1
|
Li DG, Jiang JP, Chen FY, Wu W, Fu J, Wang GH, Li YB. Insulin-like growth factor 2 targets IGF1R signaling transduction to facilitate metastasis and imatinib resistance in gastrointestinal stromal tumors. World J Gastrointest Oncol 2024; 16:3585-3599. [PMID: 39171181 PMCID: PMC11334037 DOI: 10.4251/wjgo.v16.i8.3585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Gastrointestinal stromal tumors (GISTs) are typical gastrointestinal tract neoplasms. Imatinib is the first-line therapy for GIST patients. Drug resistance limits the long-term effectiveness of imatinib. The regulatory effect of insulin-like growth factor 2 (IGF2) has been confirmed in various cancers and is related to resistance to chemotherapy and a worse prognosis. AIM To further investigate the mechanism of IGF2 specific to GISTs. METHODS IGF2 was screened and analyzed using Gene Expression Omnibus (GEO: GSE225819) data. After IGF2 knockdown or overexpression by transfection, the phenotypes (proliferation, migration, invasion, apoptosis) of GIST cells were characterized by cell counting kit 8, Transwell, and flow cytometry assays. We used western blotting to evaluate pathway-associated and epithelial-mesenchymal transition (EMT)-associated proteins. We injected transfected cells into nude mice to establish a tumor xenograft model and observed the occurrence and metastasis of GIST. RESULTS Data from the GEO indicated that IGF2 expression is high in GISTs, associated with liver metastasis, and closely related to drug resistance. GIST cells with high expression of IGF2 had increased proliferation and migration, invasiveness and EMT. Knockdown of IGF2 significantly inhibited those activities. In addition, OE-IGF2 promoted GIST metastasis in vivo in nude mice. IGF2 activated IGF1R signaling in GIST cells, and IGF2/IGF1R-mediated glycolysis was required for GIST with liver metastasis. GIST cells with IGF2 knockdown were sensitive to imatinib treatment when IGF2 overexpression significantly raised imatinib resistance. Moreover, 2-deoxy-D-glucose (a glycolysis inhibitor) treatment reversed IGF2 overexpression-mediated imatinib resistance in GISTs. CONCLUSION IGF2 targeting of IGF1R signaling inhibited metastasis and decreased imatinib resistance by driving glycolysis in GISTs.
Collapse
Affiliation(s)
- De-Gang Li
- Department of Gastrointestinal and Anorectal Surgery, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi Zhuang Autonomous Region, China
| | - Jia-Peng Jiang
- Department of Gastrointestinal and Anorectal Surgery, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi Zhuang Autonomous Region, China
| | - Fan-Ye Chen
- Department of Gastrointestinal and Anorectal Surgery, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi Zhuang Autonomous Region, China
| | - Wei Wu
- Department of Gastrointestinal and Anorectal Surgery, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi Zhuang Autonomous Region, China
| | - Jun Fu
- Department of Gastrointestinal and Anorectal Surgery, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi Zhuang Autonomous Region, China
| | - Gong-He Wang
- Department of Gastrointestinal and Anorectal Surgery, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi Zhuang Autonomous Region, China
| | - Yu-Bo Li
- Department of Gastrointestinal and Anorectal Surgery, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
2
|
Ji J, Bi F, Zhang X, Zhang Z, Xie Y, Yang Q. Single-cell transcriptome analysis revealed heterogeneity in glycolysis and identified IGF2 as a therapeutic target for ovarian cancer subtypes. BMC Cancer 2024; 24:926. [PMID: 39085784 PMCID: PMC11292870 DOI: 10.1186/s12885-024-12688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND As the most malignant tumor of the female reproductive system, ovarian cancer (OC) has garnered increasing attention. The Warburg effect, driven by glycolysis, accounts for tumor cell proliferation under aerobic conditions. However, the metabolic heterogeneity linked to glycolysis in OC remains elusive. METHODS We integrated single-cell data with OC to score glycolysis level in tumor cell subclusters. This led to the identification of a subcluster predominantly characterized by glycolysis, with a strong correlation to patient prognosis. Core transcription factors were pinpointed using hdWGCNA and metaVIPER. A specific transcription factor regulatory network was then constructed. A glycolysis-related prognostic model was developed and tested for estimating OC prognosis with a total of 85 machine-learning combinations, focusing on specific upregulated genes of two subtypes. We identified IGF2 as a key within the prognostic model and investigated its impact on OC progression and drug resistance through in vitro experiments, including the transwell assay, lactate production detection, and the CCK-8 assay. RESULTS Analysis showed that the Malignant 7 subcluster was primarily related to glycolysis. Two OC molecular subtypes, CS1 and CS2, were identified with distinct clinical, biological, and microenvironmental traits. A prognostic model was built, and IGF2 emerged as a key gene linked to prognosis. Experiments have proven that IGF2 can promote the glycolysis pathway and the malignant biological progression of OC cells. CONCLUSIONS We developed two novel OC subtypes based on glycolysis score, established a stable prognostic model, and identified IGF2 as the marker gene. These insights provided a new avenue for exploring OC's molecular mechanisms and personalized treatment approaches.
Collapse
Affiliation(s)
- Jinting Ji
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Fangfang Bi
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Xiaocui Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Zhiming Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Yichi Xie
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China.
| |
Collapse
|
3
|
Li J, Huang G. Insulin receptor alternative splicing in breast and prostate cancer. Cancer Cell Int 2024; 24:62. [PMID: 38331804 PMCID: PMC10851471 DOI: 10.1186/s12935-024-03252-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
Cancer etiology represents an intricate, multifactorial orchestration where metabolically associated insulin-like growth factors (IGFs) and insulin foster cellular proliferation and growth throughout tumorigenesis. The insulin receptor (IR) exhibits two splice variants arising from alternative mRNA processing, namely IR-A, and IR-B, with remarkable distribution and biological effects disparities. This insightful review elucidates the structural intricacies, widespread distribution, and functional significance of IR-A and IR-B. Additionally, it explores the regulatory mechanisms governing alternative splicing processes, intricate signal transduction pathways, and the intricate association linking IR-A and IR-B splicing variants to breast and prostate cancer tumorigenesis. Breast cancer and prostate cancer are the most common malignant tumors with the highest incidence rates among women and men, respectively. These findings provide a promising theoretical framework for advancing preventive strategies, diagnostic modalities, and therapeutic interventions targeting breast and prostate cancer.
