1
|
Kretschmer JR, Tkachenko D, Kümpfel T, Havla J, Engels D, Paul F, Schindler P, Bellmann-Strobl J, Berthele A, Giglhuber K, Zappe C, Klotz L, Revie L, Dawin E, Senel M, Tumani H, Bergh FT, Warnke C, Kraemer M, Walter A, Bayas A, Zettl UK, Lauenstein AS, Yalachkov Y, Etgen T, Kaste M, Luessi F, Gingele S, Passoke S, Weber MS, Sieb JP, Haarmann A, Oschmann P, Rothhammer V, Geis C, Kowarik MC, Kern P, Grothe M, Stephanik H, Angstwurm K, Hoffmann F, Wallwitz U, Wildemann B, Jarius S, Stellmann JP, Pakeerathan T, Schwake C, Ayzenberg I, Kleiter I, Fischer K, Aktas O, Ringelstein M, Häußler V, Trebst C, Hümmert MW. Worse recovery from acute attacks and faster disability accumulation highlights the unmet need for improved treatment in patients with late-onset neuromyelitis optica spectrum disorders (COPTER-LO study). Front Immunol 2025; 16:1575613. [PMID: 40292288 PMCID: PMC12021610 DOI: 10.3389/fimmu.2025.1575613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/20/2025] [Indexed: 04/30/2025] Open
Abstract
Objective This study analyzed clinical characteristics, attack recovery and long-term disability accumulation in late-onset (LO ≥ 50 years at onset) versus early-onset (EO < 50 years) NMOSD. Methods This multicenter cohort study included demographic and clinical data from 446 NMOSD patients collected from 35 German Neuromyelitis Optica Study Group (NEMOS) centers. Time to disability milestones was estimated through Kaplan-Meier analysis and Cox proportional hazard regression models adjusted for sex, year of onset, immunotherapy exposure and antibody status. Generalized estimating equations (GEE) were used to compare attack outcomes. Results Of the 446 NMOSD patients analyzed (83.4% female, 85.4% AQP4-IgG-positive, median age at disease onset = 43 years), 153 had a late-onset (34.3%). AQP4-IgG+ prevalence was higher in LO- than in EO-NMOSD (94.1% vs. 80.9%, p<0.001). Optic neuritis at onset was more frequent in EO-NMOSD (27.4% vs. 42.6%, p<0.002), whereas myelitis was more common in LO-NMOSD (58.4% vs. 37.9%, p<0.001). Both groups had similar annualized attack rates (AAR, 0.51 vs. 0.54, p=0.352), but attack recovery was poorer (complete remission in 15.6% vs. 27.4%, p<0.001) and relapse-associated worsening (RAW) was higher in LO-NMOSD (RAW: 3 vs. 0.5, p<0.001). Long-term immunotherapy use was comparable. LO-NMOSD exhibited faster progression to disability endpoints (EDSS 4: HR = 2.64, 95% CI=1.81-3.84). Interpretation LO-NMOSD patients presented more often with myelitis, experienced worse attack outcomes and faster disability accumulation, despite comparable AAR, acute attack treatment and long-term treatment regimens. Accordingly, therapeutic strategies for attack and prophylactic treatment in LO-NMOSD have to be improved.
Collapse
Affiliation(s)
| | - Daria Tkachenko
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, LMU University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Joachim Havla
- Institute of Clinical Neuroimmunology, LMU University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Daniel Engels
- Institute of Clinical Neuroimmunology, LMU University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Friedemann Paul
- Department of Neurology, Charite Universitätsmedizin Berlin, Berlin, Germany
- Charité Universitätsmedizin Berlin, Experimental and Clinical Research Center and Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Patrick Schindler
- Department of Neurology, Charite Universitätsmedizin Berlin, Berlin, Germany
- Charité Universitätsmedizin Berlin, Experimental and Clinical Research Center and Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Judith Bellmann-Strobl
- Department of Neurology, Charite Universitätsmedizin Berlin, Berlin, Germany
- Charité Universitätsmedizin Berlin, Experimental and Clinical Research Center and Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Achim Berthele
- Department of Neurology, Technical University Munich, Munich, Germany
| | - Katrin Giglhuber
- Department of Neurology, Technical University Munich, Munich, Germany
| | - Clarissa Zappe
- Department of Neurology, Technical University Munich, Munich, Germany
| | - Luisa Klotz
- Department of Neurology, University of Münster, Münster, Germany
| | - Lisa Revie
- Department of Neurology, University of Münster, Münster, Germany
| | - Eva Dawin
- Department of Neurology, University of Münster, Münster, Germany
| | - Makbule Senel
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | | | - Clemens Warnke
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Markus Kraemer
- Department of Neurology, Alfried Krupp Hospital Essen, Essen, Germany
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Annette Walter
- Department of Neurology, Herford Hospital, Herford, Germany
| | - Antonios Bayas
- Department of Neurology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Uwe K. Zettl
- Department of Neurology, University of Rostock, Rostock, Germany
| | | | - Yavor Yalachkov
- Department of Neurology, Goethe-University Frankfurt, University Medicine, Frankfurt am Main, Germany
| | - Thorleif Etgen
- Department of Neurology, Klinikum Traunstein, Traunstein, Germany
| | - Matthias Kaste
- Department of Neurology, Nordwest-Krankenhaus Sanderbusch, Sanderbusch, Germany
| | - Felix Luessi
- Department of Neurology, University of Mainz, Mainz, Germany
| | - Stefan Gingele
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Sarah Passoke
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Martin S. Weber
- Department of Neurology, University of Göttingen, Göttingen, Germany
| | - Jörn Peter Sieb
- Department of Neurology, Helios Hanseklinikum Stralsund, Stralsund, Germany
| | - Axel Haarmann
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | | | - Veit Rothhammer
- Department of Neurology, FAU Erlangen-Nuremberg, Erlangen, Germany
| | - Christian Geis
- Department of Neurology, University of Jena, Jena, Germany
| | - Markus C. Kowarik
- Department of Neurology & Stroke and Hertie-Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Peter Kern
- Department of Neurology, Asklepios Expert Clinic Teupitz, Teupitz, Germany
| | - Matthias Grothe
- Department of Neurology, University of Greifswald, Greifswald, Germany
| | - Heike Stephanik
- Department of Neurology, University of Magdeburg, Magdeburg, Germany
| | - Klemens Angstwurm
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Frank Hoffmann
- Department of Neurology, Hospital Martha-Maria, Halle, Germany
| | - Ulrike Wallwitz
- Department of Neurology, Hospital Martha-Maria, Halle, Germany
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Jan-Patrick Stellmann
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
- CEMEREM, APHM, Hôspital de la Timone, Marseille, France
- CRMBM, Aix Marseille Univ, CNRS, Marseille, France
| | - Thivya Pakeerathan
- Department of Neurology, St.Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Carolin Schwake
- Department of Neurology, St.Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Ilya Ayzenberg
- Department of Neurology, St.Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Ingo Kleiter
- Department of Neurology, St.Josef Hospital, Ruhr University Bochum, Bochum, Germany
- Marianne-Strauss-Klinik, Behandlungszentrum für Multiple Sklerose Kranke, Berg, Germany
| | - Katinka Fischer
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Orhan Aktas
- Department of Neurology, Herford Hospital, Herford, Germany
| | - Marius Ringelstein
- Department of Neurology, Herford Hospital, Herford, Germany
- Department of Neurology, Center for Neurology and Neuropsychiatry, LVR-Klinikum, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Vivien Häußler
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Corinna Trebst
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
2
|
Li BZ, Poleg S, Ridenour M, Tollin D, Lei T, Klug A. Computational model for synthesizing auditory brainstem responses to assess neuronal alterations in aging and autistic animal models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.04.606499. [PMID: 39211118 PMCID: PMC11361117 DOI: 10.1101/2024.08.04.606499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Purpose The auditory brainstem response (ABR) is a widely used objective electrophysiology measure for non-invasively assessing auditory function and neural activity in the auditory brainstem, but its ability to reflect detailed neuronal processing is limited due to the averaging nature of the electroencephalogram-type recordings. Method This study addresses this limitation by developing a computational model of the auditory brainstem which is capable of synthesizing ABR traces based on a large, population scale neural extrapolation of a spiking neuronal network of auditory brainstem circuitry. The model was able to recapitulate alterations in ABR waveform morphology that have been shown to be present in two medical conditions: animal models of autism and aging. Moreover, in both of these conditions, these ABR alterations are caused by known distinct changes in auditory brainstem physiology, and the model could recapitulate these changes. Results In the autism model, the simulation revealed myelin deficits and hyperexcitability, which caused a decreased wave III amplitude and a prolonged wave III-V interval, consistent with experimentally recorded ABRs in Fmr1-KO mice. For the aging condition, the model recapitulated ABRs recorded in aged gerbils and indicated a reduction in activity in the medial nucleus of the trapezoid body (MNTB), a finding validated by confocal imaging data. Conclusion These results demonstrate not only the model's accuracy but also its capability of linking features of ABR morphology to underlying neuronal properties and suggesting follow-up physiological experiments.
