1
|
Hanke D, McCutcheon C, Page BDG. The Development of Selective Chemical Probes for Serine Arginine Protein Kinase 3. Chem Biol Drug Des 2025; 105:e70101. [PMID: 40176684 PMCID: PMC11966184 DOI: 10.1111/cbdd.70101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/17/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025]
Abstract
The serine arginine protein kinases (SRPKs) are a family of kinases whose irregular function is implicated in cancer and viral infections. While the roles of SRPK1 and SRPK2 in disease are well established, much less is known about SRPK3. There are several studies implicating SRPK3 in breast cancer, but the mechanism is still unknown. This work describes the first-reported SRPK3 chemical probes that show excellent selectivity over the other SRPKs. 1-(4-cyanophenyl)-3-phenylurea was identified as an initial hit for SRPK3 through a kinase screen. Subsequent rounds of in silico docking, medicinal chemistry optimization, and biochemical assays were performed to increase its potency and selectivity for SRPK3. Six top compounds were identified that displayed single digit micromolar IC50 values in SRPK3 activity assays and negligible inhibition of SRPK1 or SRPK2. These six compounds demonstrated impairment of breast cancer cell viability that correlated with their biochemical IC50 values, suggesting that they can be used as tools to study the biological functions of SRPK3 in breast cancer. With an enhanced understanding of SRPK3's biological function, it may emerge as a meaningful drug target, wherein our top inhibitors could be further optimized to produce novel cancer therapeutics.
Collapse
Affiliation(s)
- Danielle Hanke
- Faculty of Pharmaceutical SciencesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Conall McCutcheon
- Faculty of Pharmaceutical SciencesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Brent D. G. Page
- Faculty of Pharmaceutical SciencesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
2
|
Aftabi S, Barzegar Behrooz A, Cordani M, Rahiman N, Sadeghdoust M, Aligolighasemabadi F, Pistorius S, Alavizadeh SH, Taefehshokr N, Ghavami S. Therapeutic targeting of TGF-β in lung cancer. FEBS J 2025; 292:1520-1557. [PMID: 39083441 PMCID: PMC11970718 DOI: 10.1111/febs.17234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/22/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
Transforming growth factor-β (TGF-β) plays a complex role in lung cancer pathophysiology, initially acting as a tumor suppressor by inhibiting early-stage tumor growth. However, its role evolves in the advanced stages of the disease, where it contributes to tumor progression not by directly promoting cell proliferation but by enhancing epithelial-mesenchymal transition (EMT) and creating a conducive tumor microenvironment. While EMT is typically associated with enhanced migratory and invasive capabilities rather than proliferation per se, TGF-β's influence on this process facilitates the complex dynamics of tumor metastasis. Additionally, TGF-β impacts the tumor microenvironment by interacting with immune cells, a process influenced by genetic and epigenetic changes within tumor cells. This interaction highlights its role in immune evasion and chemoresistance, further complicating lung cancer therapy. This review provides a critical overview of recent findings on TGF-β's involvement in lung cancer, its contribution to chemoresistance, and its modulation of the immune response. Despite the considerable challenges encountered in clinical trials and the development of new treatments targeting the TGF-β pathway, this review highlights the necessity for continued, in-depth investigation into the roles of TGF-β. A deeper comprehension of these roles may lead to novel, targeted therapies for lung cancer. Despite the intricate behavior of TGF-β signaling in tumors and previous challenges, further research could yield innovative treatment strategies.
Collapse
Affiliation(s)
- Sajjad Aftabi
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Paul Albrechtsen Research Institute, CancerCare ManitobaUniversity of ManitobaWinnipegCanada
- Department of Physics and AstronomyUniversity of ManitobaWinnipegCanada
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Electrophysiology Research Center, Neuroscience InstituteTehran University of Medical SciencesIran
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of BiologyComplutense UniversityMadridSpain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC)MadridSpain
| | - Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesIran
- Department of Pharmaceutical Nanotechnology, School of PharmacyMashhad University of Medical SciencesIran
| | - Mohammadamin Sadeghdoust
- Division of BioMedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sCanada
| | - Farnaz Aligolighasemabadi
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
| | - Stephen Pistorius
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Paul Albrechtsen Research Institute, CancerCare ManitobaUniversity of ManitobaWinnipegCanada
- Department of Physics and AstronomyUniversity of ManitobaWinnipegCanada
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesIran
- Department of Pharmaceutical Nanotechnology, School of PharmacyMashhad University of Medical SciencesIran
| | - Nima Taefehshokr
- Apoptosis Research CentreChildren's Hospital of Eastern Ontario Research InstituteOttawaCanada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Paul Albrechtsen Research Institute, CancerCare ManitobaUniversity of ManitobaWinnipegCanada
- Faculty Academy of Silesia, Faculty of MedicineKatowicePoland
- Children Hospital Research Institute of ManitobaUniversity of ManitobaWinnipegCanada
| |
Collapse
|
3
|
Jiang W, Jaehnig EJ, Liao Y, Shi Z, Yaron-Barir TM, Johnson JL, Cantley LC, Zhang B. Deciphering the dark cancer phosphoproteome using machine-learned co-regulation of phosphosites. Nat Commun 2025; 16:2766. [PMID: 40113755 PMCID: PMC11926083 DOI: 10.1038/s41467-025-57993-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
Mass spectrometry-based phosphoproteomics offers a comprehensive view of protein phosphorylation, yet our limited knowledge about the regulation and function of most phosphosites hampers the extraction of meaningful biological insights. To address this challenge, we integrate machine learning with phosphoproteomic data from 1195 tumor specimens spanning 11 cancer types to construct CoPheeMap, a network that maps the co-regulation of 26,280 phosphosites. By incorporating network features from CoPheeMap into a second machine learning model, namely CoPheeKSA, we achieve superior performance in predicting kinase-substrate associations. CoPheeKSA uncovers 24,015 associations between 9399 phosphosites and 104 serine/threonine kinases, shedding light on many unannotated phosphosites and understudied kinases. We validate the accuracy of these predictions using experimentally determined kinase-substrate specificities. Through the application of CoPheeMap and CoPheeKSA to phosphosites with high computationally predicted functional significance and those associated with cancer, we demonstrate their effectiveness in systematically elucidating phosphosites of interest. These analyses unveil dysregulated signaling processes in human cancer and identify understudied kinases as potential therapeutic targets.
Collapse
Affiliation(s)
- Wen Jiang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Eric J Jaehnig
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yuxing Liao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhiao Shi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Tomer M Yaron-Barir
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Jared L Johnson
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- Dana Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Lewis C Cantley
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- Dana Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Guo W, Hu Z, Ji L. Sirtuin 5 Attenuates the Sepsis Induced Lung Injury via Modulation the Succinylation of Serine-Arginine Protein Kinase 1. J Surg Res 2025; 305:304-312. [PMID: 39937563 DOI: 10.1016/j.jss.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 02/13/2025]
Abstract
INTRODUCTION Sepsis-induced lung injury represents a clinical syndrome encompassing various forms of acute respiratory failure. Understanding the mechanisms underlying its development is critical for identifying promising therapeutic targets. METHODS In this study, both in vitro and in vivo models of septic lung injury were established using a mouse model and the human lung microvascular endothelial cell line HULEC-5a. Quantitative real-time PCR and Western blotting were utilized to measure messenger RNA and protein expression levels. Flow cytometry was employed to assess pyroptosis, and coimmunoprecipitation was used to detect protein-protein interactions. Hematoxylin and eosin staining was performed to evaluate the pathological changes in lung tissues. RESULTS Our results demonstrated that Sirtuin 5 expression was significantly downregulated in the blood of patients with septic lung injury, as well as in mice and HULEC-5a cells treated with lipopolysaccharide. SIRT5 suppressed lipopolysaccharide-induced pyroptosis in HULEC-5a cells and septic lung injury in mice. Mechanistically, SIRT5 was shown to directly bind to Serine-Arginine Protein Kinase 1 (SRPK1) and desuccinylate it at lysine residues K588 and K598, thereby reducing its protein stability. Rescue experiments further confirmed that SIRT5 exerts its protective effects against septic lung injury through regulation of SRPK1. CONCLUSIONS Collectively, these findings suggested that the SIRT5/SRPK1 signaling pathway may serve as a potential therapeutic target for the treatment of septic lung injury.