Collapse
Affiliation(s)
- Jinyu Li
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116023, Liaoning, China
| | - Gena Huang
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116023, Liaoning, China.
| |
Collapse
|
4
|
Muoio MG, Pellegrino M, Rapicavoli V, Talia M, Scavo G, Sergi V, Vella V, Pettinato S, Galasso MG, Lappano R, Scordamaglia D, Cirillo F, Pulvirenti A, Rigiracciolo DC, Maggiolini M, Belfiore A, De Francesco EM. RAGE inhibition blunts insulin-induced oncogenic signals in breast cancer. Breast Cancer Res 2023; 25:84. [PMID: 37461077 PMCID: PMC10351154 DOI: 10.1186/s13058-023-01686-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
The receptor for advanced glycation end products (RAGE) is implicated in diabetes and obesity complications, as well as in breast cancer (BC). Herein, we evaluated whether RAGE contributes to the oncogenic actions of Insulin, which plays a key role in BC progression particularly in obese and diabetic patients. Analysis of the publicly available METABRIC study, which collects gene expression and clinical data from a large cohort (n = 1904) of BC patients, revealed that RAGE and the Insulin Receptor (IR) are co-expressed and associated with negative prognostic parameters. In MCF-7, ZR75 and 4T1 BC cells, as well as in patient-derived Cancer-Associated Fibroblasts, the pharmacological inhibition of RAGE as well as its genetic depletion interfered with Insulin-induced activation of the oncogenic pathway IR/IRS1/AKT/CD1. Mechanistically, IR and RAGE directly interacted upon Insulin stimulation, as shown by in situ proximity ligation assays and coimmunoprecipitation studies. Of note, RAGE inhibition halted the activation of both IR and insulin like growth factor 1 receptor (IGF-1R), as demonstrated in MCF-7 cells KO for the IR and the IGF-1R gene via CRISPR-cas9 technology. An unbiased label-free proteomic analysis uncovered proteins and predicted pathways affected by RAGE inhibition in Insulin-stimulated BC cells. Biologically, RAGE inhibition reduced cell proliferation, migration, and patient-derived mammosphere formation triggered by Insulin. In vivo, the pharmacological inhibition of RAGE halted Insulin-induced tumor growth, without affecting blood glucose homeostasis. Together, our findings suggest that targeting RAGE may represent an appealing opportunity to blunt Insulin-induced oncogenic signaling in BC.
Collapse
Affiliation(s)
- M G Muoio
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122, Catania, Italy
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - M Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - V Rapicavoli
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122, Catania, Italy
| | - M Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - G Scavo
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122, Catania, Italy
| | - V Sergi
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122, Catania, Italy
| | - V Vella
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122, Catania, Italy
| | - S Pettinato
- Breast Unit Breast Surgery, Garibaldi-Nesima Hospital, 95122, Catania, Italy
| | - M G Galasso
- Pathological Anatomy Unit, Garibaldi-Nesima Hospital, 95122, Catania, Italy
| | - R Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - D Scordamaglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - F Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - A Pulvirenti
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, 95131, Catania, Italy
| | - D C Rigiracciolo
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - M Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.
| | - A Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122, Catania, Italy
| | - E M De Francesco
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122, Catania, Italy.
| |
Collapse
|
5
|
Rajoria B, Zhang X, Yee D. IGF-1 Stimulates Glycolytic ATP Production in MCF-7L Cells. Int J Mol Sci 2023; 24:10209. [PMID: 37373357 PMCID: PMC10299323 DOI: 10.3390/ijms241210209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The Insulin-like Growth Factor (IGF) system in breast cancer progression has been a matter of interest for decades, but targeting this system did not result in a successful clinical strategy. The system's complexity and homology of its two receptors-insulin receptor (IR) and type 1 insulin-like growth factor receptor (IGF-1R)-are possible causes. The IGF system maintains cell proliferation and also regulates metabolism, making it a pathway to explore. To understand the metabolic phenotype of breast cancer cells, we quantified their real-time ATP production rate upon acute stimulation with ligands-insulin-like growth factor 1 (1GF-1) and insulin. MCF-7L cells express both IGF-1R and IR, while tamoxifen-resistant MCF-7L (MCF-7L TamR) cells have downregulated IGF-1R with unchanged IR levels. Treating MCF-7L cells with 5 nM IGF-1 increased the glycolytic ATP production rate, while 10 nM insulin did not affect metabolism when compared with the control. Neither treatment altered ATP production in MCF-7L TamR cells. This study provides evidence of the relationship between metabolic dysfunction, cancer, and the IGF axis. In these cells, IGF-1R, and not IR, regulates ATP production.
