (PPAD), a virulence factor released by P. gingivalis, is known to induce inflammatory responses. To explore the pathological relationships between PPAD and UC, we used homologous recombination technology to construct a P. gingivalis strain in which the PPAD gene was deleted (Δppad) and a Δppad strain in which the PPAD gene was restored (comΔppad). C57BL/6 mice were orally gavaged with saline, P. gingivalis, Δppad, or comΔppad twice a week for the entire 40 days (days 0-40), and then, UC was induced by dextran sodium sulfate (DSS) solution for 10 days (days 31-40). P. gingivalis and comΔppad exacerbated DDS-induced colitis, which was determined by assessing the parameters of colon length, disease activity index, and histological activity index, but Δppad failed to exacerbate DDS-induced colitis. Flow cytometry and ELISA revealed that compared with Δppad, P. gingivalis, and comΔppad increased T helper 17 (Th17) cell numbers and interleukin (IL)-17 production but decreased regulatory T cells (Tregs) numbers and IL-10 production in the spleens of mice with UC. We also cocultured P. gingivalis, Δppad, or comΔppad with T lymphocytes in vitro and found that P. gingivalis and comΔppad significantly increased Th17 cell numbers and decreased Treg cell numbers. Immunofluorescence staining of colon tissue paraffin sections also confirmed these results. The results suggested that P. gingivalis exacerbated the severity of UC in part via PPAD.
Collapse
|
15
|
Heidari F, Razmkhah M, Razban V, Erfani N. Effects of indoleamine 2, 3-dioxygenase (IDO) silencing on immunomodulatory function and cancer-promoting characteristic of adipose-derived mesenchymal stem cells (ASCs). Cell Biol Int 2021; 45:2544-2556. [PMID: 34498786 DOI: 10.1002/cbin.11698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/25/2021] [Accepted: 09/05/2021] [Indexed: 12/28/2022]
Abstract
Indoleamine 2, 3-dioxygenase (IDO) catabolizes tryptophan, mediates immunomodulatory functions, and is released by stromal cells such as mesenchymal stem cells. The aims of this study were to investigate the effects of IDO silencing on immunosuppressive function of adipose-derived mesenchymal stem cells (ASCs), T cells phenotype, and the proliferation/migration of tumor cells. ASCs isolated from adipose tissues of healthy women were transfected with IDO-siRNA. Galectin-3, transforming growth factor-β1, hepatocyte growth factor, and interleukin-10 as immunomodulators were measured in ASCs using qRT-PCR. T cells phenotype, interferon-γ, and interleukin-17 expression were evaluated in peripheral blood lymphocytes (PBLs) cocultured with IDO silenced-ASCs by flow cytometry and qRT-PCR, respectively. Scratch assay was applied to assess the proliferation/migration of MDA-MB-231 cell line. Galectin-3 was upregulated (p ˂ 0.05) while hepatocyte growth factor was downregulated (p ˂ 0.05) in IDO-silenced ASCs compared to control groups. Regulatory T cells were inhibited in PBLs cocultured with IDO-silenced ASCs; also T helper2 was decreased in PBLs cocultured with IDO-silenced ASCs relative to the scramble group. IDO-silenced ASCs caused interferon-γ overexpression but interleukin-17 downregulation in PBLs. The proliferation/migration of MDA-MB-231 was suppressed after exposing to condition media of IDO-silenced ASCs compared with condition media of untransfected (p < 0.01) and scramble-transfected ASCs (p < 0.05). The results exhibited the weakened capacity of IDO-silenced ASCs for suppressing the immune cells and promoting the tumor cells' proliferation/migration. IDO suppression may be utilized as a strategy for cancer treatment. Simultaneous blocking of immunomodulators along with IDO inhibitors may show more effects on boosting the efficiency of immune-based cancer therapies.