Collapse
|
3
|
Wigger N, Krüger J, Vankriekelsvenne E, Kipp M. Titration of cuprizone induces reliable demyelination. Brain Res 2025; 1850:149410. [PMID: 39716594 DOI: 10.1016/j.brainres.2024.149410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/28/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Multiple Sclerosis (MS) is a chronic inflammatory disease of the central nervous system. Cuprizone-induced demyelination, wherein mice are fed a diet containing the copper chelator cuprizone, is a well-established model that replicates key features of demyelination and remyelination. However, the dose-response relationship of cuprizone is complex; high concentrations can induce toxicity, whereas low doses may fail to produce reliable demyelination across subjects. This study aimed to investigate whether titration of the cuprizone concentration results in reliable acute demyelination and weight stabilization. To this end, experimental animals were intoxicated with cuprizone over a period of 5 weeks to induce acute demyelination. In one group, during the first 10 days, the initial cuprizone dose was gradually reduced until the experimental animals showed stable weights. Another group was subjected to a continuous cuprizone intoxication protocol without adaptions. Histological analyses were performed to quantify the extent of demyelination and glia activation. Animals of both groups experienced significant weight loss. Histological analyses revealed, despite adopting the cuprizone concentration, substantial demyelination of various brain regions, including the corpus callosum. This pattern was consistent across multiple staining methods, including anti-proteolipid protein (PLP), anti-myelin basic protein (MBP), and luxol-fast-blue (LFB) stains. Additionally, grey matter regions, specifically the neocortex, demonstrated significant demyelination. Accompanying these changes, there was notable activation and accumulation of microglia and astrocytes in white and grey matter regions. These histopathological changes were comparably pronounced in both cuprizone-treated groups. In summary, we demonstrate that titration of cuprizone is a reliable approach to induce acute demyelination in the mouse forebrain. This work represents a significant step toward refining animal models of MS, contributing to the broader effort of understanding and treating this complex disease.
Collapse
Affiliation(s)
- Nicole Wigger
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, Rostock 18057, Germany
| | - Johann Krüger
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, Rostock 18057, Germany
| | - Elise Vankriekelsvenne
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, Rostock 18057, Germany
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, Rostock 18057, Germany.
| |
Collapse
|
4
|
Kazemimiraki M, Moazamian E, Mokhtari MJ, Gholamzad M. The Role of Lactic Acid Bacteria in Improving Behavioral Deficits, Serum Levels of Vitamin D3, B12 and Reducing Oxidative Stress and Demyelination in a Cuprizone-induced Demyelination Model of Rat. Neuromolecular Med 2025; 27:14. [PMID: 39961943 DOI: 10.1007/s12017-025-08837-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/06/2025] [Indexed: 05/09/2025]
Abstract
Multiple sclerosis constitutes a chronic, inflammatory, and demyelinating disorder affecting the central nervous system, with an estimated global prevalence of 2.5 million individuals. Emerging research underscores the significant influence of the gut microbiota on the immune system, suggesting a potential role in the initiation and progression of inflammatory diseases. This study investigated the potential therapeutic effects of Lactobacillus and Bifidobacterium species isolated from traditional dairy products on cuprizone-induced demyelination in a rat model. 48 adults male Wistar rats were randomly assigned to six groups. Demyelination was induced by daily oral administration of 0.6% (w/w) cuprizone mixed with food for 30 days. Subsequently, treated groups received oral administration of mixed of Lactiplantibacillus plantarum, Lactobacillus acidophilus, and Lactobacillus reuteri: and mixed of Bifidobacterium bifidum and Bifidobacterium animalis. A control group received no bacteria intervention. Behavioral deficits were assessed using grip-traction, beam-walking, and grid-walking tests. Oxidative stress biomarkers were quantified using colorimetric assays. The extent of demyelination was evaluated by hematoxylin and eosin staining of the corpus callosum. Serum levels of vitamin D3 and B12 were measured by ELISA. The results demonstrated that lactic acid bacteria supplementation significantly improved behavioral deficits and reduced demyelination in the corpus callosum. Furthermore, these bacteria administration was associated with reduced oxidative stress and increased serum levels of vitamin D3 and B12. These findings suggest that Lactobacillus and Bifidobacterium species may offer a supplementary therapeutic strategy for demyelinating disorders such as multiple sclerosis, potentially by mitigating oxidative stress, promoting remyelination, and enhancing vitamin D3 and B12 levels.
Collapse
Affiliation(s)
- Maryam Kazemimiraki
- Department of Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Elham Moazamian
- Department of Microbiology, Faculty of Sciences, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
| | | | - Mehrdad Gholamzad
- Department of Microbiology and Immunology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Zheng L, Wang X, Li P, Hao Y, Zhang H, Chen H, Zheng Z. White Matter Injury in Central Nervous System Disorders. Neuropsychiatr Dis Treat 2025; 21:107-114. [PMID: 39877856 PMCID: PMC11774249 DOI: 10.2147/ndt.s498660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025] Open
Abstract
As the aging process accelerates and living conditions improve, central nervous system (CNS) diseases have become a major public health problem. Diseases of the CNS cause not only gray matter damage, which is primarily characterized by the loss of neurons, but also white matter damage. However, most previous studies have focused on grey matter injury (GMI), with fewer studies on white matter injury (WMI). In this article, we will briefly describe the structure and function of white matter, summarize the pathological changes of WMI, and focus on the molecular mechanisms and therapeutic research advances in WMI after ischemic stroke, cerebral hemorrhage, Alzheimer's disease, and multiple sclerosis diseases.
