1
|
Jeyaraman N, Jeyaraman M, Subramanian P, Ramasubramanian S, Balaji S, Muthu S, Rajendran RL, Gangadaran P. Advancements in bone malignancy research through next-generation sequencing focussed on osteosarcoma, chondrosarcoma, and Ewing sarcoma. Pathol Res Pract 2025; 269:155908. [PMID: 40086338 DOI: 10.1016/j.prp.2025.155908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/25/2025] [Accepted: 03/08/2025] [Indexed: 03/16/2025]
Abstract
Next-generation sequencing (NGS) technologies have revolutionized bone cancer research, enabling detailed insights into the genetic, transcriptional, and epigenetic layers of these malignancies. This overview discusses the pivotal role of NGS in enhancing the diagnosis, prognosis, and treatment of primary bone cancers such as osteosarcoma, chondrosarcoma, and Ewing sarcoma. By facilitating the identification of novel genetic mutations, gene fusions, and epigenetic alterations, NGS supports the development of personalized medicine approaches and targeted therapies, significantly impacting clinical outcomes. The utilization of various NGS platforms, including Illumina, SOLiD, and Ion Torrent, has provided comprehensive genomic profiles that inform targeted treatment strategies and enable early detection through liquid biopsies and circulating tumor DNA (ctDNA) analysis. Despite the profound clinical benefits, the integration of NGS into routine practice faces challenges such as technical limitations, complex data interpretation, and substantial infrastructure requirements. Future directions involve technological improvements, combinatorial omics approaches, and extensive validation through clinical trials to confirm the efficacy of NGS-guided interventions. These advancements promise to further enhance the precision and effectiveness of bone cancer management, offering hope for more tailored and effective therapeutic outcomes.
Collapse
Affiliation(s)
- Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu 600077, India; Department of Research Methods, Orthopaedic Research Group, Coimbatore, Tamil Nadu 641045, India
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu 600077, India; Department of Research Methods, Orthopaedic Research Group, Coimbatore, Tamil Nadu 641045, India; Clinical Research Scientist, Virginia Tech India, Chennai, Tamil Nadu 600095, India.
| | - Preethi Subramanian
- Department of Radiation Oncology, Apollo Proton Cancer Centre, Chennai, Tamil Nadu 600041, India
| | - Swaminathan Ramasubramanian
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai, Tamil Nadu 600002, India
| | - Sangeetha Balaji
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai, Tamil Nadu 600002, India
| | - Sathish Muthu
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021, India; Department of Orthopaedics, Government Medical College, Karur, Tamil Nadu 639004, India
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea.
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea.
| |
Collapse
|
2
|
Zhra M, Akhund SA, Mohammad KS. Advancements in Osteosarcoma Therapy: Overcoming Chemotherapy Resistance and Exploring Novel Pharmacological Strategies. Pharmaceuticals (Basel) 2025; 18:520. [PMID: 40283955 PMCID: PMC12030420 DOI: 10.3390/ph18040520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Osteosarcoma is recognized as the most prevalent primary bone malignancy, primarily affecting children and adolescents. It is characterized by its aggressive behavior and high metastatic potential, which often leads to poor patient outcomes. Despite advancements in surgical techniques and chemotherapy regimens, the prognosis for patients with osteosarcoma remains unsatisfactory, with survival rates plateauing over the past few decades. A significant barrier to effective treatment is the development of chemotherapy resistance, which complicates the management of the disease and contributes to high rates of recurrence. This review article aims to provide a comprehensive overview of recent advancements in osteosarcoma therapy, particularly in overcoming chemotherapy resistance. We begin by discussing the current standard treatment modalities, including surgical resection and conventional chemotherapy agents such as methotrexate, doxorubicin, and cisplatin. While these approaches have been foundational in managing osteosarcoma, they are often limited by adverse effects and variability in efficacy among patients. To address these challenges, we explore novel pharmacological strategies that aim to enhance treatment outcomes. This includes targeted therapies focusing on specific molecular alterations in osteosarcoma cells and immunotherapeutic approaches designed to harness the body's immune system against tumors. Additionally, we review innovative drug delivery systems that aim to improve the bioavailability and efficacy of existing treatments while minimizing toxicity. The review also assesses the mechanisms underlying chemotherapy resistance, such as drug efflux mechanisms, altered metabolism, and enhanced DNA repair pathways. By synthesizing current research findings, we aim to highlight the potential of new therapeutic agents and strategies for overcoming these resistance mechanisms. Ultimately, this article seeks to inform future research directions and clinical practices, underscoring the need for continued innovation in treating osteosarcoma to improve patient outcomes and survival rates.
Collapse
Affiliation(s)
| | | | - Khalid S. Mohammad
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.Z.); (S.A.A.)