Collapse
Affiliation(s)
- Wei Guo
- Department of Emergency, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Zhansheng Hu
- Department of Critical Care Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Lili Ji
- Department of Emergency, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China.
| |
Collapse
|
5
|
Changphasuk P, Inpad C, Horpaopan S, Khunchai S, Phimsen S, Surangkul D, Janvilisri T, Silsirivanit A, Kaewkong W. SRPK Inhibitors Reduce the Phosphorylation and Translocation of SR Protein Splicing Factors, thereby Correcting BIN1, MCL-1 and BCL2 Splicing Errors and Enabling Apoptosis of Cholangiocarcinoma Cells. Front Biosci (Schol Ed) 2024; 16:17. [PMID: 39344395 DOI: 10.31083/j.fbs1603017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a malignancy of the bile duct epithelium that is commonly found in the Thai population. CCA has poor prognosis and a low survival rate due to the lack of early diagnosis methods and the limited effectiveness of current treatments. A number of oncogenic spliced-transcripts resulting from mRNA splicing errors have been reported in CCA, and aberrant mRNA splicing is suspected to be a key driver of this cancer type. The hyperphosphorylation of serine/arginine rich-splicing factors (SRSFs) by serine/arginine protein kinases (SRPKs) causes them to translocate to the nucleus where they facilitate gene splicing errors that generate cancer-related mRNA/protein isoforms. METHODS The correlation between SRPK expression and the survival of CCA patients was analyzed using data from The Cancer Genome Atlas (TCGA) dataset. The effect of SRPK inhibitors (SRPIN340 and SPHINX31) on two CCA cell lines (KKU-213A and TFK-1) was also investigated. The induction of cell death was studied by Calcein-AM/PI staining, AnnexinV/7AAD staining, immunofluorescence (IF), and Western blotting (WB). The phosphorylation and nuclear translocation of SRSFs was tracked by WB and IF, and the repair of splicing errors was examined by Reverse Transcription-Polymerase Chain Reaction (RT-PCR). RESULTS High levels of SRPK1 and SRPK2 transcripts, and in particular SRPK1, correlated with shorter survival in CCA patients. SRPIN340 and SPHINX31 increased the number of dead and apoptotic cells in a dose-dependent manner. CCA also showed diffuse expression of cytoplasmic cytochrome C and upregulation of cleaved caspase-3. Moreover, SRSFs showed low levels of phosphorylation, resulting in the accumulation of cytoplasmic SRSF1. To link these phenotypes with aberrant gene splicing, the apoptosis-associated genes Bridging Integrator 1 (BIN1), Myeloid cell leukemia factor 1 (MCL-1) and B-cell lymphoma 2 (BCL2) were selected for further investigation. Treatment with SRPIN340 and SPHINX31 decreased anti-apoptotic BIN1+12A and increased pro-apoptotic MCL-1S and BCL-xS. CONCLUSIONS The SRPK inhibitors SRPIN340 and SPHINX31 can suppress the phosphorylation of SRSFs and their nuclear translocation, thereby producing BIN1, MCL-1 and BCL2 isoforms that favor apoptosis and facilitate CCA cell death.
Collapse
Affiliation(s)
- Preenapan Changphasuk
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, 65000 Phitsanulok, Thailand
| | - Chaturong Inpad
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, 65000 Phitsanulok, Thailand
| | - Sukanya Horpaopan
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, 50200 Chiang Mai, Thailand
| | - Sasiprapa Khunchai
- Department of Anatomy, Faculty of Medical Science, Naresuan University, 65000 Phitsanulok, Thailand
| | - Suchada Phimsen
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, 65000 Phitsanulok, Thailand
| | - Damratsamon Surangkul
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, 65000 Phitsanulok, Thailand
| | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, 10400 Bangkok, Thailand
| | - Atit Silsirivanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 4002 Khon Kaen, Thailand
| | - Worasak Kaewkong
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, 65000 Phitsanulok, Thailand
| |
Collapse
|
6
|
Zhang J, Xu X, Deng H, Liu L, Xiang Y, Feng J. Overcoming cancer drug-resistance calls for novel strategies targeting abnormal alternative splicing. Pharmacol Ther 2024; 261:108697. [PMID: 39025436 DOI: 10.1016/j.pharmthera.2024.108697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/12/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Abnormal gene alternative splicing (AS) events are strongly associated with cancer progression. Here, we summarize AS events that contribute to the development of drug resistance and classify them into three categories: alternative cis-splicing (ACS), alternative trans-splicing (ATS), and alternative back-splicing (ABS). The regulatory mechanisms underlying AS processes through cis-acting regulatory elements and trans-acting factors are comprehensively described, and the distinct functions of spliced variants, including linear spliced variants derived from ACS, chimeric spliced variants arising from ATS, and circRNAs generated through ABS, are discussed. The identification of dysregulated spliced variants, which contribute to drug resistance and hinder effective cancer treatment, suggests that abnormal AS processes may together serve as a precise regulatory mechanism enabling drug-resistant cancer cell survival or, alternatively, represent an evolutionary pathway for cancer cells to adapt to changes in the external environment. Moreover, this review summarizes recent advancements in treatment approaches targeting AS-associated drug resistance, focusing on cis-acting regulatory elements, trans-acting factors, and specific spliced variants. Collectively, gaining an in-depth understanding of the mechanisms underlying aberrant alternative splicing events and developing strategies to target this process hold great promise for overcoming cancer drug resistance.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Xinyu Xu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Hongwei Deng
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Yuancai Xiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou city, Sichuan 646000, China.
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| |
Collapse
|
7
|
Karcini A, Mercier NR, Lazar IM. Proteomic assessment of SKBR3/HER2+ breast cancer cellular response to Lapatinib and investigational Ipatasertib kinase inhibitors. Front Pharmacol 2024; 15:1413818. [PMID: 39268460 PMCID: PMC11391243 DOI: 10.3389/fphar.2024.1413818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Modern cancer treatment strategies aim at achieving cancer remission by using targeted and personalized therapies, as well as harnessing the power of the immune system to recognize and eradicate the cancer cells. To overcome a relatively short-lived response due to resistance to the administered drugs, combination therapies have been pursued. Objective The objective of this study was to use high-throughput data generation technologies such as mass spectrometry and proteomics to investigate the broader implications, and to expand the outlook, of such therapeutic approaches. Specifically, we investigated the systems-level response of a breast cancer cell line model to a mixture of kinase inhibitors that has not been adopted yet as a standard therapeutic regime. Methods Two critical pathways that sustain the growth and survival of cancer cells, EGFR and PI3K/AKT, were inhibited in SKBR3/HER2+ breast cancer cells with Lapatinib (Tyr kinase inhibitor) and Ipatasertib (Ser/Thr kinase inhibitor), and the landscape of the affected biological processes was investigated with proteomic technologies. Results Over 800 proteins matched by three unique peptide sequences were affected by exposing the cells to the drugs. The work corroborated the anti-proliferative activity of Lapatinib and Ipatasertib and uncovered a range of impacted cancer-supportive hallmark processes, among which immune response, adhesion, and migration emerged as particularly relevant to the ability of drugs to effectively suppress the proliferation and dissemination of cancer cells. Changes in the expression of key cancer drivers such as oncogenes, tumor suppressors, EMT and angiogenesis regulators underscored the inhibitory effectiveness of drugs on cancer proliferation. The supplementation of Lapatinib with Ipatasertib further affected additional transcription factors and proteins involved in gene expression, trafficking, DNA repair, and development of multidrug resistance. Furthermore, over fifty of the impacted proteins represent approved or investigational targets in the DrugBank database, which through their protein-protein interaction networks can inform the selection of effective therapeutic partners. Conclusion Altogether, the exposure of SKBR3/HER2+ cells to Lapatinib and Ipatasertib kinase inhibitors uncovered a broad plethora of yet untapped opportunities that can be further explored for enhancing the anti-cancer effects of each drug as well as of many other multi-drug therapies that target the EGFR/ERBB2 and PI3K/AKT pathways.