Collapse
Affiliation(s)
- Ling Zheng
- Department of Rehabilitation Medicine, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, People’s Republic of China
| | - Xiaoyu Wang
- Department of Rehabilitation Medicine, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, People’s Republic of China
| | - Peng Li
- Department of Rehabilitation Medicine, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, People’s Republic of China
| | - Yuwen Hao
- Department of Rehabilitation Medicine, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, People’s Republic of China
| | - Hao Zhang
- Department of Rehabilitation Medicine, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, People’s Republic of China
| | - Haoyue Chen
- Department of Rehabilitation Medicine, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, People’s Republic of China
| | - Zuncheng Zheng
- Department of Rehabilitation Medicine, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, People’s Republic of China
| |
Collapse
|
6
|
Rizoli C, Dos Santos NM, Maróstica Júnior MR, da Cruz-Höfling MA, Mendonça MCP, de Jesus MB. The therapeutic potential of reduced graphene oxide in attenuating cuprizone-induced demyelination in mice. NANOTECHNOLOGY 2024; 36:025102. [PMID: 39389086 DOI: 10.1088/1361-6528/ad857e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/10/2024] [Indexed: 10/12/2024]
Abstract
Reduced graphene oxide (rGO) has unique physicochemical properties that make it suitable for therapeutic applications in neurodegenerative scenarios. This study investigates the therapeutic potential of rGO in a cuprizone-induced demyelination model in mice through histomorphological techniques and analysis of biochemical parameters. We demonstrate that daily intraperitoneal administration of rGO (1 mg ml-1) for 21 days tends to reduce demyelination in theCorpus callosumby decreasing glial cell recruitment during the repair mechanism. Additionally, rGO interferes with oxidative stress markers in the brain and liver indicating potential neuroprotective effects in the central nervous system. No significant damage to vital organs was observed, suggesting that multiple doses could be used safely. However, further long-term investigations are needed to understand rGO distribution, metabolism, routes of action and associated challenges in central neurodegenerative therapies. Overall, these findings contribute to the comprehension of rGO effectsin vivo, paving the way for possible future clinical research.
Collapse
Affiliation(s)
- Cintia Rizoli
- Departmento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | - Maria Alice da Cruz-Höfling
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | | | - Marcelo Bispo de Jesus
- Departmento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
7
|
Song J, EI Ayadi A, Rontoyanni VG, Wolf SE. Mild burn amplifies the locomotive depression in demyelinated mice without muscle pathophysiological changes. PLoS One 2024; 19:e0308908. [PMID: 39374260 PMCID: PMC11458009 DOI: 10.1371/journal.pone.0308908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/12/2024] [Indexed: 10/09/2024] Open
Abstract
INTRODUCTION Patients with mild burns take most accounts, however, the impact of mild burns is less known. Nerve destruction leads to muscle atrophy. We posit that even mild burn injury could worsen demyelinated nerves related to muscle pathophysiological impairment. METHODS Young adult C57BL/6 (male, n = 60) mice were randomly fed with either a 0.2% cuprizone diet or a regular rodent diet for 4 weeks. At week 5, all mice were then grouped into mild scald burn with 10% TBSA and sham injury groups. Mice received animal behavior tests and in situ muscle isometric force measurement before euthanasia for tissue collection. RESULTS Total horizontal ambulation and vertical activity were significantly reduced in mice with mild burn injury (p<0.05). Mice with the cuprizone diet had significantly less time to fall than those with the regular diet on day 7 after burn (p<0.05). No significant difference was found in gastrocnemius tissue weight among the groups, nor muscle isometric tensions (all p>0.05). The cuprizone diet increased the maximal phosphorylating respiration in mice muscle mitochondria (p<0.05). The muscle protein expressions of caspase 3, Fbx-32, and Murf1 significantly increased in mice with the cuprizone diet 3 days after burn (p<0.05). The signal expression of S100B significantly increased in mice with the cuprizone diet, and its expression was even greater on day 7 after burn injury. (p<0.05). CONCLUSION The cuprizone diet-induced locomotion and cognitive disorders were amplified by the mild burn injury in mice, which is associated with muscle intracellular signal alterations. However, mild burn injury does not cause mouse muscle weight loss and function impairment. The potential risk of pre-existed neural impairment could be aware when patients encounter even small or mild burns.
Collapse
Affiliation(s)
- Juquan Song
- Department of Surgery, the University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Amina EI Ayadi
- Department of Surgery, the University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Victoria G. Rontoyanni
- Department of Surgery, the University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Steven E. Wolf
- Department of Surgery, the University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| |
Collapse
|
8
|
Leenders F, Koole L, Slaets H, Tiane A, Hove DVD, Vanmierlo T. Navigating oligodendrocyte precursor cell aging in brain health. Mech Ageing Dev 2024; 220:111959. [PMID: 38950628 DOI: 10.1016/j.mad.2024.111959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Oligodendrocyte precursor cells (OPCs) comprise 5-8 % of the adult glial cell population and stand out as the most proliferative cell type in the central nervous system (CNS). OPCs are responsible for generating oligodendrocytes (OLs), the myelinating cells of the CNS. However, OPC functions decline as we age, resulting in impaired differentiation and inadequate remyelination. This review explores the cellular and molecular changes associated with OPC aging, and their impact on OPC differentiation and functionality. Furthermore, it examines the impact of OPC aging within the context of multiple sclerosis and Alzheimer's disease, both neurodegenerative conditions wherein aged OPCs exacerbate disease progression by impeding remyelination. Moreover, various pharmacological interventions targeting pathways related to senescence and differentiation are discussed as potential strategies to rejuvenate aged OPCs. Enhancing our understanding of OPC aging mechanisms holds promise for developing new therapies to improve remyelination and repair in age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Freddy Leenders
- Department Psychiatry and Neuropsychology, Division Translational Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Lisa Koole
- Department Psychiatry and Neuropsychology, Division Translational Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Helena Slaets
- University MS Centre (UMSC) Hasselt, Pelt, Belgium; Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Assia Tiane
- Department Psychiatry and Neuropsychology, Division Translational Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; University MS Centre (UMSC) Hasselt, Pelt, Belgium
| | - Daniel van den Hove
- Department Psychiatry and Neuropsychology, Division Translational Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Tim Vanmierlo
- Department Psychiatry and Neuropsychology, Division Translational Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; University MS Centre (UMSC) Hasselt, Pelt, Belgium.
| |
Collapse
|
9
|
Fettig NM, Pu A, Osborne LC, Gommerman JL. The influence of aging and the microbiome in multiple sclerosis and other neurologic diseases. Immunol Rev 2024; 325:166-189. [PMID: 38890777 DOI: 10.1111/imr.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The human gut microbiome is well-recognized as a key player in maintaining health. However, it is a dynamic entity that changes across the lifespan. How the microbial changes that occur in later decades of life shape host health or impact age-associated inflammatory neurological diseases such as multiple sclerosis (MS) is still unclear. Current understanding of the aging gut microbiome is largely limited to cross-sectional observational studies. Moreover, studies in humans are limited by confounding host-intrinsic and extrinsic factors that are not easily disentangled from aging. This review provides a comprehensive summary of existing literature on the aging gut microbiome and its known relationships with neurological diseases, with a specific focus on MS. We will also discuss preclinical animal models and human studies that shed light on the complex microbiota-host interactions that have the potential to influence disease pathology and progression in aging individuals. Lastly, we propose potential avenues of investigation to deconvolute features of an aging microbiota that contribute to disease, or alternatively promote health in advanced age.
