1
|
Sinclair KD. Developmental epigenetics: Understanding genetic and sexually dimorphic responses to parental diet and outcomes following assisted reproduction. J Dairy Sci 2024:S0022-0302(24)01392-4. [PMID: 39701526 DOI: 10.3168/jds.2024-25811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/17/2024] [Indexed: 12/21/2024]
Abstract
The developmental integrity and wellbeing of offspring are influenced by events that occur in utero, particularly around the time of conception. While extraneous factors such as environmental temperature and exposure to environmental chemicals can each have a bearing on these events, the epigenetic mechanisms that direct cellular differentiation during early development in ruminants are best described for studies which have investigated the effects of parental nutrition or pregnancy outcomes following assisted reproduction. In this article the case is made that the genetic constitution of an individual directs epigenetic responses to environmental stimuli, and consideration in this regard is also given to the origins of sexual dimorphism and mechanisms of germline intergenerational inheritance. These aspects are considered in the context of epigenetic modifications that take place during the normal course of gametogenesis and embryogenesis, and again following either dietary or procedural interventions such as embryo culture. A recurring feature of such interventions, irrespective of species, is that one carbon metabolic pathways are invariably disrupted, and this affects the provision of methyl groups for chromatin and RNA methylation. Inter-specific variation in how these pathways operate, both within the liver and in germ cells, indicates that ruminants may be particularly sensitive in this regard. Recent advances in genomic technologies should enable rapid progress in these areas. Knowledge gained can be integrated into breed improvement programs and used to tailor management practices to specific breeds and strains (including sexes) within breeds. Ultimately, consideration should be given to integrating metagenomics into analyses of genetic-directed epigenetic programming of animal development.
Collapse
Affiliation(s)
- Kevin D Sinclair
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire, UK, LE12 5RD.
| |
Collapse
|
2
|
Cecalev D, Viçoso B, Galupa R. Compensation of gene dosage on the mammalian X. Development 2024; 151:dev202891. [PMID: 39140247 PMCID: PMC11361640 DOI: 10.1242/dev.202891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Changes in gene dosage can have tremendous evolutionary potential (e.g. whole-genome duplications), but without compensatory mechanisms, they can also lead to gene dysregulation and pathologies. Sex chromosomes are a paradigmatic example of naturally occurring gene dosage differences and their compensation. In species with chromosome-based sex determination, individuals within the same population necessarily show 'natural' differences in gene dosage for the sex chromosomes. In this Review, we focus on the mammalian X chromosome and discuss recent new insights into the dosage-compensation mechanisms that evolved along with the emergence of sex chromosomes, namely X-inactivation and X-upregulation. We also discuss the evolution of the genetic loci and molecular players involved, as well as the regulatory diversity and potentially different requirements for dosage compensation across mammalian species.
Collapse
Affiliation(s)
- Daniela Cecalev
- Molecular, Cellular and Developmental Biology (MCD) Unit, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Beatriz Viçoso
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg 3400, Austria
| | - Rafael Galupa
- Molecular, Cellular and Developmental Biology (MCD) Unit, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| |
Collapse
|
3
|
de Castro RCF, Buranello TW, Recchia K, de Souza AF, Pieri NCG, Bressan FF. Emerging Contributions of Pluripotent Stem Cells to Reproductive Technologies in Veterinary Medicine. J Dev Biol 2024; 12:14. [PMID: 38804434 PMCID: PMC11130827 DOI: 10.3390/jdb12020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
The generation of mature gametes and competent embryos in vitro from pluripotent stem cells has been successfully achieved in a few species, mainly in mice, with recent advances in humans and scarce preliminary reports in other domestic species. These biotechnologies are very attractive as they facilitate the understanding of developmental mechanisms and stages that are generally inaccessible during early embryogenesis, thus enabling advanced reproductive technologies and contributing to the generation of animals of high genetic merit in a short period. Studies on the production of in vitro embryos in pigs and cattle are currently used as study models for humans since they present more similar characteristics when compared to rodents in both the initial embryo development and adult life. This review discusses the most relevant biotechnologies used in veterinary medicine, focusing on the generation of germ-cell-like cells in vitro through the acquisition of totipotent status and the production of embryos in vitro from pluripotent stem cells, thus highlighting the main uses of pluripotent stem cells in livestock species and reproductive medicine.