| |
Collapse
|
3
|
Méndez-Vidal C, Bravo-Gil N, Pérez-Florido J, Marcos-Luque I, Fernández RM, Fernández-Rueda JL, González-Del Pozo M, Martín-Sánchez M, Fernández-Suárez E, Mena M, Carmona R, Dopazo J, Borrego S, Antiñolo G. A genomic strategy for precision medicine in rare diseases: integrating customized algorithms into clinical practice. J Transl Med 2025; 23:86. [PMID: 39833864 PMCID: PMC11748347 DOI: 10.1186/s12967-025-06069-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Despite the use of Next-Generation Sequencing (NGS) as the gold standard for the diagnosis of rare diseases, its clinical implementation has been challenging, limiting the cost-effectiveness of NGS and the understanding, control and safety essential for decision-making in clinical applications. Here, we describe a personalized NGS-based strategy integrating precision medicine into a public healthcare system and its implementation in the routine diagnosis process during a five-year pilot program. METHODS Our approach involved customized probe designs, the generation of virtual panels and the development of a personalized medicine module (PMM) for variant prioritization. This strategy was applied to 6500 individuals including 6267 index patients and 233 NGS-based carrier screenings. RESULTS Causative variants were identified in 2061 index patients (average 32.9%, ranging from 12 to 62% by condition). Also, 131 autosomal-recessive cases could be partially genetically diagnosed. These results led to over 5000 additional studies including carrier, prenatal and preimplantational tests or pharmacological and gene therapy treatments. CONCLUSION This strategy has shown promising improvements in the diagnostic rate, facilitating timely diagnosis and gradually expanding our services portfolio for rare diseases. The steps taken towards the integration of clinical and genomic data are opening new possibilities for conducting both retrospective and prospective healthcare studies. Overall, this study represents a major milestone in the ongoing efforts to improve our understanding and clinical management of rare diseases, a crucial area of medical research and care.
Collapse
Affiliation(s)
- Cristina Méndez-Vidal
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocio, CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Nereida Bravo-Gil
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocio, CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Javier Pérez-Florido
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocio, CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
- Platform of Computational Medicine. Fundación Progreso y Salud (FPS). CDCA, University Hospital Virgen del Rocio, Seville, Spain
| | - Irene Marcos-Luque
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocio, CSIC/University of Seville, Seville, Spain
| | - Raquel M Fernández
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocio, CSIC/University of Seville, Seville, Spain
| | - José Luis Fernández-Rueda
- Platform of Computational Medicine. Fundación Progreso y Salud (FPS). CDCA, University Hospital Virgen del Rocio, Seville, Spain
| | - María González-Del Pozo
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocio, CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Marta Martín-Sánchez
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocio, CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Elena Fernández-Suárez
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocio, CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Marcela Mena
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocio, CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Rosario Carmona
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocio, CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
- Platform of Computational Medicine. Fundación Progreso y Salud (FPS). CDCA, University Hospital Virgen del Rocio, Seville, Spain
| | - Joaquín Dopazo
- Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocio, CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
- Platform of Computational Medicine. Fundación Progreso y Salud (FPS). CDCA, University Hospital Virgen del Rocio, Seville, Spain
| | - Salud Borrego
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain.
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocio, CSIC/University of Seville, Seville, Spain.
| | - Guillermo Antiñolo
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain.
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, IBiS/University Hospital Virgen del Rocio, CSIC/University of Seville, Seville, Spain.
| |
Collapse
|
4
|
Nham TT, Guiho R, Brion R, Amiaud J, Le Royer BB, Gomez-Brouchet A, Rédini F, Bertin H. Zoledronic acid enhances tumor growth and metastatic spread in a mouse model of jaw osteosarcoma. Oral Dis 2024; 30:4209-4219. [PMID: 38376129 DOI: 10.1111/odi.14897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/08/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024]
Abstract
OBJECTIVES Investigation of the therapeutic effect of zoledronic acid (ZA) in a preclinical model of jaw osteosarcoma (JO). MATERIALS AND METHODS The effect of 100 μg/kg ZA administered twice a week was assessed in a xenogenic mouse model of JO. The clinical (tumor growth, development of lung metastasis), radiological (bone microarchitecture by micro-CT analysis), and molecular and immunohistochemical (TRAP, RANK/RANKL, VEGF, and CD146) parameters were investigated. RESULTS Animals receiving ZA exhibited an increased tumor volume compared with nontreated animals (71.3 ± 14.3 mm3 vs. 51.9 ± 19.9 mm3 at D14, respectively; p = 0.06) as well as increased numbers of lung metastases (mean 4.88 ± 4.45 vs. 0.50 ± 1.07 metastases, respectively; p = 0.02). ZA protected mandibular bone against tumor osteolysis (mean bone volume of 12.81 ± 0.53 mm3 in the ZA group vs. 11.55 ± 1.18 mm3 in the control group; p = 0.01). ZA induced a nonsignificant decrease in mRNA expression of the osteoclastic marker TRAP and an increase in RANK/RANKL bone remodeling markers. CONCLUSION The use of bisphosphonates in the therapeutic strategy for JO should be further explored, as should the role of bone resorption in the pathophysiology of the disease.