Collapse
Affiliation(s)
- Naomi M Fettig
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Annie Pu
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Lisa C Osborne
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
10
|
Gingele S, Möllenkamp TM, Henkel F, Schröder L, Hümmert MW, Skripuletz T, Stangel M, Gudi V. Automated analysis of gray matter damage in aged mice reveals impaired remyelination in the cuprizone model. Brain Pathol 2024; 34:e13218. [PMID: 37927164 PMCID: PMC10901622 DOI: 10.1111/bpa.13218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/14/2023] [Indexed: 11/07/2023] Open
Abstract
Multiple sclerosis is a chronic autoimmune disease of the central nervous system characterized by myelin loss, axonal damage, and glial scar formation. Still, the underlying processes remain unclear, as numerous pathways and factors have been found to be involved in the development and progression of the disease. Therefore, it is of great importance to find suitable animal models as well as reliable methods for their precise and reproducible analysis. Here, we describe the impact of demyelination on clinically relevant gray matter regions of the hippocampus and cerebral cortex, using the previously established cuprizone model for aged mice. We could show that bioinformatic image analysis methods are not only suitable for quantification of cell populations, but also for the assessment of de- and remyelination processes, as numerous objective parameters can be considered for reproducible measurements. After cuprizone-induced demyelination, subsequent remyelination proceeded slowly and remained incomplete in all gray matter areas studied. There were regional differences in the number of mature oligodendrocytes during remyelination suggesting region-specific differences in the factors accounting for remyelination failure, as, even in the presence of oligodendrocytes, remyelination in the cortex was found to be impaired. Upon cuprizone administration, synaptic density and dendritic volume in the gray matter of aged mice decreased. The intensity of synaptophysin staining gradually restored during the subsequent remyelination phase, however the expression of MAP2 did not fully recover. Microgliosis persisted in the gray matter of aged animals throughout the remyelination period, whereas extensive astrogliosis was of short duration as compared to white matter structures. In conclusion, we demonstrate that the application of the cuprizone model in aged mice mimics the impaired regeneration ability seen in human pathogenesis more accurately than commonly used protocols with young mice and therefore provides an urgently needed animal model for the investigation of remyelination failure and remyelination-enhancing therapies.
Collapse
Affiliation(s)
- Stefan Gingele
- Department of NeurologyHannover Medical SchoolHannoverGermany
| | | | - Florian Henkel
- Department of NeurologyHannover Medical SchoolHannoverGermany
| | | | | | | | - Martin Stangel
- Department of NeurologyHannover Medical SchoolHannoverGermany
- Department of Translational Medicine NeuroscienceNovartis Institute for BioMedical ResearchBaselSwitzerland
| | - Viktoria Gudi
- Department of NeurologyHannover Medical SchoolHannoverGermany
| |
Collapse
|
11
|
Freudenstein D, Lippert M, Popp JS, Aprato J, Wegner M, Sock E, Haase S, Linker RA, González Alvarado MN. Endogenous Sox8 is a critical factor for timely remyelination and oligodendroglial cell repletion in the cuprizone model. Sci Rep 2023; 13:22272. [PMID: 38097655 PMCID: PMC10721603 DOI: 10.1038/s41598-023-49476-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
Genome-wide association studies identified a single nucleotide polymorphism (SNP) downstream of the transcription factor Sox8, associated with an increased risk of multiple sclerosis (MS). Sox8 is known to influence oligodendrocyte terminal differentiation and is involved in myelin maintenance by mature oligodendrocytes. The possible link of a Sox8 related SNP and MS risk, along with the role of Sox8 in oligodendrocyte physiology prompted us to investigate its relevance during de- and remyelination using the cuprizone model. Sox8-/- mice and wildtype littermates received a cuprizone diet for 5 weeks (wk). Sox8-/- mice showed reduced motor performance and weight compared to wildtype controls. Brains were histologically analysed at the maximum of demyelination (wk 5) and on two time points during remyelination (wk 5.5 and wk 6) for oligodendroglial, astroglial, microglial and myelin markers. We identified reduced proliferation of oligodendrocyte precursor cells at wk 5 as well as reduced numbers of mature oligodendrocytes in Sox8-/- mice at wk 6. Moreover, analysis of myelin markers revealed a delay in remyelination in the Sox8-/- group, demonstrating the potential importance of Sox8 in remyelination processes. Our findings present, for the first time, compelling evidence of a significant role of Sox8 in the context of a disease model.
Collapse
Affiliation(s)
- David Freudenstein
- Neuroimmunology Laboratory, Department of Neurology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Magdalena Lippert
- Neuroimmunology Laboratory, Department of Neurology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Janina Sophie Popp
- Neuroimmunology Laboratory, Department of Neurology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Jessica Aprato
- Institute of Biochemistry, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Michael Wegner
- Institute of Biochemistry, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Elisabeth Sock
- Institute of Biochemistry, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Stefanie Haase
- Neuroimmunology Laboratory, Department of Neurology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| | - Ralf A Linker
- Neuroimmunology Laboratory, Department of Neurology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - María Nazareth González Alvarado
- Neuroimmunology Laboratory, Department of Neurology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
12
|
Gudi V, Grieb P, Linker RA, Skripuletz T. CDP-choline to promote remyelination in multiple sclerosis: the need for a clinical trial. Neural Regen Res 2023; 18:2599-2605. [PMID: 37449595 DOI: 10.4103/1673-5374.373671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Multiple sclerosis is a multifactorial chronic inflammatory disease of the central nervous system that leads to demyelination and neuronal cell death, resulting in functional disability. Remyelination is the natural repair process of demyelination, but it is often incomplete or fails in multiple sclerosis. Available therapies reduce the inflammatory state and prevent clinical relapses. However, therapeutic approaches to increase myelin repair in humans are not yet available. The substance cytidine-5'-diphosphocholine, CDP-choline, is ubiquitously present in eukaryotic cells and plays a crucial role in the synthesis of cellular phospholipids. Regenerative properties have been shown in various animal models of diseases of the central nervous system. We have already shown that the compound CDP-choline improves myelin regeneration in two animal models of multiple sclerosis. However, the results from the animal models have not yet been studied in patients with multiple sclerosis. In this review, we summarise the beneficial effects of CDP-choline on biolipid metabolism and turnover with regard to inflammatory and regenerative processes. We also explain changes in phospholipid and sphingolipid homeostasis in multiple sclerosis and suggest a possible therapeutic link to CDP-choline.
Collapse
Affiliation(s)
- Viktoria Gudi
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Paweł Grieb
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Ralf A Linker
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | | |
Collapse
|
13
|
Gakare SG, Bhatt JM, Narasimhan KKS, Dravid SM. Glutamate delta-1 receptor regulates oligodendrocyte progenitor cell differentiation and myelination in normal and demyelinating conditions. PLoS One 2023; 18:e0294583. [PMID: 37983226 PMCID: PMC10659214 DOI: 10.1371/journal.pone.0294583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023] Open
Abstract
In this study, we investigated the role of glutamate delta 1 receptor (GluD1) in oligodendrocyte progenitor cell (OPC)-mediated myelination during basal (development) and pathophysiological (cuprizone-induced demyelination) conditions. Initially, we sought to determine the expression pattern of GluD1 in OPCs and found a significant colocalization of GluD1 puncta with neuron-glial antigen 2 (NG2, OPC marker) in the motor cortex and dorsal striatum. Importantly, we found that the ablation of GluD1 led to an increase in the number of myelin-associated glycoprotein (MAG+) cells in the corpus callosum and motor cortex at P40 without affecting the number of NG2+ OPCs, suggesting that GluD1 loss selectively facilitates OPC differentiation rather than proliferation. Further, deletion of GluD1 enhanced myelination in the corpus callosum and motor cortex, as indicated by increased myelin basic protein (MBP) staining at P40, suggesting that GluD1 may play an essential role in the developmental regulation of myelination during the critical window period. In contrast, in cuprizone-induced demyelination, we observed reduced MBP staining in the corpus callosum of GluD1 KO mice. Furthermore, cuprizone-fed GluD1 KO mice showed more robust motor deficits. Collectively, our results demonstrate that GluD1 plays a critical role in OPC regulation and myelination in normal and demyelinating conditions.