Collapse
Affiliation(s)
- Bhumika Rajoria
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA;
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Xihong Zhang
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Douglas Yee
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA;
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Stella S, Massimino M, Manzella L, Parrinello NL, Vitale SR, Martorana F, Vigneri P. Glucose-dependent effect of insulin receptor isoforms on tamoxifen antitumor activity in estrogen receptor-positive breast cancer cells. Front Endocrinol (Lausanne) 2023; 14:1081831. [PMID: 37361518 PMCID: PMC10289407 DOI: 10.3389/fendo.2023.1081831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction Breast cancer is the most common malignancy in women, and it is linked to several risk factors including genetic alterations, obesity, estrogen signaling, insulin levels, and glucose metabolism deregulation. Insulin and Insulin-like growth factor signaling exert a mitogenic and pro-survival effect. Indeed, epidemiological and pre-clinical studies have shown its involvement in the development, progression, and therapy resistance of several cancer types including breast cancer. Insulin/Insulin-like growth factor signaling is triggered by two insulin receptor isoforms identified as IRA and IRB and by Insulin-like growth factor receptor I. Both classes of receptors show high homology and can initiate the intracellular signaling cascade alone or by hybrids formation. While the role of Insulin-like growth factor receptor I in breast cancer progression and therapy resistance is well established, the effects of insulin receptors in this context are complex and not completely elucidated. Methods We used estrogen-dependent insulin-like growth factor receptor I deleted gene (MCF7IGFIRKO) breast cancer cell models, lentivirally transduced to over-express empty-vector (MCF7IGFIRKO/EV), IRA (MCF7IGFIRKO/IRA) or IRB (MCF7IGFIRKO/IRB), to investigate the role of insulin receptors on the antiproliferative activity of tamoxifen in presence of low and high glucose concentrations. The tamoxifen-dependent cytotoxic effects on cell proliferation were determined by MTT assay and clonogenic potential measurement. Cell cycle and apoptosis were assessed by FACS, while immunoblot was used for protein analysis. Gene expression profiling was investigated by a PCR array concerning genes involved in apoptotic process by RT-qPCR. Results We found that glucose levels played a crucial role in tamoxifen response mediated by IRA and IRB. High glucose increased the IC50 value of tamoxifen for both insulin receptors and IRA-promoted cell cycle progression more than IRB, independently of glucose levels and insulin stimulation. IRB, in turn, showed anti-apoptotic properties, preserving cells' survival after prolonged tamoxifen exposure, and negatively modulated pro-apoptotic genes when compared to IRA. Discussion Our findings suggest that glucose levels modify insulin receptors signaling and that this event can interfere with the tamoxifen therapeutic activity. The investigation of glucose metabolism and insulin receptor expression could have clinical implications in Estrogen Receptor positive breast cancer patients receiving endocrine treatments.
Collapse
Affiliation(s)
- Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico “G. Rodolico - San Marco”, Catania, Italy
| | - Michele Massimino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico “G. Rodolico - San Marco”, Catania, Italy
| | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico “G. Rodolico - San Marco”, Catania, Italy
| | - Nunziatina Laura Parrinello
- Division of Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico “G. Rodolico-S. Marco”, Catania, Italy
| | - Silvia Rita Vitale
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico “G. Rodolico - San Marco”, Catania, Italy
| | - Federica Martorana
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico “G. Rodolico - San Marco”, Catania, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico “G. Rodolico - San Marco”, Catania, Italy
- University Oncology Department, Humanitas Istituto Clinico Catanese, Catania, Italy
| |
Collapse
|
7
|
Martínez Báez A, Castro Romero I, Chihu Amparan L, Castañeda JR, Ayala G. The Insulin Receptor Substrate 2 Mediates the Action of Insulin on HeLa Cell Migration via the PI3K/Akt Signaling Pathway. Curr Issues Mol Biol 2023; 45:2296-2308. [PMID: 36975518 PMCID: PMC10047682 DOI: 10.3390/cimb45030148] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Insulin signaling plays an important role in the development and progression of cancer since it is involved in proliferation and migration processes. It has been shown that the A isoform of the insulin receptor (IR-A) is often overexpressed, and its stimulation induces changes in the expression of the insulin receptor substrates (IRS-1 and IRS-2), which are expressed differently in the different types of cancer. We study the participation of the insulin substrates IRS-1 and IRS-2 in the insulin signaling pathway in response to insulin and their involvement in the proliferation and migration of the cervical cancer cell line. Our results showed that under basal conditions, the IR-A isoform was predominantly expressed. Stimulation of HeLa cells with 50 nM insulin led to the phosphorylation of IR-A, showing a statistically significant increase at 30 min (p ≤ 0.05). Stimulation of HeLa cells with insulin induces PI3K and AKT phosphorylation through the activation of IRS2, but not IRS1. While PI3K reached the highest level at 30 min after treatment (p ≤ 0.05), AKT had the highest levels from 15 min (p ≤ 0.05) and remained constant for 6 h. ERK1 and ERK2 expression was also observed, but only ERK2 was phosphorylated in a time-dependent manner, reaching a maximum peak 5 min after insulin stimulation. Although no effect on cell proliferation was observed, insulin stimulation of HeLa cells markedly promoted cell migration.
Collapse
Affiliation(s)
- Anabel Martínez Báez
- Infection Disease Research Center, National Institute of Public Health, Cuernavaca 62100, Mexico
| | - Ivone Castro Romero
- Subdirectorate of Training and Medical Update, Secretary of Health, Mexico City 06900, Mexico
| | - Lilia Chihu Amparan
- Infection Disease Research Center, National Institute of Public Health, Cuernavaca 62100, Mexico
| | | | - Guadalupe Ayala
- Infection Disease Research Center, National Institute of Public Health, Cuernavaca 62100, Mexico
- Correspondence:
| |
Collapse
|
8
|
Chen Y, Fang M, Ke Y. Association of high insulin receptor expression with poor prognosis in patients with breast cancer. Gland Surg 2023; 12:252-262. [PMID: 36915808 PMCID: PMC10005982 DOI: 10.21037/gs-23-13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Background The aim of this study was to investigate the expression of insulin receptor (IR) in the blood vessels of patients with breast cancer (BC) with or without type 2 diabetes mellitus (DM2) and its relationship with histopathological features of BC tissues and patient prognosis. Methods A total of 124 patients with BC diagnosed and treated at The Affiliated Hospital of Putian University between January 2018 and January 2019 were eligible for this study. According to the presence or absence of DM2, they were then divided into 2 groups: patients with BC and DM2 (DBC group, n=26) and patients with BC and without DM2 (BC group, n=98). The expression of IR in the cancer and adjacent tissues was detected using immunohistochemistry. The patients were followed up for 1 year. Kaplan-Meier analysis was used to compute the overall survival (OS) of the patients with BC. Furthermore, Cox regression was employed to investigate the correlation of IR expression with DM2, pathological tissue, TNM stage, and OS. Results IR expression in cancer tissues (34.7%) was significantly higher than that in adjacent normal tissues (15.3%). Among cancer tissues, IR was highly expressed in DBC tissues (57.7%) compared with BC tissues (28.6%). IR was also highly expressed in patients with tumor infiltration and lymphatic metastasis. Its expression was significantly correlated with T stage and N stage, but not with M stage. In addition, patients with high IR expression had significantly lower survival than did those with low IR expression. Moreover, univariate and multivariate Cox regression analysis indicated that tumor infiltration, lymphatic metastasis, tumor size, T stage, and high IR expression were independent risk factors for BC prognosis. Conclusions High IR expression was associated with poor prognosis of patients with BC. The expression of IR may be a promising indicator to assess the survival of patients with BC.