Collapse
Affiliation(s)
- Raiane Cristina Fratini de Castro
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo 01001-010, SP, Brazil; (R.C.F.d.C.); (T.W.B.); (K.R.)
| | - Tiago William Buranello
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo 01001-010, SP, Brazil; (R.C.F.d.C.); (T.W.B.); (K.R.)
| | - Kaiana Recchia
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo 01001-010, SP, Brazil; (R.C.F.d.C.); (T.W.B.); (K.R.)
| | - Aline Fernanda de Souza
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil;
| | - Naira Caroline Godoy Pieri
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil;
| | - Fabiana Fernandes Bressan
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo 01001-010, SP, Brazil; (R.C.F.d.C.); (T.W.B.); (K.R.)
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil;
| |
Collapse
|
4
|
Farzaneh M, Anbiyaee O, Azizidoost S, Nasrolahi A, Ghaedrahmati F, Kempisty B, Mozdziak P, Khoshnam SE, Najafi S. The Mechanisms of Long Non-coding RNA-XIST in Ischemic Stroke: Insights into Functional Roles and Therapeutic Potential. Mol Neurobiol 2024; 61:2745-2753. [PMID: 37932544 DOI: 10.1007/s12035-023-03740-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023]
Abstract
Ischemic stroke, which occurs due to the occlusion of cerebral arteries, is a common type of stroke. Recent research has highlighted the important role of long non-coding RNAs (lncRNAs) in the development of cerebrovascular diseases, specifically ischemic stroke. Understanding the functional roles of lncRNAs in ischemic stroke is crucial, given their potential contribution to the disease pathology. One noteworthy lncRNA is X-inactive specific transcript (XIST), which exhibits downregulation during the early stages of ischemic stroke and subsequent upregulation in later stages. XIST exert its influence on the development of ischemic stroke through interactions with multiple miRNAs and transcription factors. These interactions play a significant role in the pathogenesis of the condition. In this review, we have provided a comprehensive summary of the functional roles of XIST in ischemic stroke. By investigating the involvement of XIST in the disease process, we aim to enhance our understanding of the mechanisms underlying ischemic stroke and potentially identify novel therapeutic targets.
Collapse
Affiliation(s)
- Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Omid Anbiyaee
- Cardiovascular Research Center, Namazi Hospital, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bartosz Kempisty
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wrocław, Poland
- Institute of Veterinary Medicine, Department of Veterinary Surgery, Nicolaus Copernicus University, Torun, Poland
- North Carolina State University College of Agriculture and Life Sciences, Raleigh, NC, 27695, USA
| | - Paul Mozdziak
- North Carolina State University College of Agriculture and Life Sciences, Raleigh, NC, 27695, USA
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Aksit MA, Yu B, Roelen BAJ, Migeon BR. Silencing XIST on the future active X: Searching human and bovine preimplantation embryos for the repressor. Eur J Hum Genet 2024; 32:399-406. [PMID: 35585273 PMCID: PMC10999447 DOI: 10.1038/s41431-022-01115-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/28/2022] [Accepted: 04/26/2022] [Indexed: 11/09/2022] Open
Abstract
X inactivation is the means of equalizing the dosage of X chromosomal genes in male and female eutherian mammals, so that only one X is active in each cell. The XIST locus (in cis) on each additional X chromosome initiates the transcriptional silence of that chromosome, making it an inactive X. How the active X in both males and females is protected from inactivation by its own XIST locus is not well understood in any mammal. Previous studies of autosomal duplications suggest that gene(s) on the short arm of human chromosome 19 repress XIST on the active X. Here, we examine the time of transcription of some candidate genes in preimplantation embryos using single-cell RNA sequencing data from human embryos and qRT-PCR from bovine embryos. The candidate genes assayed are those transcribed from 19p13.3-13.2, which are widely expressed and can remodel chromatin. Our results confirm that XIST is expressed at low levels from the future active X in embryos of both sexes; they also show that the XIST locus is repressed in both sexes when pluripotency factors are being upregulated, during the 4-8 cell and morula stages in human and bovine embryos - well before the early blastocyst (E5) when XIST on the inactive X in females starts to be upregulated. Our data suggest a role for DNMT1, UHRF1, SAFB and SAFB2 in XIST repression; they also exclude XACT and other 19p candidate genes and provide the transcriptional timing for some genes not previously assayed in human or bovine preimplantation embryos.