Collapse
Affiliation(s)
- Sukanya G. Gakare
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, United States of America
| | - Jay M. Bhatt
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, United States of America
| | - Kishore Kumar S. Narasimhan
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, United States of America
| | - Shashank M. Dravid
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, United States of America
| |
Collapse
|
14
|
Rowhanirad S, Taherianfard M. The neuroprotective effects of Chalcones from Ashitaba on cuprizone-induced demyelination via modulation of brain-derived neurotrophic factor and tumor necrosis factor α. Brain Behav 2023; 13:e3144. [PMID: 37403256 PMCID: PMC10498084 DOI: 10.1002/brb3.3144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/04/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023] Open
Abstract
INTRODUCTION Multiple sclerosis (MS) is the most common demyelinating disease of the central nervous system. However, the limitations of available therapeutic strategies are frustrating, both in terms of their low efficacy and multiple side effects. Previous studies showed that natural compounds such as Chalcones possess neuroprotective effects on neurodegenerative disorders. However, few studies have so far been published on the potential effects of Chalcones on treating demyelinating disease. The present study was designed to investigate the effects of Chalcones from Ashitaba (ChA) on cuprizone-induced noxious changes in the C57BL6 mice model of MS. METHODS The mice received normal diets (Control group: CNT), or Cuprizone-supplemented diets either without ChA (Cuprizone group: CPZ) or with low or high (300, 600 mg/kg/day) doses of ChA (ChA-treated groups: CPZ+ChA300/600). Brain-derived neurotrophic factor (BDNF) and tumor necrosis factor alpha (TNFα) levels, demyelination scores in the corpus callosum (CC), and cognitive impairment were evaluated using the enzyme-linked immunosorbent assay, histological, and Y-maze tests, respectively. RESULTS The findings showed that ChA Co-treatment significantly reduced the extent of demyelination in the CC and the serum and brain levels of TNFα in the ChA-treated groups compared to the CPZ group. Besides, treatment with a higher dose of ChA significantly improved the behavioral responses and BDNF levels in the serum and brain of the CPZ+ChA600 group when compared with the CPZ group. CONCLUSION The present study provided evidence for the neuroprotective effects of ChA on cuprizone-induced demyelination and behavioral dysfunction in C57BL/6 mice, possibly by modulating TNFα secretion and BDNF expression.
Collapse
Affiliation(s)
- Soodeh Rowhanirad
- Division of Physiology, Department of Basic Science, School of Veterinary MedicineShiraz UniversityShirazIran
| | - Mahnaz Taherianfard
- Division of Physiology, Department of Basic Science, School of Veterinary MedicineShiraz UniversityShirazIran
| |
Collapse
|
15
|
Beecken M, Baumann L, Vankriekelsvenne E, Manzhula K, Greiner T, Heinig L, Schauerte S, Kipp M, Joost S. The Cuprizone Mouse Model: A Comparative Study of Cuprizone Formulations from Different Manufacturers. Int J Mol Sci 2023; 24:10564. [PMID: 37445742 DOI: 10.3390/ijms241310564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The Cuprizone mouse model is widely used in studies on de- and remyelination. In the hands of different experimenters, the Cuprizone concentrations that lead to comparable levels of demyelination differ considerably. The reasons for this variability are unknown. In this study, we tested whether different Cuprizone formulations from different vendors and manufacturers influenced Cuprizone-induced histopathological hallmarks. We intoxicated male C57BL/6 mice with six Cuprizone powders that differed in their manufacturer, vendor, and purity. After five weeks, we analyzed the body weight changes over the course of the experiment, as well as the demyelination, astrogliosis, microgliosis and axonal damage by histological LFB-PAS staining and immunohistochemical labelling of PLP, IBA1, GFAP and APP. All Cuprizone formulations induced demyelination, astrogliosis, microgliosis, axonal damage and a moderate drop in body weight at the beginning of the intoxication period. In a cumulative evaluation of all analyses, two Cuprizone formulations performed weaker than the other formulations. In conclusion, all tested formulations did work, but the choice of Cuprizone formulation may have been responsible for the considerable variability in the experimental outcomes.
Collapse
Affiliation(s)
- Malena Beecken
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Louise Baumann
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| | | | - Katerina Manzhula
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Theresa Greiner
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Leo Heinig
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Steffen Schauerte
- Institute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Sarah Joost
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
16
|
Klotz L, Antel J, Kuhlmann T. Inflammation in multiple sclerosis: consequences for remyelination and disease progression. Nat Rev Neurol 2023; 19:305-320. [PMID: 37059811 DOI: 10.1038/s41582-023-00801-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 04/16/2023]
Abstract
Despite the large number of immunomodulatory or immunosuppressive treatments available to treat relapsing-remitting multiple sclerosis (MS), treatment of the progressive phase of the disease has not yet been achieved. This lack of successful treatment approaches is caused by our poor understanding of the mechanisms driving disease progression. Emerging concepts suggest that a combination of persisting focal and diffuse inflammation within the CNS and a gradual failure of compensatory mechanisms, including remyelination, result in disease progression. Therefore, promotion of remyelination presents a promising intervention approach. However, despite our increasing knowledge regarding the cellular and molecular mechanisms regulating remyelination in animal models, therapeutic increases in remyelination remain an unmet need in MS, which suggests that mechanisms of remyelination and remyelination failure differ fundamentally between humans and demyelinating animal models. New and emerging technologies now allow us to investigate the cellular and molecular mechanisms underlying remyelination failure in human tissue samples in an unprecedented way. The aim of this Review is to summarize our current knowledge regarding mechanisms of remyelination and remyelination failure in MS and in animal models of the disease, identify open questions, challenge existing concepts, and discuss strategies to overcome the translational roadblock in the field of remyelination-promoting therapies.
Collapse
Affiliation(s)
- Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Jack Antel
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Québec, Canada
| | - Tanja Kuhlmann
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Québec, Canada.
- Institute of Neuropathology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
17
|
Clawson ED, Radecki DZ, Samanta J. Immunofluorescence assay for demyelination, remyelination, and proliferation in an acute cuprizone mouse model. STAR Protoc 2023; 4:102072. [PMID: 36853716 PMCID: PMC9918794 DOI: 10.1016/j.xpro.2023.102072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/16/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
Here, we present a protocol to assess demyelination in the corpus callosum of an acute cuprizone mouse model, which is routinely used to induce demyelination for studying myelin regeneration in the rodent brain. We describe the tracing of neural stem cells via intraperitoneal injection of tamoxifen into adult Gli1CreERT2;Ai9 mice and the induction of demyelination with cuprizone diet. We also detail EdU administration, cryosectioning of the mouse brain, EdU labeling, and immunofluorescence staining to examine proliferation and myelination. For complete details on the use and execution of this protocol, please refer to Radecki et al. (2020).1.
Collapse
Affiliation(s)
- Elizabeth D Clawson
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, Madison, WI 53706, USA; Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Daniel Z Radecki
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jayshree Samanta
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, Madison, WI 53706, USA; Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
18
|
Leo H, Kipp M. Remyelination in Multiple Sclerosis: Findings in the Cuprizone Model. Int J Mol Sci 2022; 23:ijms232416093. [PMID: 36555733 PMCID: PMC9783537 DOI: 10.3390/ijms232416093] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Remyelination therapies, which are currently under development, have a great potential to delay, prevent or even reverse disability in multiple sclerosis patients. Several models are available to study the effectiveness of novel compounds in vivo, among which is the cuprizone model. This model is characterized by toxin-induced demyelination, followed by endogenous remyelination after cessation of the intoxication. Due to its high reproducibility and ease of use, this model enjoys high popularity among various research and industrial groups. In this review article, we will summarize recent findings using this model and discuss the potential of some of the identified compounds to promote remyelination in multiple sclerosis patients.