Collapse
Affiliation(s)
- Yulin Chen
- Department of Pathology, The Affiliated Hospital of Putian University, Putian, China
| | - Mingyu Fang
- Department of Ultrasound, The Affiliated Hospital of Putian University, Putian, China
| | - Yi Ke
- Science Faculty, University of Waterloo, Waterloo, Canada
| |
Collapse
|
9
|
IGF2: A Role in Metastasis and Tumor Evasion from Immune Surveillance? Biomedicines 2023; 11:biomedicines11010229. [PMID: 36672737 PMCID: PMC9855361 DOI: 10.3390/biomedicines11010229] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Insulin-like growth factor 2 (IGF2) is upregulated in both childhood and adult malignancies. Its overexpression is associated with resistance to chemotherapy and worse prognosis. However, our understanding of its physiological and pathological role is lagging behind what we know about IGF1. Dysregulation of the expression and function of IGF2 receptors, insulin receptor isoform A (IR-A), insulin growth factor receptor 1 (IGF1R), and their downstream signaling effectors drive cancer initiation and progression. The involvement of IGF2 in carcinogenesis depends on its ability to link high energy intake, increase cell proliferation, and suppress apoptosis to cancer risk, and this is likely the key mechanism bridging insulin resistance to cancer. New aspects are emerging regarding the role of IGF2 in promoting cancer metastasis by promoting evasion from immune destruction. This review provides a perspective on IGF2 and an update on recent research findings. Specifically, we focus on studies providing compelling evidence that IGF2 is not only a major factor in primary tumor development, but it also plays a crucial role in cancer spread, immune evasion, and resistance to therapies. Further studies are needed in order to find new therapeutic approaches to target IGF2 action.
Collapse
|
10
|
Scordamaglia D, Cirillo F, Talia M, Santolla MF, Rigiracciolo DC, Muglia L, Zicarelli A, De Rosis S, Giordano F, Miglietta AM, De Francesco EM, Vella V, Belfiore A, Lappano R, Maggiolini M. Metformin counteracts stimulatory effects induced by insulin in primary breast cancer cells. J Transl Med 2022; 20:263. [PMID: 35672854 PMCID: PMC9172136 DOI: 10.1186/s12967-022-03463-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background Metabolic disorders are associated with increased incidence, aggressive phenotype and poor outcome of breast cancer (BC) patients. For instance, hyperinsulinemia is an independent risk factor for BC and the insulin/insulin receptor (IR) axis is involved in BC growth and metastasis. Of note, the anti-diabetic metformin may be considered in comprehensive therapeutic approaches in BC on the basis of its antiproliferative effects obtained in diverse pre-clinical and clinical studies. Methods Bioinformatics analysis were performed using the information provided by The Invasive Breast Cancer Cohort of The Cancer Genome Atlas (TCGA) project. The naturally immortalized BC cell line, named BCAHC-1, as well as cancer-associated fibroblasts (CAFs) derived from BC patients were used as model systems. In order to identify further mechanisms that characterize the anticancer action of metformin in BC, we performed gene expression and promoter studies as well as western blotting experiments. Moreover, cell cycle analysis, colony and spheroid formation, actin cytoskeleton reorganization, cell migration and matrigel drops evasion assays were carried out to provide novel insights on the anticancer properties of metformin. Results We first assessed that elevated expression and activation of IR correlate with a worse prognostic outcome in estrogen receptor (ER)-positive BC. Thereafter, we established that metformin inhibits the insulin/IR-mediated activation of transduction pathways, gene changes and proliferative responses in BCAHC-1 cells. Then, we found that metformin interferes with the insulin-induced expression of the metastatic gene CXC chemokine receptor 4 (CXCR4), which we found to be associated with poor disease-free survival in BC patients exhibiting high levels of IR. Next, we ascertained that metformin prevents a motile phenotype of BCAHC-1 cells triggered by the paracrine liaison between tumor cells and CAFs upon insulin activated CXCL12/CXCR4 axis. Conclusions Our findings provide novel mechanistic insights regarding the anti-proliferative and anti-migratory effects of metformin in both BC cells and important components of the tumor microenvironment like CAFs. Further investigations are warranted to corroborate the anticancer action of metformin on the tumor mass toward the assessment of more comprehensive strategies halting BC progression, in particular in patients exhibiting metabolic disorders and altered insulin/IR functions. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03463-y.
Collapse
|
11
|
Exosomal miR-543 Inhibits the Proliferation of Ovarian Cancer by Targeting IGF2. J Immunol Res 2022; 2022:2003739. [PMID: 35391781 PMCID: PMC8983272 DOI: 10.1155/2022/2003739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/08/2022] [Accepted: 02/24/2022] [Indexed: 11/17/2022] Open
Abstract
Objective Ovarian cancer (OvCa) is the most lethal gynaecological malignancy worldwide. We aimed to illustrate the potential function and molecular mechanism of exosomal microRNA-543 (miR-543) in the oncogenesis and development of OvCa. Methods Differentially expressed microRNAs in exosomes derived from OvCa cell lines were identified by bioinformatic analysis and verified by RT-PCR. Cell proliferation ability was estimated by clonogenic and 5-ethynyl-2′-deoxyuridine assays in vitro and in vivo. Potential involved pathways and targets of exosomal miRNAs were analysed using DIANA and verified by pyrosequencing, glucose quantification, dual-luciferase reporter experiments, and functional rescue assays. Results Bioinformatic analysis identified miR-543 and its potential target genes involved in the cancer-associated proteoglycan pathway. The expression of miR-543 was significantly decreased in exosomes derived from OvCa cell lines, patient serum, and OvCa tissues, while the mRNA levels of insulin-like growth factor 2 (IGF2) were increased. Furthermore, the overexpression of miR-543 resulted in the suppression of OvCa cell proliferation in vitro and in vivo. Moreover, miR-543 was significantly negatively correlated with IGF2 in OvCa tissues in comparison with paracarcinoma tissues. Notably, upregulation of miR-543 led to increased cell supernatant glucose levels and suppressed cell growth, which was rescued by overexpression of IGF2. Conclusions Exosomal miR-543 participates in the proteoglycan pathway to suppress cell proliferation by targeting IGF2 in OvCa.