Collapse
Affiliation(s)
- Than-Thuy Nham
- Nantes Université, CHU Nantes, Service de Chirurgie Maxillo-Faciale et Stomatologie, Nantes, France
- Nantes Université, Univ Angers, CHU Nantes, INSERM, CNRS, CRCI2NA, Nantes, France
| | - Romain Guiho
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Nantes, France
| | - Régis Brion
- Nantes Université, Univ Angers, CHU Nantes, INSERM, CNRS, CRCI2NA, Nantes, France
| | - Jérôme Amiaud
- Nantes Université, Univ Angers, CHU Nantes, INSERM, CNRS, CRCI2NA, Nantes, France
| | | | - Anne Gomez-Brouchet
- Cancer Biobank of Toulouse, IUCT Oncopole, Toulouse University Hospital, Toulouse Cedex 9, France
- Department of Pathology, IUCT Oncopole, Toulouse University Hospital, Toulouse Cedex 9, France
| | - Françoise Rédini
- Nantes Université, Univ Angers, CHU Nantes, INSERM, CNRS, CRCI2NA, Nantes, France
| | - Hélios Bertin
- Nantes Université, CHU Nantes, Service de Chirurgie Maxillo-Faciale et Stomatologie, Nantes, France
- Nantes Université, Univ Angers, CHU Nantes, INSERM, CNRS, CRCI2NA, Nantes, France
| |
Collapse
|
5
|
Colaco JC, Suresh B, Kaushal K, Singh V, Ramakrishna S. The Role of Deubiquitinating Enzymes in Primary Bone Cancer. Mol Biotechnol 2024:10.1007/s12033-024-01254-y. [PMID: 39177860 DOI: 10.1007/s12033-024-01254-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/01/2024] [Indexed: 08/24/2024]
Abstract
Bone is a living, intricate, and dynamic tissue providing locomotion and protection of the body. It also performs hematopoiesis and mineral homeostasis. Osteosarcoma (OS), Ewing sarcoma (ES), and chondrosarcoma (CS) are primary bone cancers. OS and ES mostly develop in younger individuals, and CS generally develops in adults. Ubiquitination regulates numerous cellular processes. The deubiquitinating enzymes (DUBs) detach the ubiquitin molecules from the ubiquitin labeled substrate, altering ubiquitinated protein functions and regulating protein stability via various signaling pathways. Protein homeostasis and bone remodeling are both crucially influenced by the UPS. Recently, there have been several reports on DUBs involved in bone homeostasis and various bone disorders through the regulation of osteoblasts and osteoclasts via NF-κB, Wnt/β-catenin, TRAF6, TGFβ, ERK1/2, and PI3K/Akt pathways. However, DUBs regulating function in bone homeostasis is still in its infancy. Here, we summarized several recent identifications on DUBs, with a focus on their role in bone cancer progression. Therefore, the study attempts to summarize association with the expression level of DUBs as key factors driving bone cancers and also provide new insights on DUBs as key pharmacologic targets for bone cancer therapeutics.
Collapse
Affiliation(s)
- Jencia Carminha Colaco
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Bharathi Suresh
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Kamini Kaushal
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, 382715, India.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea.
- College of Medicine, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
6
|
Yan Y, Li S, Su L, Tang X, Chen X, Gu X, Yang G, Chi H, Huang S. Mitochondrial inhibitors: a new horizon in breast cancer therapy. Front Pharmacol 2024; 15:1421905. [PMID: 39027328 PMCID: PMC11254633 DOI: 10.3389/fphar.2024.1421905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Breast cancer, due to resistance to standard therapies such as endocrine therapy, anti-HER2 therapy and chemotherapy, continues to pose a major health challenge. A growing body of research emphasizes the heterogeneity and plasticity of metabolism in breast cancer. Because differences in subtypes exhibit a bias toward metabolic pathways, targeting mitochondrial inhibitors shows great potential as stand-alone or adjuvant cancer therapies. Multiple therapeutic candidates are currently in various stages of preclinical studies and clinical openings. However, specific inhibitors have been shown to face multiple challenges (e.g., single metabolic therapies, mitochondrial structure and enzymes, etc.), and combining with standard therapies or targeting multiple metabolic pathways may be necessary. In this paper, we review the critical role of mitochondrial metabolic functions, including oxidative phosphorylation (OXPHOS), the tricarboxylic acid cycle, and fatty acid and amino acid metabolism, in metabolic reprogramming of breast cancer cells. In addition, we outline the impact of mitochondrial dysfunction on metabolic pathways in different subtypes of breast cancer and mitochondrial inhibitors targeting different metabolic pathways, aiming to provide additional ideas for the development of mitochondrial inhibitors and to improve the efficacy of existing therapies for breast cancer.
Collapse
Affiliation(s)
- Yalan Yan
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Sijie Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lanqian Su
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Xinrui Tang
- Paediatrics Department, Southwest Medical University, Luzhou, China
| | - Xiaoyan Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiang Gu
- Biology Department, Southern Methodist University, Dallas, TX, United States
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Shangke Huang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
7
|
Gartland A, Pasello M, Lézot F, Lamoureux F. Editorial: New therapies in the treatment of sarcomas. Front Endocrinol (Lausanne) 2023; 14:1137736. [PMID: 36742406 PMCID: PMC9890148 DOI: 10.3389/fendo.2023.1137736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Affiliation(s)
- Alison Gartland
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, United Kingdom
| | - Michela Pasello
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Frédéric Lézot
- Laboratory of childhood genetic diseases, Sorbonne University, INSERM UMR933, Hospital Armand Trousseau AP-HP, Paris, France
| | - Francois Lamoureux
- INSERM 1307 CNRS 6075 CRCI2NA - Team 9, CHILD - Faculty of medicine, Nantes University, Nantes, France
- *Correspondence: Francois Lamoureux,
| |
Collapse
|
8
|
Martinelli M, Mancarella C, Scapoli L, Palmieri A, De Sanctis P, Ferrari C, Pasello M, Zucchini C, Scotlandi K. Polymorphic variants of IGF2BP3 and SENCR have an impact on predisposition and/or progression of Ewing sarcoma. Front Oncol 2022; 12:968884. [PMID: 36338681 PMCID: PMC9634078 DOI: 10.3389/fonc.2022.968884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/26/2022] [Indexed: 11/15/2022] Open
Abstract
Ewing sarcoma (EWS), the second most common malignant bone tumor in children and adolescents, occurs abruptly without clear evidence of tumor history or progression. Previous association studies have identified some inherited variants associated with the risk of developing EWS but a common picture of the germline susceptibility to this tumor remains largely unclear. Here, we examine the association between thirty single nucleotide polymorphisms (SNPs) of the IGF2BP3, a gene that codes for an oncofetal RNA-binding protein demonstrated to be important for EWS patient’s risk stratification, and five SNPs of SENCR, a long non-coding RNA shown to regulate IGF2BP3. An association between polymorphisms and EWS susceptibility was observed for three IGF2BP3 SNPs - rs112316332, rs13242065, rs12700421 - and for four SENCR SNPs - rs10893909, rs11221437, rs12420823, rs4526784 -. In addition, IGF2BP3 rs34033684 and SENCR rs10893909 variants increased the risk for female respect to male subgroup when carried together, while IGF2BP3 rs13242065 or rs76983703 variants reduced the probability of a disease later onset (> 14 years). Moreover, the absence of IGF2BP3 rs10488282 variant and the presence of rs199653 or rs35875486 variant were significantly associated with a worse survival in EWS patients with localized disease at diagnosis. Overall, our data provide the first evidence linking genetic variants of IGF2BP3 and its modulator SENCR to the risk of EWS development and to disease progression, thus supporting the concept that heritable factors can influence susceptibility to EWS and may help to predict patient prognosis.