Collapse
Affiliation(s)
- Fahimeh Heidari
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Razmkhah
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasrollah Erfani
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Espinosa-Oliva AM, García-Miranda P, Alonso-Bellido IM, Carvajal AE, González-Rodríguez M, Carrillo-Jiménez A, Temblador AJ, Felices-Navarro M, García-Domínguez I, Roca-Ceballos MA, Vázquez-Carretero MD, García-Revilla J, Santiago M, Peral MJ, Venero JL, de Pablos RM. Galectin-3 Deletion Reduces LPS and Acute Colitis-Induced Pro-Inflammatory Microglial Activation in the Ventral Mesencephalon. Front Pharmacol 2021; 12:706439. [PMID: 34483912 PMCID: PMC8416309 DOI: 10.3389/fphar.2021.706439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/06/2021] [Indexed: 12/24/2022] Open
Abstract
Parkinson’s disease is a highly prevalent neurological disorder for which there is currently no cure. Therefore, the knowledge of risk factors as well as the development of new putative molecular targets is mandatory. In this sense, peripheral inflammation, especially the originated in the colon, is emerging as a predisposing factor for suffering this disease. We have largely studied the pleiotropic roles of galectin-3 in driving microglia-associated immune responses. However, studies aimed at elucidating the role of galectin-3 in peripheral inflammation in terms of microglia polarization are lacking. To achieve this, we have evaluated the effect of galectin-3 deletion in two different models of acute peripheral inflammation: intraperitoneal injection of lipopolysaccharide or gut inflammation induced by oral administration of dextran sodium sulfate. We found that under peripheral inflammation the number of microglial cells and the expression levels of pro-inflammatory mediators take place specifically in the dopaminergic system, thus supporting causative links between Parkinson’s disease and peripheral inflammation. Absence of galectin-3 highly reduced neuroinflammation in both models, suggesting an important central regulatory role of galectin-3 in driving microglial activation provoked by the peripheral inflammation. Thus, modulation of galectin-3 function emerges as a promising strategy to minimize undesired microglia polarization states.
Collapse
Affiliation(s)
- Ana M Espinosa-Oliva
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de, Sevilla, Spain
| | - Pablo García-Miranda
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Isabel María Alonso-Bellido
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de, Sevilla, Spain
| | - Ana E Carvajal
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Melania González-Rodríguez
- Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Alejandro Carrillo-Jiménez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de, Sevilla, Spain
| | - Arturo J Temblador
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven, Belgium
| | - Manuel Felices-Navarro
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de, Sevilla, Spain
| | - Irene García-Domínguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de, Sevilla, Spain
| | - María Angustias Roca-Ceballos
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de, Sevilla, Spain
| | | | - Juan García-Revilla
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de, Sevilla, Spain
| | - Marti Santiago
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de, Sevilla, Spain
| | - María J Peral
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - José Luis Venero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de, Sevilla, Spain
| | - Rocío M de Pablos
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de, Sevilla, Spain
| |
Collapse
|
17
|
Sheng Q, Li F, Chen G, Li J, Li J, Wang Y, Lu Y, Li Q, Li M, Chai K. Ursolic Acid Regulates Intestinal Microbiota and Inflammatory Cell Infiltration to Prevent Ulcerative Colitis. J Immunol Res 2021; 2021:6679316. [PMID: 34007853 PMCID: PMC8111854 DOI: 10.1155/2021/6679316] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/28/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic and relapsing inflammatory bowel disorder in the colon and rectum leading to low life-quality and high societal costs. Ursolic acid (UA) is a natural product with pharmacological and biological activities. The studies are aimed at investigating the protective and treatment effects of UA against the dextran sulfate sodium- (DSS-) induced UC mouse model and its underlying mechanism. UA was orally administered at different time points before and after the DSS-induced model. Mice body weight, colon length, and histological analysis were used to evaluate colon tissue damage and therapeutic evaluation. Intestinal transcriptome and microbe 16 s sequencing was used to analyze the mechanisms of UA in the prevention and treatment of UC. The early prevention effect of UA could effectively delay mouse weight loss and colon length shorten. UA alleviated UC inflammation and lowered serum and colon IL-6 levels. Three classical inflammatory pathways: MAPKs, IL-6/STAT3, and PI3K were downregulated by UA treatment. The proportion of macrophages and neutrophils in inflammatory cell infiltration was reduced in UA treatment groups. UA could significantly reduce the richness of intestinal flora to avoid the inflammatory response due to the destruction of the intestinal epithelial barrier. The function of UA against UC was through reducing intestinal flora abundance and regulating inflammatory and fatty acid metabolism signaling pathways to affect immune cell infiltration and cytokine expression.