Collapse
|
12
|
Vella V, Giuliano M, La Ferlita A, Pellegrino M, Gaudenzi G, Alaimo S, Massimino M, Pulvirenti A, Dicitore A, Vigneri P, Vitale G, Malaguarnera R, Morrione A, Sims AH, Ferro A, Maggiolini M, Lappano R, De Francesco EM, Belfiore A. Novel Mechanisms of Tumor Promotion by the Insulin Receptor Isoform A in Triple-Negative Breast Cancer Cells. Cells 2021; 10:3145. [PMID: 34831367 PMCID: PMC8621444 DOI: 10.3390/cells10113145] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/16/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023] Open
Abstract
The insulin receptor isoform A (IR-A) plays an increasingly recognized role in fetal growth and tumor biology in response to circulating insulin and/or locally produced IGF2. This role seems not to be shared by the IR isoform B (IR-B). We aimed to dissect the specific impact of IR isoforms in modulating insulin signaling in triple negative breast cancer (TNBC) cells. We generated murine 4T1 TNBC cells deleted from the endogenous insulin receptor (INSR) gene and expressing comparable levels of either human IR-A or IR-B. We then measured IR isoform-specific in vitro and in vivo biological effects and transcriptome in response to insulin. Overall, the IR-A was more potent than the IR-B in mediating cell migration, invasion, and in vivo tumor growth. Transcriptome analysis showed that approximately 89% of insulin-stimulated transcripts depended solely on the expression of the specific isoform. Notably, in cells overexpressing IR-A, insulin strongly induced genes involved in tumor progression and immune evasion including chemokines and genes related to innate immunity. Conversely, in IR-B overexpressing cells, insulin predominantly induced the expression of genes primarily involved in the regulation of metabolic pathways and, to a lesser extent, tumor growth and angiogenesis.
Collapse
Affiliation(s)
- Veronica Vella
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy; (V.V.); (M.G.); (E.M.D.F.)
| | - Marika Giuliano
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy; (V.V.); (M.G.); (E.M.D.F.)
| | - Alessandro La Ferlita
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, 95131 Catania, Italy; (A.L.F.); (S.A.); (A.P.); (A.F.)
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.P.); (M.M.); (R.L.)
| | - Germano Gaudenzi
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Istituto Auxologico Italiano, IRCCS, 20095 Cusano Milanino, Italy; (G.G.); (A.D.); (G.V.)
| | - Salvatore Alaimo
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, 95131 Catania, Italy; (A.L.F.); (S.A.); (A.P.); (A.F.)
| | - Michele Massimino
- Oncology Unit, Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (M.M.); (P.V.)
| | - Alfredo Pulvirenti
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, 95131 Catania, Italy; (A.L.F.); (S.A.); (A.P.); (A.F.)
| | - Alessandra Dicitore
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Istituto Auxologico Italiano, IRCCS, 20095 Cusano Milanino, Italy; (G.G.); (A.D.); (G.V.)
| | - Paolo Vigneri
- Oncology Unit, Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (M.M.); (P.V.)
| | - Giovanni Vitale
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Istituto Auxologico Italiano, IRCCS, 20095 Cusano Milanino, Italy; (G.G.); (A.D.); (G.V.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milan, Italy
| | | | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Andrew H. Sims
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland EH4 2XR, UK;
| | - Alfredo Ferro
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, 95131 Catania, Italy; (A.L.F.); (S.A.); (A.P.); (A.F.)
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.P.); (M.M.); (R.L.)
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.P.); (M.M.); (R.L.)
| | - Ernestina Marianna De Francesco
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy; (V.V.); (M.G.); (E.M.D.F.)
| | - Antonino Belfiore
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy; (V.V.); (M.G.); (E.M.D.F.)
| |
Collapse
|
13
|
Cirillo F, Pellegrino M, Talia M, Perrotta ID, Rigiracciolo DC, Spinelli A, Scordamaglia D, Muglia L, Guzzi R, Miglietta AM, De Francesco EM, Belfiore A, Maggiolini M, Lappano R. Estrogen receptor variant ERα46 and insulin receptor drive in primary breast cancer cells growth effects and interleukin 11 induction prompting the motility of cancer-associated fibroblasts. Clin Transl Med 2021; 11:e516. [PMID: 34841688 PMCID: PMC8567034 DOI: 10.1002/ctm2.516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/21/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
Among the prognostic and predictive biomarkers of breast cancer (BC), the role of estrogen receptor (ER)α wild-type has been acknowledged, although the action of certain ERα splice variants has not been elucidated. Insulin/insulin receptor (IR) axis has also been involved in the progression and metastasis of BC. For instance, hyperinsulinemia, which is often associated with obesity and type 2 diabetes, may be a risk factor for BC. Similarly, an aberrant expression of IR or its hyperactivation may correlate with aggressive BC phenotypes. In the present study, we have shown that a novel naturally immortalized BC cell line (named BCAHC-1) is characterized by a unique expression of 46 kDa ERα splice variant (ERα46) along with IR. Moreover, we have shown that a multifaceted crosstalk between ERα46 and IR occurs in BCAHC-1 cells upon estrogen and insulin exposure for growth and pulmonary metastasis. Through high-throughput RNA sequencing analysis, we have also found that the cytokine interleukin-11 (IL11) is the main factor linking BCAHC-1 cells to breast cancer-associated fibroblasts (CAFs). In particular, we have found that IL11 induced by estrogens and insulin in BCAHC-1 cells regulates pro-tumorigenic genes of the "extracellular matrix organization" signaling pathway, such as ICAM-1 and ITGA5, and promotes both migratory and invasive features in breast CAFs. Overall, our results may open a new scientific avenue to identify additional prognostic and therapeutic targets in BC.