Collapse
Affiliation(s)
- Marcella Martinelli
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- *Correspondence: Marcella Martinelli, ; Katia Scotlandi,
| | - Caterina Mancarella
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Luca Scapoli
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Annalisa Palmieri
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Paola De Sanctis
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Cristina Ferrari
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Michela Pasello
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Cinzia Zucchini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- *Correspondence: Marcella Martinelli, ; Katia Scotlandi,
| |
Collapse
|
9
|
Molecular Markers of Pediatric Solid Tumors—Diagnosis, Optimizing Treatments, and Determining Susceptibility: Current State and Future Directions. Cells 2022; 11:cells11071238. [PMID: 35406801 PMCID: PMC8997439 DOI: 10.3390/cells11071238] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Advances in molecular technologies, from genomics and transcriptomics to epigenetics, are providing unprecedented insight into the molecular landscape of pediatric tumors. Multi-omics approaches provide an opportunity to identify a wide spectrum of molecular alterations that account for the initiation of the neoplastic process in children, response to treatment and disease progression. The detection of molecular markers is crucial to assist clinicians in accurate tumor diagnosis, risk stratification, disease subtyping, prediction of treatment response, and surveillance, allowing also for personalized cancer management. This review summarizes the most recent developments in genomics research and their relevance to the field of pediatric oncology with the aim of generating an overview of the most important, from the clinical perspective, molecular markers for pediatric solid tumors. We present an overview of the molecular markers selected based on therapeutic protocols, guidelines from international committees and scientific societies, and published data.
Collapse
|
10
|
Wang C, Liang C. The insertion and dysregulation of transposable elements in osteosarcoma and their association with patient event-free survival. Sci Rep 2022; 12:377. [PMID: 35013466 PMCID: PMC8748539 DOI: 10.1038/s41598-021-04208-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022] Open
Abstract
The dysregulation of transposable elements (TEs) has been explored in a variety of cancers. However, TE activities in osteosarcoma (OS) have not been extensively studied yet. By integrative analysis of RNA-seq, whole-genome sequencing (WGS), and methylation data, we showed aberrant TE activities associated with dysregulations of TEs in OS tumors. Specifically, expression levels of LINE-1 and Alu of different evolutionary ages, as well as subfamilies of SVA and HERV-K, were significantly up-regulated in OS tumors, accompanied by enhanced DNA repair responses. We verified the characteristics of LINE-1 mediated TE insertions, including target site duplication (TSD) length (centered around 15 bp) and preferential insertions into intergenic and AT-rich regions as well as intronic regions of longer genes. By filtering polymorphic TE insertions reported in 1000 genome project (1KGP), besides 148 tumor-specific somatic TE insertions, we found most OS patient-specific TE insertions (3175 out of 3326) are germline insertions, which are associated with genes involved in neuronal processes or with transcription factors important for cancer development. In addition to 68 TE-affected cancer genes, we found recurrent germline TE insertions in 72 non-cancer genes with high frequencies among patients. We also found that +/− 500 bps flanking regions of transcription start sites (TSS) of LINE-1 (young) and Alu showed lower methylation levels in OS tumor samples than controls. Interestingly, by incorporating patient clinical data and focusing on TE activities in OS tumors, our data analysis suggested that higher TE insertions in OS tumors are associated with a longer event-free survival time.
Collapse
Affiliation(s)
- Chao Wang
- Department of Biology, Miami University, Oxford, Ohio, 45056, USA.
| | - Chun Liang
- Department of Biology, Miami University, Oxford, Ohio, 45056, USA.
| |
Collapse
|
11
|
Serra M, Hattinger CM, Pasello M, Casotti C, Fantoni L, Riganti C, Manara MC. Impact of ABC Transporters in Osteosarcoma and Ewing's Sarcoma: Which Are Involved in Chemoresistance and Which Are Not? Cells 2021; 10:cells10092461. [PMID: 34572110 PMCID: PMC8467338 DOI: 10.3390/cells10092461] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022] Open
Abstract
The ATP-binding cassette (ABC) transporter superfamily consists of several proteins with a wide repertoire of functions. Under physiological conditions, ABC transporters are involved in cellular trafficking of hormones, lipids, ions, xenobiotics, and several other molecules, including a broad spectrum of chemical substrates and chemotherapeutic drugs. In cancers, ABC transporters have been intensely studied over the past decades, mostly for their involvement in the multidrug resistance (MDR) phenotype. This review provides an overview of ABC transporters, both related and unrelated to MDR, which have been studied in osteosarcoma and Ewing's sarcoma. Since different backbone drugs used in first-line or rescue chemotherapy for these two rare bone sarcomas are substrates of ABC transporters, this review particularly focused on studies that have provided findings that have been either translated to clinical practice or have indicated new candidate therapeutic targets; however, findings obtained from ABC transporters that were not directly involved in drug resistance were also discussed, in order to provide a more complete overview of the biological impacts of these molecules in osteosarcoma and Ewing's sarcoma. Finally, therapeutic strategies and agents aimed to circumvent ABC-mediated chemoresistance were discussed to provide future perspectives about possible treatment improvements of these neoplasms.