Collapse
Affiliation(s)
- Arba Karcini
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Nicole R. Mercier
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Iulia M. Lazar
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
- Division of Systems Biology, Virginia Tech, Blacksburg, VA, United States
- Carilion School of Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
8
|
Cai G, Bao Y, Li Q, Hsu PH, Xia J, Ngo JCK. Design of a covalent protein-protein interaction inhibitor of SRPKs to suppress angiogenesis and invasion of cancer cells. Commun Chem 2024; 7:144. [PMID: 38937565 PMCID: PMC11211491 DOI: 10.1038/s42004-024-01230-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
Serine-arginine (SR) proteins are splicing factors that play essential roles in both constitutive and alternative pre-mRNA splicing. Phosphorylation of their C-terminal RS domains by SR protein kinases (SRPKs) regulates their localization and diverse cellular activities. Dysregulation of phosphorylation has been implicated in many human diseases, including cancers. Here, we report the development of a covalent protein-protein interaction inhibitor, C-DBS, that targets a lysine residue within the SRPK-specific docking groove to block the interaction and phosphorylation of the prototypic SR protein SRSF1. C-DBS exhibits high specificity and conjugation efficiency both in vitro and in cellulo. This self-cell-penetrating inhibitor attenuates the phosphorylation of endogenous SR proteins and subsequently inhibits the angiogenesis, migration, and invasion of cancer cells. These findings provide a new foundation for the development of covalent SRPK inhibitors for combatting diseases such as cancer and viral infections and overcoming the resistance encountered by ATP-competitive inhibitors.
Collapse
Affiliation(s)
- Gongli Cai
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Yishu Bao
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Qingyun Li
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Jacky Chi Ki Ngo
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
- Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
- Center for Protein Science and Crystallography, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
| |
Collapse
|
9
|
Karcini A, Mercier NR, Lazar IM. Proteomic Assessment of SKBR3/HER2+ Breast Cancer Cellular Response to Lapatinib and Investigational Ipatasertib Kinase Inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587656. [PMID: 38617302 PMCID: PMC11014527 DOI: 10.1101/2024.04.02.587656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Modern cancer treatment approaches aim at achieving cancer remission by using targeted and personalized therapies, as well as harnessing the power of the immune system to recognize and eliminate the cancer cells. To overcome a relatively short-lived response due to the development of resistance to the administered drugs, combination therapies have been pursued, as well. To expand the outlook of combination therapies, the objective of this study was to use high-throughput data generation technologies such as mass spectrometry and proteomics to investigate the response of HER2+ breast cancer cells to a mixture of two kinase inhibitors that has not been adopted yet as a standard treatment regime. The broader landscape of biological processes that are affected by inhibiting two major pathways that sustain the growth and survival of cancer cells, i.e., EGFR and PI3K/AKT, was investigated by treating SKBR3/HER2+ breast cancer cells with Lapatinib or a mixture of Lapatinib/Ipatasertib small molecule drugs. Changes in protein expression and/or activity in response to the drug treatments were assessed by using two complementary quantitative proteomic approaches based on peak area and peptide spectrum match measurements. Over 900 proteins matched by three unique peptide sequences (FDR<0.05) were affected by the exposure of cells to the drugs. The work corroborated the anti-proliferative activity of Lapatinib and Ipatasertib, and, in addition to cell cycle and growth arrest processes enabled the identification of several multi-functional proteins with roles in cancer-supportive hallmark processes. Among these, immune response, adhesion and migration emerged as particularly relevant to the ability to effectively suppress the proliferation and dissemination of cancer cells. The supplementation of Lapatinib with Ipatasertib further affected the expression or activity of additional transcription factors and proteins involved in gene expression, trafficking, DNA repair, and development of multidrug resistance. Furthermore, over fifty of the affected proteins represented approved or investigational targets in the DrugBank database, which through their protein-protein interaction networks can inform the selection of effective therapeutic partners. Altogether, our findings exposed a broad plethora of yet untapped opportunities that can be further explored for enhancing the anti-cancer effects of each drug as well as of many other multi-drug therapies that target the EGFR/ERBB2 and PI3K/AKT pathways. The data are available via ProteomeXchange with identifier PXD051094.
Collapse
Affiliation(s)
- Arba Karcini
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060; Department of Biological Sciences, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA 24061
| | - Nicole R. Mercier
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060; Department of Biological Sciences, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA 24061
| | - Iulia M. Lazar
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060; Department of Biological Sciences, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA 24061
- Fralin Life Sciences Institute, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA 24061
- Division of Systems Biology, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA 24061
- Carilion School of Medicine, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA 24061
| |
Collapse
|
10
|
Shreim A, Gazzeri S, Eymin B. [Targeting the spliceosome: A new therapeutic strategy to counteract chemotherapy resistance in lung cancer?]. Rev Mal Respir 2024; 41:294-298. [PMID: 38461087 DOI: 10.1016/j.rmr.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 03/11/2024]
Abstract
Lung cancer is the first cancer-related cause of death worldwide. This is in partially due to therapeutic resistance, which occurs in around 70% of patients, especially those receiving platinum salts, the gold-standard chemotherapy. The massive deregulation of alternative transcript splicing processes observed in many cancers has led to the development of a new class of pharmacological agents aimed at inhibiting the activity of the splicing machinery (spliceosome). The molecular mechanisms by which these inhibitors act remain largely unknown, as do the benefits of using them in combination with other therapies. In this context, our work is focused on an inhibitor of the SRPK1 kinase, a major regulator of the spliceosome.
Collapse
Affiliation(s)
- A Shreim
- Université Grenoble Alpes, INSERM U1209, CNRS UMR5309, institut pour l'avancée des biosciences, site santé, Allée des Alpes, 38000, Grenoble, France.
| | - S Gazzeri
- Université Grenoble Alpes, INSERM U1209, CNRS UMR5309, institut pour l'avancée des biosciences, site santé, Allée des Alpes, 38000, Grenoble, France
| | - B Eymin
- Université Grenoble Alpes, INSERM U1209, CNRS UMR5309, institut pour l'avancée des biosciences, site santé, Allée des Alpes, 38000, Grenoble, France
| |
Collapse
|
11
|
Jiang W, Jaehnig EJ, Liao Y, Yaron-Barir TM, Johnson JL, Cantley LC, Zhang B. Illuminating the Dark Cancer Phosphoproteome Through a Machine-Learned Co-Regulation Map of 26,280 Phosphosites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585786. [PMID: 38562798 PMCID: PMC10983930 DOI: 10.1101/2024.03.19.585786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Mass spectrometry-based phosphoproteomics offers a comprehensive view of protein phosphorylation, but limited knowledge about the regulation and function of most phosphosites restricts our ability to extract meaningful biological insights from phosphoproteomics data. To address this, we combine machine learning and phosphoproteomic data from 1,195 tumor specimens spanning 11 cancer types to construct CoPheeMap, a network mapping the co-regulation of 26,280 phosphosites. Integrating network features from CoPheeMap into a machine learning model, CoPheeKSA, we achieve superior performance in predicting kinase-substrate associations. CoPheeKSA reveals 24,015 associations between 9,399 phosphosites and 104 serine/threonine kinases, including many unannotated phosphosites and under-studied kinases. We validate the accuracy of these predictions using experimentally determined kinase-substrate specificities. By applying CoPheeMap and CoPheeKSA to phosphosites with high computationally predicted functional significance and cancer-associated phosphosites, we demonstrate the effectiveness of these tools in systematically illuminating phosphosites of interest, revealing dysregulated signaling processes in human cancer, and identifying under-studied kinases as putative therapeutic targets.