Collapse
Affiliation(s)
- Francesca Cirillo
- Department of PhysicsUniversity of CalabriaRendeItaly
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| | - Marianna Talia
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| | - Ida Daniela Perrotta
- Centre for Microscopy and Microanalysis, Transmission Electron Microscopy Laboratory, and Department of Biology, Ecology and Earth SciencesUniversity of CalabriaRendeItaly
| | | | - Asia Spinelli
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| | - Domenica Scordamaglia
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| | - Lucia Muglia
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| | - Rita Guzzi
- Department of PhysicsUniversity of CalabriaRendeItaly
| | | | | | - Antonino Belfiore
- Department of Clinical and Experimental Medicine, University of CataniaGaribaldi‐Nesima HospitalCataniaItaly
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly
| |
Collapse
|
14
|
Mathur T, Yee D. The Emerging Role of the Fetal Insulin Receptor in Hormone-refractory Breast Cancer. Endocrinology 2021; 162:bqab147. [PMID: 34304271 PMCID: PMC8787423 DOI: 10.1210/endocr/bqab147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Indexed: 11/19/2022]
Abstract
Type 1 insulin-like growth factor receptor (IGF-1R) is a transmembrane tyrosine kinase receptor and a mediator of the biologic effects of insulin-like growth factor (IGF)-I and -II. Inhibitors of IGF-1R signaling were tested in clinical cancer trials aiming to assess the utility of this receptor as a therapeutic target; essentially all IGF-1R inhibitors failed to provide an additional benefit compared with standard-of-care therapy. In this review, we will evaluate the role the insulin receptor (IR) plays in mediating IGF signaling and subsequent metabolic and mitogenic effects as 1 possible reason for these failures. IR is expressed as 2 isoforms, with the fetal isoform IR-A derived from alternative splicing and loss of exon 11, the adult isoform (IR-B) includes this exon. Cancer frequently re-expresses fetal proteins and this appears to be the case in cancer with a re-expression of the fetal isoform and an increased IR-A:IR-B ratio. The biological effects of IR isoform signaling are complex and not completely understood although it has been suggested that IR-A could stimulate mitogenic signaling pathways, play a role in cancer cell stemness, and mediate tolerance to cancer therapies. From a clinical perspective, the IR-A overexpression in cancer may explain why targeting IGF-1R alone was not successful. However, given the predominance of IR-A expression in cancer, it may also be possible to develop isoform specific inhibitors and avoid the metabolic consequences of inhibiting IR-B. If such inhibitors could be developed, then IR-A expression could serve as a predictive biomarker, and cotargeting IR-A and IGF-1R could provide a novel, more effective therapy method.
Collapse
Affiliation(s)
- Tanvi Mathur
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Douglas Yee
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
15
|
Pu X, Chen D. Targeting Adipokines in Obesity-Related Tumors. Front Oncol 2021; 11:685923. [PMID: 34485124 PMCID: PMC8415167 DOI: 10.3389/fonc.2021.685923] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/22/2021] [Indexed: 12/18/2022] Open
Abstract
Obesity, a global epidemic, is an independent risk factor for the occurrence and development of a variety of tumors, such as breast cancer, pancreatic cancer, ovarian cancer and colorectal cancer. Adipocytes are important endocrine cells in the tumor microenvironment of obesity-related tumors, which can secrete a variety of adipokines (such as leptin, adiponectin, estrogen, resistin, MIF and MCP-1, etc.), among which leptin, adiponectin and estrogen are the most in-depth and valuable ones. These adipokines are closely related to tumorigenesis and the progression of tumors. In recent years, more and more studies have shown that under chronic inflammatory conditions such as obesity, adipocytes secrete more adipokines to promote the tumorigenesis and development of tumors. However, it is worth noting that although adiponectin is also secreted by adipocytes, it has an anti-tumor effect, and can cross-talk with other adipokines (such as leptin and estrogen) and insulin to play an anti-tumor effect together. In addition, obesity is the main cause of insulin resistance, which can lead to the increase of the expression levels of insulin and insulin-like growth factor (IGF). As important regulators of blood glucose and lipid metabolism, insulin and IGF also play an important role in the progress of obesity related tumors. In view of the important role of adipokines secreted by adipocytes and insulin/IGF in tumors, this article not only elaborates leptin, adiponectin and estrogen secreted by adipocytes and their mechanism of action in the development of obesity- related tumors, but also introduces the relationship between insulin/IGF, a regulator of lipid metabolism, and obesity related tumors. At the same time, it briefly describes the cancer-promoting mechanism of resistin, MIF and MCP-1 in obesity-related tumors, and finally summarizes the specific treatment opinions and measures for various adipokines and insulin/insulin-like growth factors in recent years.
Collapse
Affiliation(s)
- Xi Pu
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Deyu Chen
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
16
|
DDR1 Affects Metabolic Reprogramming in Breast Cancer Cells by Cross-Talking to the Insulin/IGF System. Biomolecules 2021; 11:biom11070926. [PMID: 34206590 PMCID: PMC8301864 DOI: 10.3390/biom11070926] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
The insulin receptor isoform A (IR-A), a dual receptor for insulin and IGF2, plays a role in breast cancer (BC) progression and metabolic reprogramming. Notably, discoidin domain receptor 1 (DDR1), a collagen receptor often dysregulated in cancer, is involved in a functional crosstalk and feed forward loop with both the IR-A and the insulin like growth factor receptor 1 (IGF1R). Here, we aimed at investigating whether DDR1 might affect BC cell metabolism by modulating the IGF1R and/or the IR. To this aim, we generated MCF7 BC cells engineered to stably overexpress either IGF2 (MCF7/IGF2) or the IR-A (MCF7/IR-A). In both cell models, we observed that DDR1 silencing induced a significant decrease of total ATP production, particularly affecting the rate of mitochondrial ATP production. We also observed the downregulation of key molecules implicated in both glycolysis and oxidative phosphorylation. These metabolic changes were not modulated by DDR1 binding to collagen and occurred in part in the absence of IR/IGF1R phosphorylation. DDR1 silencing was ineffective in MCF7 knocked out for DDR1. Taken together, these results indicate that DDR1, acting in part independently of IR/IGF1R stimulation, might work as a novel regulator of BC metabolism and should be considered as putative target for therapy in BC.