Collapse
Affiliation(s)
- Massimo Serra
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (C.M.H.); (M.P.); (C.C.); (L.F.); (M.C.M.)
- Correspondence: ; Tel.: +39-051-6366762
| | - Claudia Maria Hattinger
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (C.M.H.); (M.P.); (C.C.); (L.F.); (M.C.M.)
| | - Michela Pasello
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (C.M.H.); (M.P.); (C.C.); (L.F.); (M.C.M.)
| | - Chiara Casotti
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (C.M.H.); (M.P.); (C.C.); (L.F.); (M.C.M.)
| | - Leonardo Fantoni
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (C.M.H.); (M.P.); (C.C.); (L.F.); (M.C.M.)
| | - Chiara Riganti
- Department of Oncology, University of Torino, Via Santena 5/bis, 10126 Torino, Italy;
| | - Maria Cristina Manara
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (C.M.H.); (M.P.); (C.C.); (L.F.); (M.C.M.)
| |
Collapse
|
12
|
García-Domínguez DJ, Hajji N, Sánchez-Molina S, Figuerola-Bou E, de Pablos RM, Espinosa-Oliva AM, Andrés-León E, Terrón-Camero LC, Flores-Campos R, Pascual-Pasto G, Robles MJ, Machado I, Llombart-Bosch A, Magagnoli G, Scotlandi K, Carcaboso ÁM, Mora J, de Álava E, Hontecillas-Prieto L. Selective inhibition of HDAC6 regulates expression of the oncogenic driver EWSR1-FLI1 through the EWSR1 promoter in Ewing sarcoma. Oncogene 2021; 40:5843-5853. [PMID: 34345016 PMCID: PMC8484017 DOI: 10.1038/s41388-021-01974-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
Ewing sarcoma (EWS) is an aggressive bone and soft tissue tumor of children and young adults in which the principal driver is a fusion gene, EWSR1-FLI1. Although the essential role of EWSR1-FLI1 protein in the regulation of oncogenesis, survival, and tumor progression processes has been described in-depth, little is known about the regulation of chimeric fusion-gene expression. Here, we demonstrate that the active nuclear HDAC6 in EWS modulates the acetylation status of specificity protein 1 (SP1), consequently regulating the SP1/P300 activator complex binding to EWSR1 and EWSR1-FLI1 promoters. Selective inhibition of HDAC6 impairs binding of the activator complex SP1/P300, thereby inducing EWSR1-FLI1 downregulation and significantly reducing its oncogenic functions. In addition, sensitivity of EWS cell lines to HDAC6 inhibition is higher than other tumor or non-tumor cell lines. High expression of HDAC6 in primary EWS tumor samples from patients correlates with a poor prognosis in two independent series accounting 279 patients. Notably, a combination treatment of a selective HDAC6 and doxorubicin (a DNA damage agent used as a standard therapy of EWS patients) dramatically inhibits tumor growth in two EWS murine xenograft models. These results could lead to suitable and promising therapeutic alternatives for patients with EWS.
Collapse
Affiliation(s)
- Daniel J García-Domínguez
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville /CIBERONC, Seville, Spain.
| | - Nabil Hajji
- Division of Brain Sciences, Imperial College London, London, United Kingdom.
| | - Sara Sánchez-Molina
- Developmental Tumour Biology Laboratory, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - Rocío M de Pablos
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville /CIBERONC, Seville, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Ana M Espinosa-Oliva
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville /CIBERONC, Seville, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Eduardo Andrés-León
- Bioinformatics Unit, Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | - Laura Carmen Terrón-Camero
- Bioinformatics Unit, Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | - Rocío Flores-Campos
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville /CIBERONC, Seville, Spain
| | - Guillem Pascual-Pasto
- Institut de Recerca Sant Joan de Deu, Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona, Spain
| | - María José Robles
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville /CIBERONC, Seville, Spain
- Pathology Unit, Hospital Universitario Virgen del Rocío/CSIC/University of Seville/CIBERONC, Seville, Spain
| | - Isidro Machado
- Pathology Department, Instituto Valenciano de Oncología, Valencia, Spain
| | | | - Giovanna Magagnoli
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Katia Scotlandi
- Experimental Oncology Laboratory, IRRCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Ángel M Carcaboso
- Institut de Recerca Sant Joan de Deu, Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Jaume Mora
- Developmental Tumour Biology Laboratory, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Enrique de Álava
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville /CIBERONC, Seville, Spain.
- Pathology Unit, Hospital Universitario Virgen del Rocío/CSIC/University of Seville/CIBERONC, Seville, Spain.