Collapse
|
12
|
Tufail M, Wu C. SRPKs: a promising therapeutic target in cancer. Clin Exp Med 2023; 23:3093-3112. [PMID: 37027068 DOI: 10.1007/s10238-023-01054-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023]
Abstract
Cancers such as lung, breast, colon, and prostate have been linked to dysregulation of SRPKs. In preclinical studies, inhibition of SRPKs has been shown to reduce the growth and survival of cancer cells, suggesting that SRPKs may be potential therapeutic targets. Research is ongoing to develop small molecule inhibitors of SRPKs, identify specific SRPKs that are important in different cancer types, and explore the use of RNA interference (RNAi) to target SRPKs. In addition, researchers are examining the potential of using SRPK inhibitors in combination with other cancer therapies, such as chemotherapy or immunotherapy, to improve treatment outcomes. However, more research is needed to fully understand the role of SRPKs in cancer and determine the most effective ways to target them. In the present review, we shed light on the role of SRPKs in most common cancers, its role in cancer resistance, and targeting it for cancer treatment.
Collapse
Affiliation(s)
- Muhammad Tufail
- Institute of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China.
| | - Changxin Wu
- Institute of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
13
|
Hogg EKJ, Findlay GM. Functions of SRPK, CLK and DYRK kinases in stem cells, development, and human developmental disorders. FEBS Lett 2023; 597:2375-2415. [PMID: 37607329 PMCID: PMC10952393 DOI: 10.1002/1873-3468.14723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023]
Abstract
Human developmental disorders encompass a wide range of debilitating physical conditions and intellectual disabilities. Perturbation of protein kinase signalling underlies the development of some of these disorders. For example, disrupted SRPK signalling is associated with intellectual disabilities, and the gene dosage of DYRKs can dictate the pathology of disorders including Down's syndrome. Here, we review the emerging roles of the CMGC kinase families SRPK, CLK, DYRK, and sub-family HIPK during embryonic development and in developmental disorders. In particular, SRPK, CLK, and DYRK kinase families have key roles in developmental signalling and stem cell regulation, and can co-ordinate neuronal development and function. Genetic studies in model organisms reveal critical phenotypes including embryonic lethality, sterility, musculoskeletal errors, and most notably, altered neurological behaviours arising from defects of the neuroectoderm and altered neuronal signalling. Further unpicking the mechanisms of specific kinases using human stem cell models of neuronal differentiation and function will improve our understanding of human developmental disorders and may provide avenues for therapeutic strategies.
Collapse
Affiliation(s)
- Elizabeth K. J. Hogg
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| | - Greg M. Findlay
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| |
Collapse
|
14
|
Tsoi H, Fung NNC, Man EPS, Leung MH, You CP, Chan WL, Chan SY, Khoo US. SRSF5 Regulates the Expression of BQ323636.1 to Modulate Tamoxifen Resistance in ER-Positive Breast Cancer. Cancers (Basel) 2023; 15:cancers15082271. [PMID: 37190199 DOI: 10.3390/cancers15082271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
About 70% of breast cancer patients are oestrogen receptor-positive (ER +ve). Adjuvant endocrine therapy using tamoxifen (TAM) is an effective approach for preventing local recurrence and metastasis. However, around half of the patients will eventually develop resistance. Overexpression of BQ323636.1 (BQ) is one of the mechanisms that confer TAM resistance. BQ is an alternative splice variant of NCOR2. The inclusion of exon 11 generates mRNA for NCOR2, while the exclusion of exon 11 produces mRNA for BQ. The expression of SRSF5 is low in TAM-resistant breast cancer cells. Modulation of SRSF5 can affect the alternative splicing of NCOR2 to produce BQ. In vitro and in vivo studies confirmed that the knockdown of SRSF5 enhanced BQ expression, and conferred TAM resistance; in contrast, SRSF5 overexpression reduced BQ expression and, thus, reversed TAM resistance. Clinical investigation using a tissue microarray confirmed the inverse correlation of SRSF5 and BQ. Low SRSF5 expression was associated with TAM resistance, local recurrence and metastasis. Survival analyses showed that low SRSF5 expression was associated with poorer prognosis. We showed that SRPK1 can interact with SRSF5 to phosphorylate it. Inhibition of SRPK1 by a small inhibitor, SRPKIN-1, suppressed the phosphorylation of SRSF5. This enhanced the proportion of SRSF5 interacting with exon 11 of NCOR2, reducing the production of BQ mRNA. As expected, SRPKIN-1 reduced TAM resistance. Our study confirms that SRSF5 is essential for BQ expression. Modulating the activity of SRSF5 in ER +ve breast cancer will be a potential approach to combating TAM resistance.
Collapse
Affiliation(s)
- Ho Tsoi
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Nicholas Nok-Ching Fung
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ellen P S Man
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Man-Hong Leung
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chan-Ping You
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wing-Lok Chan
- Department of Clinical Oncology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sum-Yin Chan
- Department of Clinical Oncology, Queen Mary Hospital, Hong Kong SAR, China
| | - Ui-Soon Khoo
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
15
|
Wodi C, Belali T, Morse R, Porazinski S, Ladomery M. SPHINX-Based Combination Therapy as a Potential Novel Treatment Strategy for Acute Myeloid Leukaemia. Br J Biomed Sci 2023; 80:11041. [PMID: 36895328 PMCID: PMC9988938 DOI: 10.3389/bjbs.2023.11041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/08/2023] [Indexed: 02/23/2023]
Abstract
Introduction: Dysregulated alternative splicing is a prominent feature of cancer. The inhibition and knockdown of the SR splice factor kinase SRPK1 reduces tumour growth in vivo. As a result several SPRK1 inhibitors are in development including SPHINX, a 3-(trifluoromethyl)anilide scaffold. The objective of this study was to treat two leukaemic cell lines with SPHINX in combination with the established cancer drugs azacitidine and imatinib. Materials and Methods: We selected two representative cell lines; Kasumi-1, acute myeloid leukaemia, and K562, BCR-ABL positive chronic myeloid leukaemia. Cells were treated with SPHINX concentrations up to 10μM, and in combination with azacitidine (up to 1.5 μg/ml, Kasumi-1 cells) and imatinib (up to 20 μg/ml, K562 cells). Cell viability was determined by counting the proportion of live cells and those undergoing apoptosis through the detection of activated caspase 3/7. SRPK1 was knocked down with siRNA to confirm SPHINX results. Results: The effects of SPHINX were first confirmed by observing reduced levels of phosphorylated SR proteins. SPHINX significantly reduced cell viability and increased apoptosis in Kasumi-1 cells, but less prominently in K562 cells. Knockdown of SRPK1 by RNA interference similarly reduced cell viability. Combining SPHINX with azacitidine augmented the effect of azacitidine in Kasumi-1 cells. In conclusion, SPHINX reduces cell viability and increases apoptosis in the acute myeloid leukaemia cell line Kasumi-1, but less convincingly in the chronic myeloid leukaemia cell line K562. Conclusion: We suggest that specific types of leukaemia may present an opportunity for the development of SRPK1-targeted therapies to be used in combination with established chemotherapeutic drugs.