Collapse
|
17
|
Gui W, Zhu Y, Sun S, Zhu W, Tan B, Zhao H, Shang C, Zheng F, Lin X, Li H. Knockdown of insulin-like growth factor 2 gene disrupts mitochondrial functions in the liver. J Mol Cell Biol 2021; 13:mjab030. [PMID: 33988719 PMCID: PMC8697341 DOI: 10.1093/jmcb/mjab030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 11/14/2022] Open
Abstract
Even though insulin-like growth factor 2 (IGF2) has been reported to be overexpressed in nonalcoholic fatty liver disease (NAFLD), its role in the progression of NAFLD and the potential mechanism remain largely unclear. Using in vitro models, we found that IGF2 was the key overexpressed gene in steatosis, suggesting a possible association between IGF2 and NAFLD. Interestingly, loss-of-function experiments revealed that inhibition of IGF2 protein impaired mitochondrial biogenesis and respiration. It additionally disrupted the expression changes of mitochondrial fusion and fission-related proteins necessary in maintaining mitochondrial homeostasis. Consistently, IGF2 knockdown reduced the mitochondrial membrane potential and increased the production of reactive oxygen species. Mechanistically, IGF2 regulates mitochondrial functions by modulating the expression of SIRT1 and its downstream gene PGC1α. This research opens a new frontier on the role of IGF2 in energy metabolism, which potentially participates in the development of NAFLD. As such, IGF2 is a potential therapeutic target against NAFLD.
Collapse
Affiliation(s)
- Weiwei Gui
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School
of Medicine, Zhejiang University, Hangzhou, China
| | - Yiyi Zhu
- Department of Endocrinology, Peking Union Medical College Hospital, Peking
Union Medical College, Chinese Academy of Medical Sciences, Beijing,
China
| | - Shuiya Sun
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School
of Medicine, Zhejiang University, Hangzhou, China
| | - Weifen Zhu
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School
of Medicine, Zhejiang University, Hangzhou, China
| | - Bowen Tan
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Hanxin Zhao
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School
of Medicine, Zhejiang University, Hangzhou, China
| | - Chengxin Shang
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School
of Medicine, Zhejiang University, Hangzhou, China
| | - Fenping Zheng
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School
of Medicine, Zhejiang University, Hangzhou, China
| | - Xihua Lin
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School
of Medicine, Zhejiang University, Hangzhou, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang
Province, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University,
Hangzhou, China
| | - Hong Li
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School
of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Qiu J, Zheng Q, Meng X. Hyperglycemia and Chemoresistance in Breast Cancer: From Cellular Mechanisms to Treatment Response. Front Oncol 2021; 11:628359. [PMID: 33718202 PMCID: PMC7947364 DOI: 10.3389/fonc.2021.628359] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022] Open
Abstract
Female breast cancer is a complex, multifactorial disease. Studies have shown that hyperglycemia is one of the most important contributing factors to increasing the risk of breast cancer that also has a major impact on the efficacy of chemotherapy. At the cellular level, hyperglycemia can promote the proliferation, invasion, and migration of breast cancer cells and can also induce anti-apoptotic responses to enhance the chemoresistance of tumors via abnormal glucose metabolism. In this article, we focus on the latest progress in defining the mechanisms of chemotherapy resistance in hyperglycemic patients including the abnormal behaviors of cancer cells in the hyperglycemic microenvironment and the impact of abnormal glucose metabolism on key signaling pathways. To better understand the advantages and challenges of breast cancer treatments, we explore the causes of drug resistance in hyperglycemic patients that may help to better inform the development of effective treatments.
Collapse
Affiliation(s)
- Jie Qiu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Qinghui Zheng
- Department of Breast Surgery, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Xuli Meng
- Department of Breast Surgery, Zhejiang Provincial People’s Hospital, Hangzhou, China
| |
Collapse
|
19
|
Novel Regulators of the IGF System in Cancer. Biomolecules 2021; 11:biom11020273. [PMID: 33673232 PMCID: PMC7918569 DOI: 10.3390/biom11020273] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
The insulin-like growth factor (IGF) system is a dynamic network of proteins, which includes cognate ligands, membrane receptors, ligand binding proteins and functional downstream effectors. It plays a critical role in regulating several important physiological processes including cell growth, metabolism and differentiation. Importantly, alterations in expression levels or activation of components of the IGF network are implicated in many pathological conditions including diabetes, obesity and cancer initiation and progression. In this review we will initially cover some general aspects of IGF action and regulation in cancer and then focus in particular on the role of transcriptional regulators and novel interacting proteins, which functionally contribute in fine tuning IGF1R signaling in several cancer models. A deeper understanding of the biological relevance of this network of IGF1R modulators might provide novel therapeutic opportunities to block this system in neoplasia.
Collapse
|
20
|
Vella V, De Francesco EM, Lappano R, Muoio MG, Manzella L, Maggiolini M, Belfiore A. Microenvironmental Determinants of Breast Cancer Metastasis: Focus on the Crucial Interplay Between Estrogen and Insulin/Insulin-Like Growth Factor Signaling. Front Cell Dev Biol 2020; 8:608412. [PMID: 33364239 PMCID: PMC7753049 DOI: 10.3389/fcell.2020.608412] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
The development and progression of the great majority of breast cancers (BCs) are mainly dependent on the biological action elicited by estrogens through the classical estrogen receptor (ER), as well as the alternate receptor named G-protein–coupled estrogen receptor (GPER). In addition to estrogens, other hormones and growth factors, including the insulin and insulin-like growth factor system (IIGFs), play a role in BC. IIGFs cooperates with estrogen signaling to generate a multilevel cross-communication that ultimately facilitates the transition toward aggressive and life-threatening BC phenotypes. In this regard, the majority of BC deaths are correlated with the formation of metastatic lesions at distant sites. A thorough scrutiny of the biological and biochemical events orchestrating metastasis formation and dissemination has shown that virtually all cell types within the tumor microenvironment work closely with BC cells to seed cancerous units at distant sites. By establishing an intricate scheme of paracrine interactions that lead to the expression of genes involved in metastasis initiation, progression, and virulence, the cross-talk between BC cells and the surrounding microenvironmental components does dictate tumor fate and patients’ prognosis. Following (i) a description of the main microenvironmental events prompting BC metastases and (ii) a concise overview of estrogen and the IIGFs signaling and their major regulatory functions in BC, here we provide a comprehensive analysis of the most recent findings on the role of these transduction pathways toward metastatic dissemination. In particular, we focused our attention on the main microenvironmental targets of the estrogen-IIGFs interplay, and we recapitulated relevant molecular nodes that orientate shared biological responses fostering the metastatic program. On the basis of available studies, we propose that a functional cross-talk between estrogens and IIGFs, by affecting the BC microenvironment, may contribute to the metastatic process and may be regarded as a novel target for combination therapies aimed at preventing the metastatic evolution.