Collapse
Affiliation(s)
| | - Markus Kipp
- Correspondence: ; Tel.: +49-(0)-381-494-8400
| |
Collapse
|
19
|
Dupree JL, Paez PM, Tiwari-Woodruff SK, Denton TT, Hensley K, Angeliu CG, Boullerne AI, Kalinin S, Egge S, Cheli VT, Denaroso G, Atkinson KC, Feri M, Feinstein DL. Lanthionine Ketimine Ethyl Ester Accelerates Remyelination in a Mouse Model of Multiple Sclerosis. ASN Neuro 2022; 14:17590914221112352. [PMID: 35791633 PMCID: PMC9272172 DOI: 10.1177/17590914221112352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Although over 20 disease modifying therapies are approved to treat Multiple Sclerosis (MS), these do not increase remyelination of demyelinated axons or mitigate axon damage. Previous studies showed that lanthionine ketenamine ethyl ester (LKE) reduces clinical signs in the experimental autoimmune encephalomyelitis (EAE) mouse model of MS and increased maturation of oligodendrocyte (OL) progenitor cells (OPCs) in vitro. In the current study, we used the cuprizone (CPZ) demyelination model of MS to test if LKE could increase remyelination. The corpus callosum (CC) and somatosensory cortex was examined by immunohistochemistry (IHC), electron microscopy and for mRNA expression changes in mice provided 5 weeks of CPZ diet followed by 2 weeks of normal diet in the presence of LKE or vehicle. A significant increase in the number of myelinated axons, and increased myelin thickness was observed in the CC of LKE-treated groups compared to vehicle-treated groups. LKE also increased myelin basic protein and proteolipid protein expression in the CC and cortex, and increased the number of mature OLs in the cortex. In contrast, LKE did not increase the percentage of proliferating OPCs suggesting effects on OPC survival and differentiation but not proliferation. The effects of LKE on OL maturation and remyelination were supported by similar changes in their relative mRNA levels. Interestingly, LKE did not have significant effects on GFAP or Iba1 immunostaining or mRNA levels. These findings suggest that remyelinating actions of LKE can potentially be formulated to induce remyelination in neurological diseases associated with demyelination including MS.
Collapse
Affiliation(s)
- Jeffrey L. Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA,Research Service, HH McGuire VA Medical Center, Richmond, VA, USA
| | - Pablo M. Paez
- Institute for Myelin and Glia Exploration, Department of Pharmacology and
Toxicology, University at Buffalo, NY, USA
| | - Seema K. Tiwari-Woodruff
- Division of Biomedical Sciences, School of Medicine at the University of California
Riverside, Riverside, CA, USA
| | - Travis T. Denton
- Department of Pharmaceutical Sciences, College of Pharmacy &
Pharmaceutical Sciences, Washington State University Health Sciences Spokane, Spokane, WA,
USA,Department of Translational Medicine and Physiology, Elson S. Floyd College
of Medicine, Washington State University Health Sciences Spokane, Spokane, WA, USA,Steve Gleason Institute for Neuroscience, Washington State University Health Sciences
Spokane, Spokane, WA, USA
| | - Kenneth Hensley
- Arkansas College of Osteopathic
Medicine, Fort Smith, AR, USA
| | - Christina G. Angeliu
- Institute for Myelin and Glia Exploration, Department of Pharmacology and
Toxicology, University at Buffalo, NY, USA
| | | | - Sergey Kalinin
- Department Anesthesiology, University of Illinois, Chicago, IL, USA
| | - Sophia Egge
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Veronica T. Cheli
- Institute for Myelin and Glia Exploration, Department of Pharmacology and
Toxicology, University at Buffalo, NY, USA
| | - Giancarlo Denaroso
- Institute for Myelin and Glia Exploration, Department of Pharmacology and
Toxicology, University at Buffalo, NY, USA
| | - Kelley C. Atkinson
- Division of Biomedical Sciences, School of Medicine at the University of California
Riverside, Riverside, CA, USA
| | - Micah Feri
- Division of Biomedical Sciences, School of Medicine at the University of California
Riverside, Riverside, CA, USA
| | - Douglas L. Feinstein
- Department Anesthesiology, University of Illinois, Chicago, IL, USA,Jesse Brown VA Medical Center, Chicago, IL, USA,Douglas L. Feinstein, Department of Anesthesiology,
University of Illinois, 835 South Wolcott Avenue, MC 513, Chicago IL, 60612, USA.
| |
Collapse
|
20
|
Astroglial and oligodendroglial markers in the cuprizone animal model for de- and remyelination. Histochem Cell Biol 2022; 158:15-38. [PMID: 35380252 PMCID: PMC9246805 DOI: 10.1007/s00418-022-02096-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2022] [Indexed: 01/08/2023]
Abstract
Myelin loss with consecutive axon degeneration and impaired remyelination are the underlying causes of progressive disease in patients with multiple sclerosis. Astrocytes are suggested to play a major role in these processes. The unmasking of distinct astrocyte identities in health and disease would help to understand the pathophysiological mechanisms in which astrocytes are involved. However, the number of specific astrocyte markers is limited. Therefore, we performed immunohistochemical studies and analyzed various markers including GFAP, vimentin, S100B, ALDH1L1, and LCN2 during de- and remyelination using the toxic murine cuprizone animal model. Applying this animal model, we were able to confirm overlapping expression of vimentin and GFAP and highlighted the potential of ALDH1L1 as a pan-astrocytic marker, in agreement with previous data. Only a small population of GFAP-positive astrocytes in the corpus callosum highly up-regulated LCN2 at the peak of demyelination and S100B expression was found in a subset of oligodendroglia as well, thus S100B turned out to have a limited use as a particular astroglial marker. Additionally, numerous GFAP-positive astrocytes in the lateral corpus callosum did not express S100B, further strengthening findings of heterogeneity in the astrocytic population. In conclusion, our results acknowledged that GFAP, vimentin, LCN2, and ALDH1L1 serve as reliable marker to identify activated astrocytes during cuprizone-induced de- and remyelination. Moreover, there were clear regional and temporal differences in protein and mRNA expression levels and patterns of the studied markers, generally between gray and white matter structures.
Collapse
|
21
|
Biochanin A Improves Memory Decline and Brain Pathology in Cuprizone-Induced Mouse Model of Multiple Sclerosis. Behav Sci (Basel) 2022; 12:bs12030070. [PMID: 35323389 PMCID: PMC8945046 DOI: 10.3390/bs12030070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/30/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease of the central nervous system characterized by the demyelination of nerves, neural degeneration, and axonal loss. Cognitive impairment, including memory decline, is a significant feature in MS affecting up to 70% of patients. Thereby, it substantially impacts patients’ quality of life. Biochanin A (BCA) is an o-methylated isoflavone with a wide variety of pharmacological activities, including antioxidant, anti-inflammatory, and neuroprotective activities. Thus, this study aimed to investigate the possible protective effects of BCA on memory decline in the cuprizone (CPZ) model of MS. Thirty Swiss albino male mice (SWR/J) were randomly divided into three groups (n = 10): control (normal chow + i.p. 1:9 mixture of DMSO and PBS), CPZ (0.2% w/w of CPZ mixed into chow + i.p. 1:9 mixture of DMSO and PBS), and CPZ + BCA (0.2% w/w of CPZ mixed into chow + i.p. 40 mg/kg of BCA). At the last week of the study (week 5), a series of behavioral tasks were performed. A grip strength test was performed to assess muscle weakness while Y-maze, novel object recognition task (NORT), and novel arm discrimination task (NADT) were performed to assess memory. Additionally, histological examination of the hippocampus and the prefrontal cortex (PFC) were conducted. BCA administration caused a significant increase in the grip strength compared with the CPZ group. Additionally, BCA significantly improved the mice’s spatial memory in the Y-maze and recognition memory in the NORT and the NADT compared with the CPZ group. Moreover, BCA mitigated neuronal damage in the PFC and the hippocampus after five weeks of administration. In conclusion, our data demonstrates the possible protective effect of BCA against memory deterioration in mice fed with CPZ for five weeks.