Collapse
Affiliation(s)
- Chigeru Wodi
- Centre for Research in Bioscience, Faculty of Health and Applied Sciences, University of the West of England, Bristol, United Kingdom
| | - Tareg Belali
- Centre for Research in Bioscience, Faculty of Health and Applied Sciences, University of the West of England, Bristol, United Kingdom
| | - Ruth Morse
- Centre for Research in Bioscience, Faculty of Health and Applied Sciences, University of the West of England, Bristol, United Kingdom
| | - Sean Porazinski
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Michael Ladomery
- Centre for Research in Bioscience, Faculty of Health and Applied Sciences, University of the West of England, Bristol, United Kingdom
| |
Collapse
|
16
|
López‐Cánovas JL, Hermán‐Sánchez N, Moreno‐Montilla MT, del Rio‐Moreno M, Alors‐Perez E, Sánchez‐Frias ME, Amado V, Ciria R, Briceño J, de la Mata M, Castaño JP, Rodriguez‐Perálvarez M, Luque RM, Gahete MD. Spliceosomal profiling identifies EIF4A3 as a novel oncogene in hepatocellular carcinoma acting through the modulation of FGFR4 splicing. Clin Transl Med 2022; 12:e1102. [PMID: 36419260 PMCID: PMC9684617 DOI: 10.1002/ctm2.1102] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION Altered splicing landscape is an emerging cancer hallmark; however, the dysregulation and implication of the cellular machinery controlling this process (spliceosome components and splicing factors) in hepatocellular carcinoma (HCC) is poorly known. This study aimed to comprehensively characterize the spliceosomal profile and explore its role in HCC. METHODS Expression levels of 70 selected spliceosome components and splicing factors and clinical implications were evaluated in two retrospective and six in silico HCC cohorts. Functional, molecular and mechanistic studies were implemented in three cell lines (HepG2, Hep3B and SNU-387) and preclinical Hep3B-induced xenograft tumours. RESULTS Spliceosomal dysregulations were consistently found in retrospective and in silico cohorts. EIF4A3, RBM3, ESRP2 and SRPK1 were the most dysregulated spliceosome elements in HCC. EIF4A3 expression was associated with decreased survival and greater recurrence. Plasma EIF4A3 levels were significantly elevated in HCC patients. In vitro EIF4A3-silencing (or pharmacological inhibition) resulted in reduced aggressiveness, and hindered xenograft-tumours growth in vivo, whereas EIF4A3 overexpression increased tumour aggressiveness. EIF4A3-silencing altered the expression and splicing of key HCC-related genes, specially FGFR4. EIF4A3-silencing blocked the cellular response to the natural ligand of FGFR4, FGF19. Functional consequences of EIF4A3-silencing were mediated by FGFR4 splicing as the restoration of non-spliced FGFR4 full-length version blunted these effects, and FGFR4 inhibition did not exert further effects in EIF4A3-silenced cells. CONCLUSIONS Splicing machinery is strongly dysregulated in HCC, providing a source of new diagnostic, prognostic and therapeutic options in HCC. EIF4A3 is consistently elevated in HCC patients and associated with tumour aggressiveness and mortality, through the modulation of FGFR4 splicing.
Collapse
|
17
|
He C, Liu B, Wang HY, Wu L, Zhao G, Huang C, Liu Y, Shan B, Liu L. Inhibition of SRPK1, a key splicing regulator, exhibits antitumor and chemotherapeutic-sensitizing effects on extranodal NK/T-cell lymphoma cells. BMC Cancer 2022; 22:1100. [PMID: 36303126 PMCID: PMC9609466 DOI: 10.1186/s12885-022-10158-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/06/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Increasing evidence has convincingly shown that abnormal pre-mRNA splicing is implicated in the development of most human malignancies. Serine/arginine-rich protein kinase 1 (SRPK1), a key splicing regulator, is reported to be overexpressed in leukemia and other cancer types, which suggests the therapeutic potential of targeting SRPK1. METHODS SRPK1 expression was measured in 41 ENKTL patients by immunohistochemistry and mRNA expression was analyzed by qRT‒PCR. We knocked down SRPK1 expression in the ENKTL cell line YT by siRNA transfection and inhibited SRPK1 using inhibitors (SPHINX31 and SRPIN340) in YT cells and peripheral blood lymphocytes (PBLs) isolated from ENKTL patients to investigate its role in cell proliferation and apoptosis. Then, RNA-seq analysis was performed to predict the potential signaling pathway by which SRPK1 inhibition induces cell death and further verified this prediction by Western blotting. RESULTS In the present study, we initially evaluated the clinical significance of SRPK1 in extranodal natural killer/T-cell lymphoma (ENKTL), a very aggressive subtype of non-Hodgkin lymphoma. The expression of SRPK1 in ENKLT patients was examined by immunohistochemistry and qRT‒PCR, which revealed SRPK1 overexpression in more than 60% of ENKTL specimens and its association with worse survival. Cellular experiments using the human ENKTL cell line YT and PBLs from ENKTL patients, demonstrated that inhibition of SRPK1 suppressed cell proliferation and induced apoptosis. Subsequently, we investigated the downstream targets of SRPK1 by RNA-seq analysis and found that SRPK1 inhibition induced ATF4/CHOP pathway activation and AKT1 inhibition. Furthermore, ENKTL patients presenting high SRPK1 expression showed resistance to cisplatin-based chemotherapy. The association of SRPK1 expression with cisplatin resistance was also confirmed in YT cells. SRPK1 overexpression via pLVX-SRPK1 plasmid transfection dramatically decreased the sensitivity of YT cells to cisplatin, while siRNA-mediated SRPK1 knockdown or SRPK1 inhibitor treatment significantly increased cisplatin cytotoxicity. CONCLUSION In summary, these results support that SRPK1 might be a useful clinical prognostic indicator and therapeutic target for ENKTL, especially for patients who relapse after cisplatin-based chemotherapies.
Collapse
Affiliation(s)
- Cuiying He
- Department of Hematology, The Fourth Hospital of Hebei Medical University, NO.169, TianShan Street, Shijiazhuang, 050035, Hebei, China
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Shijiazhuang, China
- Hebei Medical University, Shijiazhuang, China
| | - Beichen Liu
- Department of Hematology, The Fourth Hospital of Hebei Medical University, NO.169, TianShan Street, Shijiazhuang, 050035, Hebei, China
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Shijiazhuang, China
| | - Huan-You Wang
- Department of Pathology, University of California San Diego, San Diego, CA, USA
| | - Lili Wu
- Department of Hematology, The Fourth Hospital of Hebei Medical University, NO.169, TianShan Street, Shijiazhuang, 050035, Hebei, China
| | - Guimin Zhao
- Department of Hematology, The Fourth Hospital of Hebei Medical University, NO.169, TianShan Street, Shijiazhuang, 050035, Hebei, China
| | - Chen Huang
- Department of Hematology, The Fourth Hospital of Hebei Medical University, NO.169, TianShan Street, Shijiazhuang, 050035, Hebei, China
| | - Yueping Liu
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Baoen Shan
- Hebei Medical University, Shijiazhuang, China.
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Lihong Liu
- Department of Hematology, The Fourth Hospital of Hebei Medical University, NO.169, TianShan Street, Shijiazhuang, 050035, Hebei, China.
- Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Shijiazhuang, China.
| |
Collapse
|
18
|
Wang X, Wen D, You C, Ma L. Identification of the key immune-related genes in aneurysmal subarachnoid hemorrhage. Front Mol Neurosci 2022; 15:931753. [PMID: 36172261 PMCID: PMC9511034 DOI: 10.3389/fnmol.2022.931753] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a major cause of death and morbidity worldwide, often due to rupture of intracranial aneurysms (IAs). Immune infiltration and inflammatory activation play key roles in the process of aneurysmal SAH (aSAH). This study aimed to elaborate the immune infiltration and identify related biomarkers both in blood and tissue samples from patients with aSAH. Expression data of aSAH and healthy control samples were obtained from gene expression omnibus (GEO) database. Overall, a blood sample dataset GSE36791 and a tissue sample dataset GSE122897 were included. Differentially expressed genes (DEGs) between aSAH and healthy samples were explored. We applied GO biological and Gene Set Enrichment Analyses (GSEA) processes to access the functional enrichment. Then feature elimination algorithms based on random forest were used to screen and verify the biomarkers of aSAH. We performed three computational algorithms including Cell type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT), Microenvironment Cell Populations-counter (MCPcounter), and xcell to evaluate the immune cell infiltration landscape to identify the unique infiltration characteristics associated with rupturing. We found 2,220 DEGs (856 upregulated and 1,364 downregulated) in the original dataset. Functional analysis revealed most of these genes are enriched in immunological process, especially related with neutrophil response. Similar signaling pathway enrichment patterns were observed in tissue sample dataset and ClueGo. Analysis of immune microenvironment infiltration suggested neutrophils were abnormally upregulated in aSAH compared with those in the control group. Key gene SRPK1 was then filtered based on feature elimination algorithms, and transcription factor (TF) ZNF281 is assumed to participate in immunomodulation by regulating expression of SRPK1. Several immunomodulators such as CXCR1 and CXCR2 also appear to be involved in the progression of aSAH. In the present study, we performed a comprehensive stratification and quantification of the immune infiltration status of aSAH. By exploring the potential mechanism for aSAH based on several computational algorithms, key genes including SRPK1 and ZNF281 were filtered. This study may be of benefit to patients who are at high risk of suffering aSAH which allows for early diagnosis and potential therapy.