Collapse
Affiliation(s)
- Veronica Vella
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Ernestina Marianna De Francesco
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Maria Grazia Muoio
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy.,Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Livia Manzella
- Center of Experimental Oncology and Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico Vittorio Emanuele, Catania, Italy.,Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| |
Collapse
|
21
|
The Possible Role of Cancer Stem Cells in the Resistance to Kinase Inhibitors of Advanced Thyroid Cancer. Cancers (Basel) 2020; 12:cancers12082249. [PMID: 32796774 PMCID: PMC7465706 DOI: 10.3390/cancers12082249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
Target therapy with various kinase inhibitors (KIs) has been extended to patients with advanced thyroid cancer, but only a subset of these compounds has displayed efficacy in clinical use. However, after an initial response to KIs, dramatic disease progression occurs in most cases. With the discovery of cancer stem cells (CSCs), it is possible to postulate that thyroid cancer resistance to KI therapies, both intrinsic and acquired, may be sustained by this cell subtype. Indeed, CSCs have been considered as the main drivers of metastatic activity and therapeutic resistance, because of their ability to generate heterogeneous secondary cell populations and survive treatment by remaining in a quiescent state. Hence, despite the impressive progress in understanding of the molecular basis of thyroid tumorigenesis, drug resistance is still the major challenge in advanced thyroid cancer management. In this view, definition of the role of CSCs in thyroid cancer resistance may be crucial to identifying new therapeutic targets and preventing resistance to anti-cancer treatments and tumor relapse. The aim of this review is to elucidate the possible role of CSCs in the development of resistance of advanced thyroid cancer to current anti-cancer therapies and their potential implications in the management of these patients.
Collapse
|
22
|
The IGF-II-Insulin Receptor Isoform-A Autocrine Signal in Cancer: Actionable Perspectives. Cancers (Basel) 2020; 12:cancers12020366. [PMID: 32033443 PMCID: PMC7072655 DOI: 10.3390/cancers12020366] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 12/18/2022] Open
Abstract
Insulin receptor overexpression is a common event in human cancer. Its overexpression is associated with a relative increase in the expression of its isoform A (IRA), a shorter variant lacking 11 aa in the extracellular domain, conferring high affinity for the binding of IGF-II along with added intracellular signaling specificity for this ligand. Since IGF-II is secreted by the vast majority of malignant solid cancers, where it establishes autocrine stimuli, the co-expression of IGF-II and IRA in cancer provides specific advantages such as apoptosis escape, growth, and proliferation to those cancers bearing such a co-expression pattern. However, little is known about the exact role of this autocrine ligand–receptor system in sustaining cancer malignant features such as angiogenesis, invasion, and metastasis. The recent finding that the overexpression of angiogenic receptor kinase EphB4 along with VEGF-A is tightly dependent on the IGF-II/IRA autocrine system independently of IGFIR provided new perspectives for all malignant IGF2omas (those aggressive solid cancers secreting IGF-II). The present review provides an updated view of the IGF system in cancer, focusing on the biology of the autocrine IGF-II/IRA ligand–receptor axis and supporting its underscored role as a malignant-switch checkpoint target.
Collapse
|
23
|
Differential Effects of Insulin and IGF1 Receptors on ERK and AKT Subcellular Distribution in Breast Cancer Cells. Cells 2019; 8:cells8121499. [PMID: 31771180 PMCID: PMC6952817 DOI: 10.3390/cells8121499] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/15/2022] Open
Abstract
Insulin and insulin-like growth factor-1 (IGF1) have important roles in breast cancer development. The recent identification of nuclear insulin (INSR) and IGF1 (IGF1R) receptors provides a novel paradigm in the area of signal transduction. The fact that INSR and IGF1R can function as transcription factors, capable of binding DNA and controlling transcription, adds a new layer of biological complexity by conferring upon cell-surface receptors the ability to regulate genomic events. The present study was designed to assess the hypothesis that insulin and IGF1 pathways elicit differential effects on subcellular distribution and activation of ERK1/2 and AKT. To this end, MCF7 breast cancer-derived cell lines with specific INSR or IGF1R disruption were employed. In addition, small interfering RNA technology was used to specifically down-regulate INSR or IGF1R expression in T47D breast cancer cells. DNA affinity chromatography assays were conducted to address the specific binding of ERK1/2 and AKT to the IGF1R promoter region. We demonstrate that both INSR and IGF1R exhibit a nuclear localization in breast cancer-derived cells. In addition, the insulin and IGF1 pathways have different effects on the subcellular distribution (and, particularly, the nuclear presence) of ERK1/2 and AKT molecules. Both cytoplasmic mediators are capable of binding and transactivating the IGF1R promoter. In conclusion, our data are consistent with the notion that, in addition to their classical roles as targets for insulin-like molecules, both ERK1/2 and AKT are involved in transcriptional control of the IGF1R gene. This previously unrecognized regulatory loop may provide mechanistic advantages to breast cancer cells. Given the potential role of INSR and IGF1R as therapeutic targets in oncology, it will be of clinical relevance to address the future use of nuclear receptors and their downstream cytoplasmic mediators as biomarkers for INSR/IGF1R targeted therapy.
Collapse
|