Collapse
|
22
|
Sen MK, Mahns DA, Coorssen JR, Shortland PJ. The roles of microglia and astrocytes in phagocytosis and myelination: Insights from the cuprizone model of multiple sclerosis. Glia 2022; 70:1215-1250. [PMID: 35107839 PMCID: PMC9302634 DOI: 10.1002/glia.24148] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022]
Abstract
In human demyelinating diseases such as multiple sclerosis (MS), an imbalance between demyelination and remyelination can trigger progressive degenerative processes. The clearance of myelin debris (phagocytosis) from the site of demyelination by microglia is critically important to achieve adequate remyelination and to slow the progression of the disease. However, how microglia phagocytose the myelin debris, and why clearance is impaired in MS, is not fully known; likewise, the role of the microglia in remyelination remains unclear. Recent studies using cuprizone (CPZ) as an animal model of central nervous system demyelination revealed that the up‐regulation of signaling proteins in microglia facilitates effective phagocytosis of myelin debris. Moreover, during demyelination, protective mediators are released from activated microglia, resulting in the acceleration of remyelination in the CPZ model. In contrast, inadequate microglial activation or recruitment to the site of demyelination, and the production of toxic mediators, impairs remyelination resulting in progressive demyelination. In addition to the microglia‐mediated phagocytosis, astrocytes play an important role in the phagocytic process by recruiting microglia to the site of demyelination and producing regenerative mediators. The current review is an update of these emerging findings from the CPZ animal model, discussing the roles of microglia and astrocytes in phagocytosis and myelination.
Collapse
Affiliation(s)
- Monokesh K Sen
- School of Medicine, Western Sydney University, Penrith, Australia
| | - David A Mahns
- School of Medicine, Western Sydney University, Penrith, Australia
| | - Jens R Coorssen
- Faculty of Applied Health Sciences and Faculty of Mathematics & Science, Brock University, St. Cathari, Canada
| | | |
Collapse
|
23
|
Comparison of the Effects of Cuprizone on Demyelination in the Corpus Callosum and Hippocampal Progenitors in Young Adult and Aged Mice. Neurochem Res 2022; 47:1073-1082. [DOI: 10.1007/s11064-021-03506-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/22/2021] [Accepted: 12/07/2021] [Indexed: 01/08/2023]
|
24
|
Regenerative Effects of CDP-Choline: A Dose-Dependent Study in the Toxic Cuprizone Model of De- and Remyelination. Pharmaceuticals (Basel) 2021; 14:ph14111156. [PMID: 34832936 PMCID: PMC8623145 DOI: 10.3390/ph14111156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/20/2022] Open
Abstract
Inflammatory attacks and demyelination in the central nervous system (CNS) are the key factors responsible for the damage of neurons in multiple sclerosis (MS). Remyelination is the natural regenerating process after demyelination that also provides neuroprotection but is often incomplete or fails in MS. Currently available therapeutics are affecting the immune system, but there is no substance that might enhance remyelination. Cytidine-S-diphosphate choline (CDP-choline), a precursor of the biomembrane component phospholipid phosphatidylcholine was shown to improve remyelination in two animal models of demyelination. However, the doses used in previous animal studies were high (500 mg/kg), and it is not clear if lower doses, which could be applied in human trials, might exert the same beneficial effect on remyelination. The aim of this study was to confirm previous results and to determine the potential regenerative effects of lower doses of CDP-choline (100 and 50 mg/kg). The effects of CDP-choline were investigated in the toxic cuprizone-induced mouse model of de- and remyelination. We found that even low doses of CDP-choline effectively enhanced early remyelination. The beneficial effects on myelin regeneration were accompanied by higher numbers of oligodendrocytes. In conclusion, CDP-choline could become a promising regenerative substance for patients with multiple sclerosis and should be tested in a clinical trial.
Collapse
|
25
|
Forbes LH, Miron VE. Monocytes in central nervous system remyelination. Glia 2021; 70:797-807. [PMID: 34708884 DOI: 10.1002/glia.24111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 01/01/2023]
Abstract
Remyelination failure with aging and progression of neurodegenerative disorders contributes to axonal dysfunction, highlighting the importance of understanding the mechanisms underpinning this process to develop regenerative therapies. Central nervous system (CNS) macrophages, encompassing both resident microglia and blood monocyte-derived cells, play a crucial role in driving successful remyelination. Although there has been a focus on the critical roles of microglia in remyelination, the specific contribution of monocyte-derived macrophages is still not fully understood. Until recently, the lack of tools enabling distinction between CNS macrophage populations has hindered our understanding of monocyte influence on remyelination. Recent advances have allowed for identification and characterization of monocyte populations in health, aging and in neurodegenerative conditions like multiple sclerosis, indicating heterogeneity of monocyte subsets impacted by both intrinsic and extrinsic factors. Here, we discuss the new tools enabling distinction between macrophage populations and advancements in understanding the importance of monocytes in remyelination, and reflect on the potential for therapeutic targeting of monocytes to promote remyelination.
Collapse
Affiliation(s)
- Lindsey H Forbes
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Veronique E Miron
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK.,Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
26
|
Aryanpour R, Zibara K, Pasbakhsh P, Jame'ei SB, Namjoo Z, Ghanbari A, Mahmoudi R, Amani S, Kashani IR. 17β-Estradiol Reduces Demyelination in Cuprizone-fed Mice by Promoting M2 Microglia Polarity and Regulating NLRP3 Inflammasome. Neuroscience 2021; 463:116-127. [PMID: 33794337 DOI: 10.1016/j.neuroscience.2021.03.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/18/2021] [Accepted: 03/21/2021] [Indexed: 11/26/2022]
Abstract
Estrogen produces a beneficial role in animal models of multiple sclerosis (MS). The effect of 17β-estradiol therapy on microglia polarization and neuroinflammation in the corpus callosum of the cuprizone-induced demyelination model has not been elucidated. In this study, mice were given 0.2% cuprizone (CPZ) for 5 weeks to induce demyelination during which they received 50 ng of 17β-estradiol (EST), injected subcutaneously in the neck region, twice weekly. Data revealed that treatment with 17β-estradiol therapy (CPZ+EST) improved neurological behavioral deficits, displayed by a significant reduction in escape latencies, in comparison to untreated CPZ mice. Also, administration of 17β-estradiol caused a decrease in demyelination levels and axonal injury, as demonstrated by staining with Luxol fast blue, immunofluorescence to myelin basic protein, and transmission electron microscopy analysis. In addition, at the transcriptional level in the brain, mice treated with 17β-estradiol (CPZ+EST) showed a decrease in the levels of M1-assosicted microglia markers (CD86, iNOS and MHC-II) whereas M2-associated genes (Arg-1, CD206 and Trem-2) were increased, compared to CPZ mice. Moreover, administration of 17β-estradiol resulted in a significant reduction (∼3-fold) in transcript levels of NLRP3 inflammasome and its downstream product IL-18, compared to controls. In summary, this study demonstrated for the first time that exogenous 17β-estradiol therapy robustly leads to the reduction of M1 phenotype, stimulation of polarized M2 microglia, and repression of NLRP3 inflammasome in the corpus callosum of CPZ demyelination model of MS. The positive effects of 17β-estradiol on microglia and inflammasome seems to facilitate and accelerate the remyelination process.