Collapse
Affiliation(s)
- Xing Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Dingke Wen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chao You
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- West China Brain Research Centre, Sichuan University, Chengdu, China
- *Correspondence: Chao You Lu Ma
| | - Lu Ma
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Chao You Lu Ma
| |
Collapse
|
19
|
Gong Y, Wei ZR. MiR-659-3p inhibits osteosarcoma progression and metastasis by inhibiting cell proliferation and invasion via targeting SRPK1. BMC Cancer 2022; 22:934. [PMID: 36038837 PMCID: PMC9425973 DOI: 10.1186/s12885-022-10029-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Osteosarcoma is the most common primary bone cancer that affects mostly children and young adults. Despite the advances in osteosarcoma treatment, the long-term survival rate of metastatic patients has not significantly improved in the past few decades, thus demonstrating the need for novel therapeutic targets or methods to improve metastatic osteosarcoma treatment. In this study we aimed to elucidate the role of miR-659-3p and SRPK1 in osteosarcoma. METHODS We evaluated miR-659-3p and SRPK1 function in osteosarcoma cell proliferation, migration, and cell cycle progression in vitro by using gain- and loss-of-function strategies. The effect of miR-659-3p in tumor progression and metastasis was determined by in vivo mouse model. RESULTS We revealed that expression of miR-659-3p was significantly downregulated in osteosarcoma compared with normal bone cells and was inversely correlated with serine-arginine protein kinase 1 (SRPK1) expression. We proved that miR-659-3p targets 3' UTR of SRPK1 and negatively regulates SRPK1 expression in osteosarcoma cells via luciferase assay. In vitro studies revealed that gain of miR-659-3p function inhibited osteosarcoma cells growth, migration, and invasion by down-regulating SRPK1 expression. Inversely, inhibiting miR-659-3p in osteosarcoma cells promoted cell growth, migration, and invasion. Cell cycle profile analysis revealed that miR-659-3p inhibited osteosarcoma cells' G1/G0 phase exit by down-regulating SRPK1 expression. By using an in vivo mouse model, we demonstrated that miR-659-3p inhibits osteosarcoma tumor progression and lung metastasis by inhibiting SRPK1 expression and potentially downstream cell proliferation, and epithelial-to-mesenchymal transition genes. CONCLUSIONS This study demonstrated that miR-659-3p is a potential therapeutic method and SRPK1 is a potential therapeutic target for osteosarcoma treatment.
Collapse
Affiliation(s)
- Yubao Gong
- Department of Orthopaedics, the First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, China.
| | - Zheng-Ren Wei
- Department of Pharmacology, Basic Medical School, Jilin University, 126 Xinmin Street, Changchun, 130021, China
| |
Collapse
|
20
|
Gu YY, Tan XH, Song WP, Song WD, Yuan YM, Xin ZC, Wang JD, Fang D, Guan RL. Icariside Ⅱ Attenuates Palmitic Acid-Induced Endothelial Dysfunction Through SRPK1-Akt-eNOS Signaling Pathway. Front Pharmacol 2022; 13:920601. [PMID: 35846993 PMCID: PMC9280058 DOI: 10.3389/fphar.2022.920601] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/08/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Endothelial dysfunction is commonly accompanied by a reduced capacity for nitric oxide (NO) production and decreased NO sensitivity, playing a central role in numerous vascular diseases. Saturated free fatty acids are known to reduce NO production and then induce endothelial dysfunction. Alternative splicing participates in the regulation of cellular and tissular homeostasis and is highly regulated by serine-arginine protein kinase (SRPK1). The role of SRPK1 in the biology of endothelial cells remains elusive. Icariside Ⅱ (ICA Ⅱ) has been reported to have protective effects on endothelial function. However, the specific molecular mechanisms are still unknown. The purpose of this study is to explore the role of SRPK1 in the biology of endothelial cells and the underlying mechanism of ICA Ⅱ on palmitic acid (PA) induced endothelial dysfunction. Methods: Endothelial dysfunction was induced using PA in human umbilical vein endothelial cells (HUVECs). The expression and phosphorylation of related proteins in the SRPK1-Akt-eNOS signaling pathway were detected by Western Blot. Cell Counting Kit-8 assay and Ki-67 immunofluorescence were used to estimate cell viability. Endothelial cell function was assessed by detecting NO production using DAF-FM DA. Interaction between ICA Ⅱ and SRPK1 was demonstrated by a biotinylated protein interaction pull-down assay. Results: The expressions of eNOS, Akt, and SRPK1 were down-regulated in the endothelial dysfunction stimulated by PA. SRPK1 inhibitor SPHINX31 restrained endothelial cell viability in a dose-dependent manner. Moreover, inhibition of SRPK1 using SPHINX31 and knockdown of SRPK1 by shRNA also showed a down-regulation of the proteins associated with the SRPK1-Akt-eNOS signaling pathway. Biotinylated protein interaction pull-down assay revealed that ICA Ⅱ could be directly bound with SRPK1. On the other hand, ICA Ⅱ could attenuate the PA-induced endothelial dysfunction and restore cell viability through the SRPK1-Akt-eNOS pathway. Conclusions: ICA Ⅱ, bound with SRPK1, could attenuate the endothelial dysfunction induced by the PA in HUVECs via the SRPK1-Akt-eNOS signaling pathway.
Collapse
Affiliation(s)
- Yang-Yang Gu
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
| | - Xiao-Hui Tan
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Wen-Peng Song
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Wei-Dong Song
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Yi-Ming Yuan
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Zhong-Cheng Xin
- Male Reproductive and Sexual Medicine, Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Institute of Urology, Tianjin Medical University, Tianjin, China
| | - Jia-Dong Wang
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Dong Fang
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Rui-Li Guan
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| |
Collapse
|
21
|
Nikolakaki E, Sigala I, Giannakouros T. Good Cop, Bad Cop: The Different Roles of SRPKs. Front Genet 2022; 13:902718. [PMID: 35719374 PMCID: PMC9202992 DOI: 10.3389/fgene.2022.902718] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/05/2022] [Indexed: 12/21/2022] Open
Abstract
SR Protein Kinases (SRPKs), discovered approximately 30 years ago, are widely known as splice factor kinases due to their decisive involvement in the regulation of various steps of mRNA splicing. However, they were also shown to regulate diverse cellular activities by phosphorylation of serine residues residing in serine-arginine/arginine-serine dipeptide motifs. Over the last decade, SRPK1 has been reported as both tumor suppressor and promoter, depending on the cellular context and has been implicated in both chemotherapy sensitivity and resistance. Moreover, SRPK2 has been reported to exhibit contradictory functions in different cell contexts promoting either apoptosis or tumor growth. The aim of the current review is to broaden and deepen our understanding of the SRPK function focusing on the subcellular localization of the kinases. There is ample evidence that the balance between cytoplasmic and nuclear SRPK levels is tightly regulated and determines cell response to external signals. Specific cell states coupled to kinase levels, spatial specific interactions with substrates but also changes in the extent of phosphorylation that allow SRPKs to exhibit a rheostat-like control on their substrates, could decide the proliferative or antiproliferative role of SRPKs.
Collapse
|
22
|
Yumin S, Jun W, Heng Y. Therapeutic potential of naturally occurring lignans as anticancer agents. Curr Top Med Chem 2022; 22:1393-1405. [PMID: 35546769 DOI: 10.2174/1568026622666220511155442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 11/22/2022]
Abstract
Cancer as a long-lasting and dramatic pandemic affects almost a third of the human being worldwide. At present, chemotherapy is the main clinical treatment strategy, but it is difficult to achieve satisfactory efficacy due to drug resistance and side effects. Natural products are becoming increasingly popular in cancer therapy due to their potent broad-spectrum anticancer potency and slight side effects. Lignans are complex diphenolic compounds, comprising a family of secondary metabolites existing widely in plants. Naturally occurring lignans have the potential to act on cancer cells by a range of mechanisms of action and could inhibit the colony formation, arrest the cell cycle in different phases, induce apoptosis, and suppress migration, providing privileged scaffolds for the discovery of novel anticancer agents. In recent five years, a variety of naturally occurring lignans were isolated and screened for their in vitro and/or in vivo anticancer efficacy, and some of them exhibited promising potential. This review has systematically summarized the resources, anticancer activity, and mechanisms of action of naturally occurring lignans, covering articles published between January 2017 and January 2022.