Collapse
Affiliation(s)
- Melis A Aksit
- McKusick Nathans Department of Genetic Medicine and Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Bo Yu
- Farm Animal Health, Department of Population Health Sciences, and Utrecht University, 3584CM, Utrecht, The Netherlands
| | - Bernard A J Roelen
- Embryology, Anatomy and Physiology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CM, Utrecht, The Netherlands
| | - Barbara R Migeon
- McKusick Nathans Department of Genetic Medicine and Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
- The Department of Pediatrics, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Hu B, Jin H, Shi Y, Yu H, Wu X, Wang S, Zhang K. Single-cell RNA-Seq reveals the earliest lineage specification and X chromosome dosage compensation in bovine preimplantation embryos. FASEB J 2024; 38:e23492. [PMID: 38363564 DOI: 10.1096/fj.202302035rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
Lineage specification and X chromosome dosage compensation are two crucial biological processes that occur during preimplantation embryonic development. Although extensively studied in mice, the timing and regulation of these processes remain elusive in other species, including humans. Previous studies have suggested conserved principles of human and bovine early development. This study aims to provide fundamental insights into these programs and the regulation using a bovine embryo model by employing single-cell transcriptomics and genome editing approaches. The study analyzes the transcriptomes of 286 individual cells and reveals that bovine trophectoderm/inner cell mass transcriptomes diverge at the early blastocyst stage, after cavitation but before blastocyst expansion. The study also identifies transcriptomic markers and provides the timing of lineage specification events in the bovine embryo. Importantly, we find that SOX2 is required for the first cell decision program in bovine embryos. Moreover, the study shows the occurrence of X chromosome dosage compensation from morula to late blastocyst and reveals that this compensation results from downregulation of X-linked genes in female embryonic cells. The transcriptional atlas generated by this study is expected to be widely useful in improving our understanding of mammalian early embryo development.
Collapse
Affiliation(s)
- Bingjie Hu
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Jin
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Shi
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haotian Yu
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaotong Wu
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shaohua Wang
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kun Zhang
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Jali I, Vanamamalai VK, Garg P, Navarrete P, Gutiérrez-Adán A, Sharma S. Identification and differential expression of long non-coding RNAs and their association with XIST gene during early embryonic developmental stages of Bos taurus. Int J Biol Macromol 2023; 229:896-908. [PMID: 36572076 DOI: 10.1016/j.ijbiomac.2022.12.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/07/2022] [Accepted: 12/20/2022] [Indexed: 12/26/2022]
Abstract
X-chromosomes inactivation (XCI) is a phenomenon that aims to equalize the dosage of X-linked gene products between XY males and XX females in mammals. XIST gene is the master regulator of X chromosome inactivation during early embryonic developmental stages of Bos taurus. Biological molecule such as lncRNA plays significant role in the control of XCI, by RNA-based regulatory mechanisms and are non-coding regions of the genome. In our study, using in-silico transcriptome data analysis approach, we analysed RNA-seq data of E35, E39 and E43 samples from bovine genital ridges of early embryonic stages, and identified lncRNA transcripts. More than 7 lakh lncRNA transcripts were identified. Further, our study identified DE-lncRNAs and genes between male and female and studied their co-expression. More than four thousand differentially expressed lncRNAs identified. The co-expression and RT-PCR study in the result showed that there exists an association between the XIST and DE-lncRNAs in early embryonic gonads of bovine at E35. In this study, the association between DE-lncRNAs and XIST gene indicates, the potentially important role of DE-lncRNAs during embryo development in bovine. In conclusion, this study shows there exist an interplay between genes and lncRNAs at transcriptome level of bovine during early embryonic days.