Collapse
Affiliation(s)
- Roya Aryanpour
- Department of Anatomy, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Kazem Zibara
- PRASE and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.
| | - Parichehr Pasbakhsh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zeinab Namjoo
- Department of Anatomical Science, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amir Ghanbari
- Cell and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Reza Mahmoudi
- Cell and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Showan Amani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Tian H, Cheng Y, Zhang Y, Bai X, Jiang Y, Li J, Fan S, Ding H. 18β-Glycyrrhetinic acid alleviates demyelination by modulating the microglial M1/M2 phenotype in a mouse model of cuprizone-induced demyelination. Neurosci Lett 2021; 755:135871. [PMID: 33812928 DOI: 10.1016/j.neulet.2021.135871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
This research aimed to examine the nutritious supplementary function of 18β-Glycyrrhetinic acid (18β-GA) in moderating the myelin sheath destruction and behavioral impairments observed in the cuprizone model of demyelination. Mice were fed daily on food containing cuprizone (0.3 %) and given doses of 18β-GA (5 or 1 mg/kg) for a period of five weeks. The groups treated with 18β-GA exhibited improvements in exploratory behavior, locomotive activity, and weight. As assessed using luxol-fast blue and myelin basic protein (MBP) staining, which were used to detect demyelination in the brain, 18β-GA both reduced and prevented instances of cuprizone-induced demyelinating lesions; treatment with 18β-GA also caused the MBP level in the corpus callosum to increase. Furthermore, alongside these positive results following 18β-GA treatment, microglial polarisation was also observed to shift towards the beneficial M2 phenotype. The results of this research thus indicate the potential clinical application of 18β-GA for the prevention of myelin damage and behavioral dysfunction.
Collapse
Affiliation(s)
- Hui Tian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Yahong Cheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Yiyuan Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Xinying Bai
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Yuan Jiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Jinjin Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Shiqi Fan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Hong Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China.
| |
Collapse
|
28
|
Kaddatz H, Joost S, Nedelcu J, Chrzanowski U, Schmitz C, Gingele S, Gudi V, Stangel M, Zhan J, Santrau E, Greiner T, Frenz J, Müller-Hilke B, Müller M, Amor S, van der Valk P, Kipp M. Cuprizone-induced demyelination triggers a CD8-pronounced T cell recruitment. Glia 2020; 69:925-942. [PMID: 33245604 DOI: 10.1002/glia.23937] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 01/25/2023]
Abstract
The loss of myelinating oligodendrocytes is a key characteristic of many neurological diseases, including Multiple Sclerosis (MS). In progressive MS, where effective treatment options are limited, peripheral immune cells can be found at the site of demyelination and are suggested to play a functional role during disease progression. In this study, we hypothesize that metabolic oligodendrocyte injury, caused by feeding the copper chelator cuprizone, is a potent trigger for peripheral immune cell recruitment into the central nervous system (CNS). We used immunohistochemistry and flow cytometry to evaluate the composition, density, and activation status of infiltrating T lymphocytes in cuprizone-intoxicated mice and post-mortem progressive MS tissues. Our results demonstrate a predominance of CD8+ T cells along with high proliferation rates and cytotoxic granule expression, indicating an antigenic and pro-inflammatory milieu in the CNS of cuprizone-intoxicated mice. Numbers of recruited T cells and the composition of lymphocytic infiltrates in cuprizone-intoxicated mice were found to be comparable to those found in progressive MS lesions. Finally, amelioration of the cuprizone-induced pathology by treating mice with laquinimod significantly reduces the number of recruited T cells. Overall, this study provides strong evidence that toxic demyelination is a sufficient trigger for T cells to infiltrate the demyelinated CNS. Further investigation of the mode of action and functional consequence of T cell recruitment might offer promising new therapeutic approaches for progressive MS.
Collapse
Affiliation(s)
- Hannes Kaddatz
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Sarah Joost
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Julia Nedelcu
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany.,Institute of Anatomy II, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Uta Chrzanowski
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany.,Institute of Anatomy II, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Christoph Schmitz
- Institute of Anatomy II, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Stefan Gingele
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Viktoria Gudi
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Martin Stangel
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Jiangshan Zhan
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Emily Santrau
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Theresa Greiner
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Julia Frenz
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Brigitte Müller-Hilke
- Core Facility for Cell Sorting and Analysing, Rostock University Medical Center, Rostock, Germany
| | - Michael Müller
- Core Facility for Cell Sorting and Analysing, Rostock University Medical Center, Rostock, Germany
| | - Sandra Amor
- Department of Pathology, Amsterdam UMC, Amsterdam, The Netherlands.,Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
29
|
Chen D, Huang Y, Shi Z, Li J, Zhang Y, Wang K, Smith AD, Gong Y, Gao Y. Demyelinating processes in aging and stroke in the central nervous system and the prospect of treatment strategy. CNS Neurosci Ther 2020; 26:1219-1229. [PMID: 33210839 PMCID: PMC7702227 DOI: 10.1111/cns.13497] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Demyelination occurs in response to brain injury and is observed in many neurodegenerative diseases. Myelin is synthesized from oligodendrocytes in the central nervous system, and oligodendrocyte death‐induced demyelination is one of the mechanisms involved in white matter damage after stroke and neurodegeneration. Oligodendrocyte precursor cells (OPCs) exist in the brain of normal adults, and their differentiation into mature oligodendrocytes play a central role in remyelination. Although the differentiation and maturity of OPCs drive endogenous efforts for remyelination, the failure of axons to remyelinate is still the biggest obstacle to brain repair after injury or diseases. In recent years, studies have made attempts to promote remyelination after brain injury and disease, but its cellular or molecular mechanism is not yet fully understood. In this review, we discuss recent studies examining the demyelination process and potential therapeutic strategies for remyelination in aging and stroke. Based on our current understanding of the cellular and molecular mechanisms underlying remyelination, we hypothesize that myelin and oligodendrocytes are viable therapeutic targets to mitigate brain injury and to treat demyelinating‐related neurodegeneration diseases.
Collapse
Affiliation(s)
- Di Chen
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yichen Huang
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ziyu Shi
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jiaying Li
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yue Zhang
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ke Wang
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Amanda D Smith
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Ye Gong
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yanqin Gao
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Miedema A, Wijering MHC, Eggen BJL, Kooistra SM. High-Resolution Transcriptomic and Proteomic Profiling of Heterogeneity of Brain-Derived Microglia in Multiple Sclerosis. Front Mol Neurosci 2020; 13:583811. [PMID: 33192299 PMCID: PMC7654237 DOI: 10.3389/fnmol.2020.583811] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Microglia are important for central nervous system (CNS) homeostasis and first to respond to tissue damage and perturbations. Microglia are heterogeneous cells; in case of pathology, microglia adopt a range of phenotypes with altered functions. However, how these different microglia subtypes are implicated in CNS disease is largely unresolved. Multiple sclerosis (MS) is a chronic demyelinating disease of the CNS, characterized by inflammation and axonal degeneration, ultimately leading to neurological decline. One way microglia are implicated in MS is through stimulation of remyelination. They facilitate efficient remyelination by phagocytosis of myelin debris. In addition, microglia recruit oligodendrocyte precursor cells (OPCs) to demyelinated areas and stimulate remyelination. The development of high-resolution technologies to profile individual cells has greatly contributed to our understanding of microglia heterogeneity and function under normal and pathological conditions. Gene expression profiling technologies have evolved from whole tissue RNA sequencing toward single-cell or nucleus sequencing. Single microglia proteomic profiles are also increasingly generated, offering another layer of high-resolution data. Here, we will review recent studies that have employed these technologies in the context of MS and their respective advantages and disadvantages. Moreover, recent developments that allow for (single) cell profiling while retaining spatial information and tissue context will be discussed.
Collapse
Affiliation(s)
- Anneke Miedema
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marion H C Wijering
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Bart J L Eggen
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Susanne M Kooistra
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
31
|
Oligodendrocyte Physiology and Pathology Function. Cells 2020; 9:cells9092078. [PMID: 32932835 PMCID: PMC7563511 DOI: 10.3390/cells9092078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022] Open
|