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, Seville, Spain.
| | - Lourdes Hontecillas-Prieto
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville /CIBERONC, Seville, Spain.
| |
Collapse
|
13
|
Kroonen JS, Kruisselbrink AB, Briaire-de Bruijn IH, Olaofe OO, Bovée JVMG, Vertegaal ACO. SUMOylation Is Associated with Aggressive Behavior in Chondrosarcoma of Bone. Cancers (Basel) 2021; 13:cancers13153823. [PMID: 34359724 PMCID: PMC8345166 DOI: 10.3390/cancers13153823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/24/2021] [Indexed: 01/31/2023] Open
Abstract
Simple Summary SUMO is a ubiquitin-like post-translational modification important for many cellular processes and is suggested to play a role in cancer cell cycle progression. The aim of our study is to understand the role of SUMOylation in tumor progression and aggressiveness. Chondrosarcoma of bone was employed as a model to investigate if SUMOylation contributes to its aggressiveness. We confirmed that SUMO expression levels correlate with aggressiveness of chondrosarcoma and disease outcome. Inhibition of SUMOylation showed promising effects on reduction of chondrosarcoma growth in vitro. Our study implies that SUMO expression could be used as a potential biomarker for disease outcome in chondrosarcoma. Abstract Multiple components of the SUMOylation machinery are deregulated in various cancers and could represent potential therapeutic targets. Understanding the role of SUMOylation in tumor progression and aggressiveness would increase our insight in the role of SUMO in cancer and clarify its potential as a therapeutic target. Here we investigate SUMO in relation to conventional chondrosarcomas, which are malignant cartilage forming tumors of the bone. Aggressiveness of chondrosarcoma increases with increasing histological grade, and a multistep progression model is assumed. High-grade chondrosarcomas have acquired an increased number of genetic alterations. Using immunohistochemistry on tissue microarrays (TMA) containing 137 chondrosarcomas, we showed that higher expression of SUMO1 and SUMO2/3 correlates with increased histological grade. In addition, high SUMO2/3 expression was associated with decreased overall survival chances (p = 0. 0312) in chondrosarcoma patients as determined by log-rank analysis and Cox regression. Various chondrosarcoma cell lines (n = 7), especially those derived from dedifferentiated chondrosarcoma, were sensitive to SUMO inhibition in vitro. Mechanistically, we found that SUMO E1 inhibition interferes with cell division and as a consequence DNA bridges are frequently formed between daughter cells. In conclusion, SUMO expression could potentially serve as a prognostic biomarker.
Collapse
Affiliation(s)
- Jessie S. Kroonen
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Alwine B. Kruisselbrink
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.B.K.); (I.H.B.-d.B.); (O.O.O.)
| | - Inge H. Briaire-de Bruijn
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.B.K.); (I.H.B.-d.B.); (O.O.O.)
| | - Olaejirinde O. Olaofe
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.B.K.); (I.H.B.-d.B.); (O.O.O.)
| | - Judith V. M. G. Bovée
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.B.K.); (I.H.B.-d.B.); (O.O.O.)
- Correspondence: (J.V.M.G.B.); (A.C.O.V.)
| | - Alfred C. O. Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
- Correspondence: (J.V.M.G.B.); (A.C.O.V.)
| |
Collapse
|
14
|
LINC00665 Facilitates the Malignant Processes of Osteosarcoma by Increasing the RAP1B Expression via Sponging miR-708 and miR-142-5p. ACTA ACUST UNITED AC 2021; 2021:5525711. [PMID: 34306997 PMCID: PMC8282375 DOI: 10.1155/2021/5525711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 12/24/2022]
Abstract
Osteosarcoma (OS) is a kind of fatal primary bone tumors in adolescents and young adults. Long noncoding RNAs (lncRNAs) are a group of noncoding RNAs which occupy a part of the latest hot topics. We aimed to investigate the roles of lncRNA LINC00665 in OS in this study. In this study, we found that LINC00665 was highly expressed in OS tissues and cell lines, and its high expression was associated with malignant feature and poor prognosis of OS. In OS cells, LINC00665 could facilitate the proliferation, migration, and invasion to play an oncogenic role. Mechanistically, LINC00665 served as a sponge for miR-708 and miR-142-5p and positively mediated the expression of their target RAP1B. Finally, we confirmed that LINC00665 exercised its biological functions by mediating RAP1B. In conclusion, LINC00665 is overexpressed in OS and facilitates the malignant processes of OS cells by increasing the RAP1B expression via sponging miR-708 and miR-142-5p.
Collapse
|
15
|
Drug Resistance in Osteosarcoma: Emerging Biomarkers, Therapeutic Targets and Treatment Strategies. Cancers (Basel) 2021; 13:cancers13122878. [PMID: 34207685 PMCID: PMC8228414 DOI: 10.3390/cancers13122878] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/05/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Despite the adoption of aggressive, multimodal treatment schedules, the cure rate of high-grade osteosarcoma (HGOS) has not significantly improved in the last 30 years. The most relevant problem preventing improvement in HGOS prognosis is drug resistance. Therefore, validated novel biomarkers that help to identify those patients who could benefit from innovative treatment options and the development of drugs enabling personalized therapeutic protocols are necessary. The aim of this review was to give an overview on the most relevant emerging drug resistance-related biomarkers, therapeutic targets and new agents or novel candidate treatment strategies, which have been highlighted and suggested for HGOS to improve the success rate of clinical trials. Abstract High-grade osteosarcoma (HGOS), the most common primary malignant tumor of bone, is a highly aggressive neoplasm with a cure rate of approximately 40–50% in unselected patient populations. The major clinical problems opposing the cure of HGOS are the presence of inherent or acquired drug resistance and the development of metastasis. Since the drugs used in first-line chemotherapy protocols for HGOS and clinical outcome have not significantly evolved in the past three decades, there is an urgent need for new therapeutic biomarkers and targeted treatment strategies, which may increase the currently available spectrum of cure modalities. Unresponsive or chemoresistant (refractory) HGOS patients usually encounter a dismal prognosis, mostly because therapeutic options and drugs effective for rescue treatments are scarce. Tailored treatments for different subgroups of HGOS patients stratified according to drug resistance-related biomarkers thus appear as an option that may improve this situation. This review explores drug resistance-related biomarkers, therapeutic targets and new candidate treatment strategies, which have emerged in HGOS. In addition to consolidated biomarkers, specific attention has been paid to the role of non-coding RNAs, tumor-derived extracellular vesicles, and cancer stem cells as contributors to drug resistance in HGOS, in order to highlight new candidate markers and therapeutic targets. The possible use of new non-conventional drugs to overcome the main mechanisms of drug resistance in HGOS are finally discussed.