Collapse
Affiliation(s)
- Shi Yumin
- Hubei Engineering Research Center for Fragrant Plants, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, Hubei, 437100, PR China
| | - Wang Jun
- Hubei Engineering Research Center for Fragrant Plants, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, Hubei, 437100, PR China
| | - Yan Heng
- Hubei Provincial Institute for Food Supervision and Test, Wuhan, Hubei 430070, PR China
| |
Collapse
|
23
|
Murphy AJ, Li AH, Li P, Sun H. Therapeutic Targeting of Alternative Splicing: A New Frontier in Cancer Treatment. Front Oncol 2022; 12:868664. [PMID: 35463320 PMCID: PMC9027816 DOI: 10.3389/fonc.2022.868664] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/11/2022] [Indexed: 01/05/2023] Open
Abstract
The ability for cells to harness alternative splicing enables them to diversify their proteome in order to carry out complex biological functions and adapt to external and internal stimuli. The spliceosome is the multiprotein-RNA complex charged with the intricate task of alternative splicing. Aberrant splicing can arise from abnormal spliceosomes or splicing factors and drive cancer development and progression. This review will provide an overview of the alternative splicing process and aberrant splicing in cancer, with a focus on serine/arginine-rich (SR) proteins and their recently reported roles in cancer development and progression and beyond. Recent mapping of the spliceosome, its associated splicing factors, and their relationship to cancer have opened the door to novel therapeutic approaches that capitalize on the widespread influence of alternative splicing. We conclude by discussing small molecule inhibitors of the spliceosome that have been identified in an evolving era of cancer treatment.
Collapse
Affiliation(s)
- Anthony J. Murphy
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, United States
| | - Alex H. Li
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, United States
| | - Peichao Li
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hong Sun
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
24
|
Dong Z, Chang X, Xie L, Wang Y, Hou Y. Increased expression of SRPK1 (serine/arginine-rich protein-specific kinase 1) is associated with progression and unfavorable prognosis in cervical squamous cell carcinoma. Bioengineered 2022; 13:6100-6112. [PMID: 35192432 PMCID: PMC8973769 DOI: 10.1080/21655979.2022.2034705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 11/15/2022] Open
Abstract
Previous studies suggest that SRPK1 (serine/arginine-rich protein-specific kinase 1) is involved in tumorigenesis and closely related to unfavorable outcomes. However, its expression pattern in cervical squamous cell carcinoma (CESC) remains uncovered. In this study, we initially investigated the clinical significance and function of SRPK1 in human CESC. Data mining and analysis on SRPK1 mRNA expression in CESC samples were conducted using TCGA database, which indicated that SRPK1 mRNA was significantly upregulated in CESC samples. Protein expression of SRPK1 was tested by immunohistochemistry in a retrospective cohort (n = 122), revealing a higher SRPK1 protein abundance in CESC specimens whose aberrant up-regulation was obviously related to worse survival. Cox proportional hazards regression analysis further confirmed the role of SRPK1 as an independent prognostic factor of CESC. Cellular experiments validated that SRPK1 may function through enhancing CESC proliferation, migration, and invasion. In conclusion, aberrant up-regulation of SRPK1 is remarkably related to progression and unfavorable prognosis of CESC, which can serve as a novel prognostic biomarker and therapeutic target for CESC.
Collapse
Affiliation(s)
- Zhanfei Dong
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xuezhi Chang
- Department of Radiation Oncology, Yili Friendship Hospital, Yili, Xinjiang, China
| | - Li Xie
- Department of Radiation Gynecological Oncology, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yina Wang
- Department of Radiation Gynecological Oncology, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Youxiang Hou
- Department of Radiation Gynecological Oncology, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
25
|
Bagheri S, Rahban M, Bostanian F, Esmaeilzadeh F, Bagherabadi A, Zolghadri S, Stanek A. Targeting Protein Kinases and Epigenetic Control as Combinatorial Therapy Options for Advanced Prostate Cancer Treatment. Pharmaceutics 2022; 14:515. [PMID: 35335890 PMCID: PMC8949110 DOI: 10.3390/pharmaceutics14030515] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 02/02/2023] Open
Abstract
Prostate cancer (PC), the fifth leading cause of cancer-related mortality worldwide, is known as metastatic bone cancer when it spreads to the bone. Although there is still no effective treatment for advanced/metastatic PC, awareness of the molecular events that contribute to PC progression has opened up opportunities and raised hopes for the development of new treatment strategies. Androgen deprivation and androgen-receptor-targeting therapies are two gold standard treatments for metastatic PC. However, acquired resistance to these treatments is a crucial challenge. Due to the role of protein kinases (PKs) in the growth, proliferation, and metastases of prostatic tumors, combinatorial therapy by PK inhibitors may help pave the way for metastatic PC treatment. Additionally, PC is known to have epigenetic involvement. Thus, understanding epigenetic pathways can help adopt another combinatorial treatment strategy. In this study, we reviewed the PKs that promote PC to advanced stages. We also summarized some PK inhibitors that may be used to treat advanced PC and we discussed the importance of epigenetic control in this cancer. We hope the information presented in this article will contribute to finding an effective treatment for the management of advanced PC.
Collapse
Affiliation(s)
- Soghra Bagheri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran;
| | - Mahdie Rahban
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran; (M.R.); (F.B.)
| | - Fatemeh Bostanian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran; (M.R.); (F.B.)
| | - Fatemeh Esmaeilzadeh
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran;
| | - Arash Bagherabadi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil 5619911367, Iran;
| | - Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran;
| | - Agata Stanek
- Department of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 St, 41-902 Bytom, Poland
| |
Collapse
|
26
|
Gurnari C, Pagliuca S, Visconte V. Alternative Splicing in Myeloid Malignancies. Biomedicines 2021; 9:biomedicines9121844. [PMID: 34944660 PMCID: PMC8698609 DOI: 10.3390/biomedicines9121844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/28/2021] [Accepted: 12/03/2021] [Indexed: 01/02/2023] Open
Abstract
Alternative RNA splicing (AS) is an essential physiologic function that diversifies the human proteome. AS also has a crucial role during cellular development. In fact, perturbations in RNA-splicing have been implicated in the development of several cancers, including myeloid malignancies. Splicing dysfunction can be independent of genetic lesions or appear as a direct consequence of mutations in components of the RNA-splicing machinery, such as in the case of mutations occurring in splicing factor genes (i.e., SF3B1, SRSF2, U2AF1) and their regulators. In addition, cancer cells exhibit marked gene expression alterations, including different usage of AS isoforms, possibly causing tissue-specific effects and perturbations of downstream pathways. This review summarizes several modalities leading to splicing diversity in myeloid malignancies.
Collapse
Affiliation(s)
- Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.G.); (S.P.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Simona Pagliuca
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.G.); (S.P.)
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.G.); (S.P.)
- Correspondence:
| |
Collapse
|
27
|
Li Q, Zeng C, Liu H, Yung KWY, Chen C, Xie Q, Zhang Y, Wan SWC, Mak BSW, Xia J, Xiong S, Ngo JCK. Protein-Protein Interaction Inhibitor of SRPKs Alters the Splicing Isoforms of VEGF and Inhibits Angiogenesis. iScience 2021; 24:102423. [PMID: 33997701 PMCID: PMC8102418 DOI: 10.1016/j.isci.2021.102423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/13/2021] [Accepted: 04/09/2021] [Indexed: 12/14/2022] Open
Abstract
Serine-arginine (SR) protein kinases (SRPKs) regulate the functions of the SR-rich splicing factors by phosphorylating multiple serines within their C-terminal arginine-serine-rich domains. Dysregulation of these phosphorylation events has been implicated in many diseases, suggesting SRPKs are potential therapeutic targets. In particular, aberrant SRPK1 expression alters the balances of proangiogenic (VEGF165) and antiangiogenic (VEGF165b) splicing isoforms of the key angiogenesis factor, vascular endothelial growth factor (VEGF), through the phosphorylation of prototypic SR protein SRSF1. Here, we report a protein-protein interaction (PPI) inhibitor of SRPKs, docking blocker of SRPK1 (DBS1), that specifically blocks a conserved substrate docking groove unique to SRPKs. DBS1 is a cell-permeable inhibitor that effectively inhibits the binding and phosphorylation of SRSF1 and subsequently switches VEGF splicing from the proangiogenic to the antiangiogenic isoform. Our findings thus provide a new direction for the development of SRPK inhibitors through targeting a unique PPI site to combat angiogenic diseases.