Collapse
Affiliation(s)
- Itishree Jali
- National Institute of Animal Biotechnology (NIAB), Opp. Journalist Colony, Near Gowlidoddi, Extended Q City Road, Gachibowli, Hyderabad 500 032, Telangana, India; DBT-Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India
| | - Venkata Krishna Vanamamalai
- National Institute of Animal Biotechnology (NIAB), Opp. Journalist Colony, Near Gowlidoddi, Extended Q City Road, Gachibowli, Hyderabad 500 032, Telangana, India; DBT-Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India
| | - Priyanka Garg
- National Institute of Animal Biotechnology (NIAB), Opp. Journalist Colony, Near Gowlidoddi, Extended Q City Road, Gachibowli, Hyderabad 500 032, Telangana, India
| | - Paula Navarrete
- INIA-CSIC Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Alfonso Gutiérrez-Adán
- INIA-CSIC Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Shailesh Sharma
- National Institute of Animal Biotechnology (NIAB), Opp. Journalist Colony, Near Gowlidoddi, Extended Q City Road, Gachibowli, Hyderabad 500 032, Telangana, India; DBT-Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India.
| |
Collapse
|
8
|
Goissis MD, Cibelli JB. Early Cell Specification in Mammalian Fertilized and Somatic Cell Nuclear Transfer Embryos. Methods Mol Biol 2023; 2647:59-81. [PMID: 37041329 DOI: 10.1007/978-1-0716-3064-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Early cell specification in mammalian preimplantation embryos is an intricate cellular process that leads to coordinated spatial and temporal expression of specific genes. Proper segregation into the first two cell lineages, the inner cell mass (ICM) and the trophectoderm (TE), is imperative for developing the embryo proper and the placenta, respectively. Somatic cell nuclear transfer (SCNT) allows the formation of a blastocyst containing both ICM and TE from a differentiated cell nucleus, which means that this differentiated genome must be reprogrammed to a totipotent state. Although blastocysts can be generated efficiently through SCNT, the full-term development of SCNT embryos is impaired mostly due to placental defects. In this review, we examine the early cell fate decisions in fertilized embryos and compare them to observations in SCNT-derived embryos, in order to understand if these processes are affected by SCNT and could be responsible for the low success of reproductive cloning.
Collapse
Affiliation(s)
- Marcelo D Goissis
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, SP, Brazil.
| | - Jose B Cibelli
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
9
|
Li G, Duan JE. Dosage compensation: A new player in X chromosome upregulation. Curr Biol 2022; 32:R1030-R1032. [PMID: 36283351 DOI: 10.1016/j.cub.2022.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dosage balance between sex chromosomes and autosomes can be achieved through diverse mechanisms across vertebrates and invertebrates. A new study discovers a key player that contributes to X chromosome upregulation (XCU) during early mouse development and associates the dysregulation of XCU with human bile duct cancer pathogenesis.
Collapse
Affiliation(s)
- Guangsheng Li
- Department of Animal Science, Cornell University, Ithaca, NY 14850, USA
| | - Jingyue Ellie Duan
- Department of Animal Science, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
10
|
Makgoo L, Mosebi S, Mbita Z. Long noncoding RNAs (lncRNAs) in HIV-mediated carcinogenesis: Role in cell homeostasis, cell survival processes and drug resistance. Noncoding RNA Res 2022; 7:184-196. [PMID: 35991514 PMCID: PMC9361211 DOI: 10.1016/j.ncrna.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/04/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022] Open
Abstract
There is accruing data implicating long non-coding RNAs (lncRNAs) in the development and progression of non-communicable diseases such as cancer. These lncRNAs have been implicated in many diverse HIV-host interactions, some of which are beneficial to HIV propagation. The virus-host interactions induce the expression of HIV-regulated long non-coding RNAs, which are implicated in the carcinogenesis process, therefore, it is critical to understand the molecular mechanisms that underpin these HIV-regulated lncRNAs, especially in cancer formation. Herein, we summarize the role of HIV-regulated lncRNAs targeting cancer development-related processes including apoptosis, cell cycle, cell survival signalling, angiogenesis and drug resistance. It is unclear how lncRNAs regulate cancer development, this review also discuss recent discoveries regarding the functions of lncRNAs in cancer biology. Innovative research in this field will be beneficial for the future development of therapeutic strategies targeting long non-coding RNAs that are regulated by HIV, especially in HIV associated cancers.