Collapse
|
16
|
Sarno F, Benincasa G, List M, Barabasi AL, Baumbach J, Ciardiello F, Filetti S, Glass K, Loscalzo J, Marchese C, Maron BA, Paci P, Parini P, Petrillo E, Silverman EK, Verrienti A, Altucci L, Napoli C. Clinical epigenetics settings for cancer and cardiovascular diseases: real-life applications of network medicine at the bedside. Clin Epigenetics 2021; 13:66. [PMID: 33785068 PMCID: PMC8010949 DOI: 10.1186/s13148-021-01047-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
Despite impressive efforts invested in epigenetic research in the last 50 years, clinical applications are still lacking. Only a few university hospital centers currently use epigenetic biomarkers at the bedside. Moreover, the overall concept of precision medicine is not widely recognized in routine medical practice and the reductionist approach remains predominant in treating patients affected by major diseases such as cancer and cardiovascular diseases. By its' very nature, epigenetics is integrative of genetic networks. The study of epigenetic biomarkers has led to the identification of numerous drugs with an increasingly significant role in clinical therapy especially of cancer patients. Here, we provide an overview of clinical epigenetics within the context of network analysis. We illustrate achievements to date and discuss how we can move from traditional medicine into the era of network medicine (NM), where pathway-informed molecular diagnostics will allow treatment selection following the paradigm of precision medicine.
Collapse
Affiliation(s)
- Federica Sarno
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Giuditta Benincasa
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Markus List
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Albert-Lazlo Barabasi
- Network Science Institute and Department of Physics, Northeastern University, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Network and Data Science, Central European University, Budapest, Hungary
| | - Jan Baumbach
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
- Chair of Computational Systems Biology, University of Hamburg, Notkestrasse 9, Hamburg, Germany
| | - Fortunato Ciardiello
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | | | - Kimberly Glass
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Bradley A Maron
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paola Paci
- Department of Computer, Control, and Management Engineering, Sapienza University, Rome, Italy
| | - Paolo Parini
- Department of Laboratory Medicine and Department of Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Enrico Petrillo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of General Internal Medicine and Primary Care, Brigham and Women's Hospital, Boston, MA, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Antonella Verrienti
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy.
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
- Clinical Department of Internal Medicine and Specialistic Units, AOU, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
17
|
Patient Derived Xenografts for Genome-Driven Therapy of Osteosarcoma. Cells 2021; 10:cells10020416. [PMID: 33671173 PMCID: PMC7922432 DOI: 10.3390/cells10020416] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma (OS) is a rare malignant primary tumor of mesenchymal origin affecting bone. It is characterized by a complex genotype, mainly due to the high frequency of chromothripsis, which leads to multiple somatic copy number alterations and structural rearrangements. Any effort to design genome-driven therapies must therefore consider such high inter- and intra-tumor heterogeneity. Therefore, many laboratories and international networks are developing and sharing OS patient-derived xenografts (OS PDX) to broaden the availability of models that reproduce OS complex clinical heterogeneity. OS PDXs, and new cell lines derived from PDXs, faithfully preserve tumor heterogeneity, genetic, and epigenetic features and are thus valuable tools for predicting drug responses. Here, we review recent achievements concerning OS PDXs, summarizing the methods used to obtain ectopic and orthotopic xenografts and to fully characterize these models. The availability of OS PDXs across the many international PDX platforms and their possible use in PDX clinical trials are also described. We recommend the coupling of next-generation sequencing (NGS) data analysis with functional studies in OS PDXs, as well as the setup of OS PDX clinical trials and co-clinical trials, to enhance the predictive power of experimental evidence and to accelerate the clinical translation of effective genome-guided therapies for this aggressive disease.
Collapse
|
18
|
de Nigris F, Ruosi C, Napoli C. Clinical efficiency of epigenetic drugs therapy in bone malignancies. Bone 2021; 143:115605. [PMID: 32829036 DOI: 10.1016/j.bone.2020.115605] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/07/2020] [Accepted: 08/15/2020] [Indexed: 12/17/2022]
Abstract
A great interest in the scientific community is focused on the improvement of the cure rate in patients with bone malignancies that have a poor response to the first line of therapies. Novel treatments currently include epigenetic compounds or molecules targeting epigenetic-sensitive pathways. Here, we offer an exhaustive review of such agents in these clinical settings. Carefully designed preclinical studies selected several epigenetic drugs, including inhibitors of DNA methyltransferase (DNMTIs), such as Decitabine, histone deacetylase classes I-II (HDACIs), as Entinostat, Belinostat, lysine-specific histone demethylase (LSD1), as INCB059872 or FT-2102 (Olutasidenib), inhibitors of isocitrate dehydrogenases, and enhancer of zeste homolog 2 (EZH2), such as EPZ6438 (Tazemetostat) To enhance the therapeutic effect, the prevalent approach in phase II trial is the association of these epigenetic drug inhibitors, with targeted therapy or immune checkpoint blockade. Optimization of drug dosing and regimens of Phase II trials may improve the clinical efficiency of such novel therapeutic approaches against these devastating cancers.