Collapse
Affiliation(s)
- Qingyun Li
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
- Hong Kong Branch of National Engineering Research Center of Genetic Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Chuyue Zeng
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Haizhen Liu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Kristen Wing Yu Yung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Chun Chen
- Department of Cellular Biology, Jinan University, Guangzhou, China
| | - Qiuling Xie
- Department of Cellular Biology, Jinan University, Guangzhou, China
| | - Yu Zhang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Stephanie Winn Chee Wan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Bertha Sze Wing Mak
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Sheng Xiong
- Department of Cellular Biology, Jinan University, Guangzhou, China
- Hong Kong Branch of National Engineering Research Center of Genetic Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Jacky Chi Ki Ngo
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
- Hong Kong Branch of National Engineering Research Center of Genetic Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| |
Collapse
|
28
|
Pastor F, Shkreta L, Chabot B, Durantel D, Salvetti A. Interplay Between CMGC Kinases Targeting SR Proteins and Viral Replication: Splicing and Beyond. Front Microbiol 2021; 12:658721. [PMID: 33854493 PMCID: PMC8040976 DOI: 10.3389/fmicb.2021.658721] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/04/2021] [Indexed: 12/27/2022] Open
Abstract
Protein phosphorylation constitutes a major post-translational modification that critically regulates the half-life, intra-cellular distribution, and activity of proteins. Among the large number of kinases that compose the human kinome tree, those targeting RNA-binding proteins, in particular serine/arginine-rich (SR) proteins, play a major role in the regulation of gene expression by controlling constitutive and alternative splicing. In humans, these kinases belong to the CMGC [Cyclin-dependent kinases (CDKs), Mitogen-activated protein kinases (MAPKs), Glycogen synthase kinases (GSKs), and Cdc2-like kinases (CLKs)] group and several studies indicate that they also control viral replication via direct or indirect mechanisms. The aim of this review is to describe known and emerging activities of CMGC kinases that share the common property to phosphorylate SR proteins, as well as their interplay with different families of viruses, in order to advance toward a comprehensive knowledge of their pro- or anti-viral phenotype and better assess possible translational opportunities.
Collapse
Affiliation(s)
- Florentin Pastor
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Université de Lyon (UCBL1), Lyon, France
| | - Lulzim Shkreta
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Benoit Chabot
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - David Durantel
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Université de Lyon (UCBL1), Lyon, France
| | - Anna Salvetti
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Université de Lyon (UCBL1), Lyon, France
| |
Collapse
|
29
|
Deng K, Yao J, Huang J, Ding Y, Zuo J. Abnormal alternative splicing promotes tumor resistance in targeted therapy and immunotherapy. Transl Oncol 2021; 14:101077. [PMID: 33774500 PMCID: PMC8039720 DOI: 10.1016/j.tranon.2021.101077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Abnormal alternative splicing is involve in abnormal expression of genes in cancer. Abnormal alternative splicing events promote malignant progression of cancer. Abnormal alternative splicing develops tumor resistance to targeted therapy by changing the target point and signal transduction pathway. Abnormal alternative splicing develops tumor resistance to immunotherapy by changing cell surface antigens and protein structure.
Abnormally alternative splicing events are common hallmark of diverse types of cancers. Splicing variants with aberrant functions play an important role in cancer development. Most importantly, a growing body of evidence has supported that alternative splicing might play a significant role in the therapeutic resistance of tumors. Targeted therapy and immunotherapy are the future directions of tumor therapy; however, the loss of antigen targets on the tumor cells surface and alterations in drug efficacy have resulted in the failure of targeted therapy and immunotherapy. Interestingly, abnormal alternative splicing, as a strategy to regulate gene expression, is reportedly involved in the reprogramming of cell signaling pathways and epitopes on the tumor cell surface by changing splicing patterns of genes, thus rendering tumors resisted to targeted therapy and immunotherapy. Accordingly, increased knowledge regarding abnormal alternative splicing in tumors may help predict therapeutic resistance during targeted therapy and immunotherapy and lead to novel therapeutic approaches in cancer. Herein, we provide a brief synopsis of abnormal alternative splicing events in cancer progression and therapeutic resistance.
Collapse
Affiliation(s)
- Kun Deng
- The Laboratory of translational medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang, Hunan 421001, P R China
| | - Jingwei Yao
- The Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421002, P R China
| | - Jialu Huang
- The Laboratory of translational medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang, Hunan 421001, P R China
| | - Yubo Ding
- The Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421002, P R China
| | - Jianhong Zuo
- The Laboratory of translational medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang, Hunan 421001, P R China; The Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421002, P R China; Clinical Laboratory, The Third Affiliated Hospital of University of South China, Hengyang, Hunan 421900, China.
| |
Collapse
|
30
|
Ghigna C, Paronetto MP. Alternative Splicing: Recent Insights into Mechanisms and Functional Roles. Cells 2020; 9:cells9102327. [PMID: 33092102 PMCID: PMC7589716 DOI: 10.3390/cells9102327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Claudia Ghigna
- Istituto di Genetica Molecolare Luigi Luca Cavalli Sforza—Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100 Pavia, Italy
- Correspondence: (C.G.); (M.P.P.)
| | - Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy
- Correspondence: (C.G.); (M.P.P.)
| |
Collapse
|
31
|
ABCG2 Protein Levels and Association to Response to First-Line Irinotecan-Based Therapy for Patients with Metastatic Colorectal Cancer. Int J Mol Sci 2020; 21:ijms21145027. [PMID: 32708825 PMCID: PMC7404184 DOI: 10.3390/ijms21145027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
In this study we investigated the use of cancer cell protein expression of ABCG2 to predict efficacy of systemic first-line irinotecan containing therapy in patients with metastatic colorectal cancer (mCRC). From a Danish national cohort, we identified 119 mCRC patients treated with irinotecan containing therapy in first-line setting. Among these, 108 were eligible for analyses. Immunohistochemistry (IHC) analyses were performed on the primary tumor tissue in order to classify samples as high or low presence of ABCG2 protein. Data were then associated with patient outcome (objective response (OR), progression free survival (PFS) and overall survival (OS)). ABCG2 protein expression in the basolateral membrane was high (score 3+) in 33% of the patients. Exploratory analyses revealed a significant interaction between ABCG2 score, adjuvant treatment and OR (p = 0.041) in the 101 patients with evaluable disease. Patients with low ABCG2 (score 0-2) and no prior adjuvant therapy had a significantly higher odds ratio of 5.6 (Confidence Interval (CI) 1.68-18.7; p = 0.005) for obtaining OR. In contrast, no significant associations between ABCG2 expression and PFS or OS were found. These results suggest that measurement of the ABCG2 drug efflux pump might be used to select patients with mCRC for irinotecan treatment. However, additional studies are warranted before conclusions regarding a clinical use can be made. Moreover, patients with high ABCG2 immunoreactivity could be candidates for specific ABCG2 inhibition treatment in combination with irinotecan.
Collapse
|
32
|
Chandra A, Goyal N, Qamar I, Singh N. Identification of hot spot residues on serine-arginine protein kinase-1 by molecular dynamics simulation studies. J Biomol Struct Dyn 2020; 39:1579-1587. [DOI: 10.1080/07391102.2020.1734487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Anshuman Chandra
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| | - Nainee Goyal
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| | - Imteyaz Qamar
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| | - Nagendra Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|