Collapse
Affiliation(s)
- Qinsong Sheng
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of College of Medicine, Zhejiang University, China
| | - Fei Li
- College of Life Science, Sichuan Normal University, Chengdu, Sichuan 610101, China
- Cancer Institute of Integrated Tradition Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
| | - Guanping Chen
- Cancer Institute of Integrated Tradition Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
| | - Jiacheng Li
- College of Life Science, Sichuan Normal University, Chengdu, Sichuan 610101, China
- Cancer Institute of Integrated Tradition Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
| | - Jing Li
- Cancer Institute of Integrated Tradition Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
| | - YiFan Wang
- Cancer Institute of Integrated Tradition Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
| | - Yingyan Lu
- Cancer Institute of Integrated Tradition Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
| | - Qun Li
- College of Life Science, Sichuan Normal University, Chengdu, Sichuan 610101, China
| | - Mingqian Li
- Cancer Institute of Integrated Tradition Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
| | - Kequn Chai
- Cancer Institute of Integrated Tradition Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
| |
Collapse
|
18
|
Srejovic IM, Lukic ML. Galectin-3 in T cell-mediated immunopathology and autoimmunity. Immunol Lett 2021; 233:57-67. [PMID: 33753135 DOI: 10.1016/j.imlet.2021.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/17/2021] [Indexed: 01/05/2023]
Abstract
Galectin-3 (Gal-3) is the only member of galectin family able to form pentamers and heterodimers with chemokines. Its presence in various cells and tissues suggests variety of regulatory functions in physiological conditions, but increasing body of evidence indicates involvement of Gal-3 in pathological cascades of many diseases. Gal-3 exerts different, sometimes opposite, effects in various disorders or in different phases of the same disease. These differences in action of Gal-3 are related to the localization of Gal-3 in the cell, types of receptors through which it acts, or the types of cells that secrete it. As a regulator of immune response and T-cell activity, Gal-3 appears to have important role in development of autoimmunity mediated by T cells. Absence of Gal-3 in C57Bl6 mice favors Th2 mediated inflammatory myocarditis but attenuate fibrosis. Recent data also indicate Gal-3 involvement in development atherosclerosis. In pathogenesis of diabetes type 1 and autoimmune components of diabetes type 2 Gal-3 may have detrimental or protective role depending on its intracellular or extracellular localization. Gal-3 mediates autoimmune hepatic damage through activation of T-cells or natural killer T cells. Gal-3 is an important mediator in neurodevelopment, neuropathology and behavior due to its expression both in neurons and glial cells. All together, assessing the role of Gal-3 in immunopathology and autoimmunity it could be concluded that it is an important participant in pathogenesis, as well as promising monitoring marker and therapeutic target.
Collapse
Affiliation(s)
- Ivan M Srejovic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34000, Kragujevac, Serbia.
| | - Miodrag L Lukic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34000, Kragujevac, Serbia; University of Kragujevac, Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, Svetozara Markovica 69, 34000, Kragujevac, Serbia.
| |
Collapse
|
19
|
Zhang W, Liu Z, Xu X. Navigating immune cell immunometabolism after liver transplantation. Crit Rev Oncol Hematol 2021; 160:103227. [PMID: 33675906 DOI: 10.1016/j.critrevonc.2021.103227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 12/18/2020] [Accepted: 01/16/2021] [Indexed: 11/15/2022] Open
Abstract
Liver transplantation (LT) is the most effective treatment for end-stage liver diseases. The immunometabolism microenvironment undergoes massive changes at the interface of immune functionalities and metabolic regulations after LT. These changes considerably modify post-transplant complications, and immune cells play an influential role in the hepatic immunometabolism microenvironment after LT. Therefore, adequate studies on the complex pathobiology of immune cells are critical to prevent post-transplant complications, and the interplay between cellular metabolism and immune function is evident. Furthermore, immune cells perform their specified functions, such as activation or differentiation, accompanied by alterations in metabolic pathways, such as metabolic reprogramming. This transformation remarkably affects post-transplant complications like rejection. By targeting different metabolic pathways, regulations of metabolism are employed to shape immune responses. These differences of metabolic pathways allow for selective regulation of immune responses to further develop effective therapies that prevent graft loss after LT. This review examines immune cells in the hepatic immunometabolism microenvironment after LT, summarizes possible mechanisms and potential prevention on rejection to acquire immune tolerance, and offers some insight into references for scientific research along with clinical treatment.
Collapse
Affiliation(s)
- Wenhui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University Cancer Center, Hangzhou 310058, China
| | - Zhikun Liu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University Cancer Center, Hangzhou 310058, China.
| |
Collapse
|