Collapse
Affiliation(s)
- Filomena de Nigris
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Carlo Ruosi
- Department of Public Health, Federico II University, 80132 Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy; IRCCS SDN, 80134 Naples, IT, Italy
| |
Collapse
|
19
|
Yang J, Tang J, Li J, Cen Y, Chen J, Dai G. Effect of activation of the Akt/mTOR signaling pathway by EEF1A2 on the biological behavior of osteosarcoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:158. [PMID: 33569460 PMCID: PMC7867884 DOI: 10.21037/atm-20-7974] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background Osteosarcoma (OS) is a common bone cancer in children and adolescents which causes a large number of cancer-related deaths. Eukaryotic Translation Elongation Factor 1 Alpha 2 (EEF1A2) has been revealed to have carcinogenic properties and promote tumor progression in many cancers. We want to investigate the biological function and mechanism of EEF1A2 in OS. Methods The expression of EEF1A2 in OS was investigated using the Gene Expression Omnibus (GEO) database and quantitative reverse transcription polymerase chain reaction (qRT-PCR). The biological function of EEF1A2 in OS was studied using cell counting kit-8 (CCK8) assay, 5-ethynyl-2’-deoxyuridine (EdU) assay, Transwell assay, and OS of xenograft nude mice model. Real-time fluorescence quantitative PCR was used to detect the expression level of EEF1A2 mRNA in OS tissues and cell lines. Western blot was used to detect the phosphorylation level of Akt and mTOR Results There was high expression of EEF1A2 in OS, which was closely related to the Enneking stage and tumor size of OS. In vitro, EEF1A2 promoted the proliferation, migration, and invasion of OS cells; in vivo, EEF1A2 promoted the growth of OS tumors. The mechanism study showed that EEF1A2 can promote protein kinase B (Akt) and mammalian target of rapamycin (mTOR) phosphorylation, thereby activating the Akt/mTOR signaling pathway in OS. Conclusion There is high expression of EEF1A2 in OS, which can promote the proliferation, migration, and invasion of OS cells in vitro and the growth of OS tumors in vivo via activation of the Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Jianing Yang
- Department of Burns and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China.,Department of Dermatology, Sichuan Provincial People's Hospital, Chengdu, China
| | - Jun Tang
- Department of Burns and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Li
- Department of Dermatology, Sichuan Provincial People's Hospital, Chengdu, China
| | - Ying Cen
- Department of Burns and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Junjie Chen
- Department of Burns and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Gengwu Dai
- Department of Dermatology, Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
20
|
Prudowsky ZD, Yustein JT. Recent Insights into Therapy Resistance in Osteosarcoma. Cancers (Basel) 2020; 13:E83. [PMID: 33396725 PMCID: PMC7795058 DOI: 10.3390/cancers13010083] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma, the most common bone malignancy of childhood, has been a challenge to treat and cure. Standard chemotherapy regimens work well for many patients, but there remain minimal options for patients with progressive or resistant disease, as clinical trials over recent decades have failed to significantly improve survival. A better understanding of therapy resistance is necessary to improve current treatments and design new strategies for future treatment options. In this review, we discuss known mechanisms and recent scientific advancements regarding osteosarcoma and its patterns of resistance against chemotherapy, radiation, and other newly-introduced therapeutics.
Collapse
Affiliation(s)
- Zachary D. Prudowsky
- Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Houston, TX 77030, USA;
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason T. Yustein
- Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Houston, TX 77030, USA;
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
21
|
Bertin H, Gomez-Brouchet A, Rédini F. Osteosarcoma of the jaws: An overview of the pathophysiological mechanisms. Crit Rev Oncol Hematol 2020; 156:103126. [PMID: 33113487 DOI: 10.1016/j.critrevonc.2020.103126] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/18/2020] [Accepted: 10/02/2020] [Indexed: 01/24/2023] Open
Abstract
Osteosarcoma (OS) is the most common cancer of bone. Jaw osteosarcoma (JOS) is rare and it differs from long-bone OS (LBOS) in terms of the time of onset (two decades later), lower metastatic spread, and better survival. OS is characterized by the proliferation of osteoblastic precursor cells and the production of osteoid or immature bone. OS arises from a combination of genetic aberrations and a favourable microenvironment. This local microenvironment includes bone cells, blood vessels, stromal cells, and immune infiltrates, all of which may constitute potential targets for anti-cancer drugs. Differences in the clinical and biological behaviour of JOS versus LBOS are likely to at least in part be due to differences in the microenvironment between the two sites. The present review provides a brief overview of the known pathophysiological parameters involved in JOS.
Collapse
Affiliation(s)
- Hélios Bertin
- Department of Maxillofacial Surgery, Nantes University Hospital, 1 Place Alexis Ricordeau, 44093 Nantes Cedex 1, France; Bone Sarcoma and Remodeling of Calcified Tisues (PhyOs, UMR 1238), Nantes Medical School, 1 Rue Gaston Veil, 44035 Nantes Cedex, France.
| | - A Gomez-Brouchet
- Department of Pathology, IUCT Oncopole, Toulouse University Hospital, 1 Avenue Irène Joliot-Curie, 31059 Toulouse Cedex 9, France.
| | - F Rédini
- Bone Sarcoma and Remodeling of Calcified Tisues (PhyOs, UMR 1238), Nantes Medical School, 1 Rue Gaston Veil, 44035 Nantes Cedex, France.
| |
Collapse
|