Collapse
|
11
|
Wang W, Min L, Qiu X, Wu X, Liu C, Ma J, Zhang D, Zhu L. Biological Function of Long Non-coding RNA (LncRNA) Xist. Front Cell Dev Biol 2021; 9:645647. [PMID: 34178980 PMCID: PMC8222981 DOI: 10.3389/fcell.2021.645647] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate gene expression in a variety of ways at epigenetic, chromatin remodeling, transcriptional, and translational levels. Accumulating evidence suggests that lncRNA X-inactive specific transcript (lncRNA Xist) serves as an important regulator of cell growth and development. Despites its original roles in X-chromosome dosage compensation, lncRNA Xist also participates in the development of tumor and other human diseases by functioning as a competing endogenous RNA (ceRNA). In this review, we comprehensively summarized recent progress in understanding the cellular functions of lncRNA Xist in mammalian cells and discussed current knowledge regarding the ceRNA network of lncRNA Xist in various diseases. Long non-coding RNAs (lncRNAs) are transcripts that are more than 200 nt in length and without an apparent protein-coding capacity (Furlan and Rougeulle, 2016; Maduro et al., 2016). These RNAs are believed to be transcribed by the approximately 98-99% non-coding regions of the human genome (Derrien et al., 2012; Fu, 2014; Montalbano et al., 2017; Slack and Chinnaiyan, 2019), as well as a large variety of genomic regions, such as exonic, tronic, and intergenic regions. Hence, lncRNAs are also divided into eight categories: Intergenic lncRNAs, Intronic lncRNAs, Enhancer lncRNAs, Promoter lncRNAs, Natural antisense/sense lncRNAs, Small nucleolar RNA-ended lncRNAs (sno-lncRNAs), Bidirectional lncRNAs, and non-poly(A) lncRNAs (Ma et al., 2013; Devaux et al., 2015; St Laurent et al., 2015; Chen, 2016; Quinn and Chang, 2016; Richard and Eichhorn, 2018; Connerty et al., 2020). A range of evidence has suggested that lncRNAs function as key regulators in crucial cellular functions, including proliferation, differentiation, apoptosis, migration, and invasion, by regulating the expression level of target genes via epigenomic, transcriptional, or post-transcriptional approaches (Cao et al., 2018). Moreover, lncRNAs detected in body fluids were also believed to serve as potential biomarkers for the diagnosis, prognosis, and monitoring of disease progression, and act as novel and potential drug targets for therapeutic exploitation in human disease (Jiang W. et al., 2018; Zhou et al., 2019a). Long non-coding RNA X-inactive specific transcript (lncRNA Xist) are a set of 15,000-20,000 nt sequences localized in the X chromosome inactivation center (XIC) of chromosome Xq13.2 (Brown et al., 1992; Debrand et al., 1998; Kay, 1998; Lee et al., 2013; da Rocha and Heard, 2017; Yang Z. et al., 2018; Brockdorff, 2019). Previous studies have indicated that lncRNA Xist regulate X chromosome inactivation (XCI), resulting in the inheritable silencing of one of the X-chromosomes during female cell development. Also, it serves a vital regulatory function in the whole spectrum of human disease (notably cancer) and can be used as a novel diagnostic and prognostic biomarker and as a potential therapeutic target for human disease in the clinic (Liu et al., 2018b; Deng et al., 2019; Dinescu et al., 2019; Mutzel and Schulz, 2020; Patrat et al., 2020; Wang et al., 2020a). In particular, lncRNA Xist have been demonstrated to be involved in the development of multiple types of tumors including brain tumor, Leukemia, lung cancer, breast cancer, and liver cancer, with the prominent examples outlined in Table 1. It was also believed that lncRNA Xist (Chaligne and Heard, 2014; Yang Z. et al., 2018) contributed to other diseases, such as pulmonary fibrosis, inflammation, neuropathic pain, cardiomyocyte hypertrophy, and osteoarthritis chondrocytes, and more specific details can be found in Table 2. This review summarizes the current knowledge on the regulatory mechanisms of lncRNA Xist on both chromosome dosage compensation and pathogenesis (especially cancer) processes, with a focus on the regulatory network of lncRNA Xist in human disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dongyi Zhang
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| |
Collapse
|
12
|
Abstract
Embryonic stem cells (ESCs) and induced pluripotent stem cells have the potential to differentiate to all cell types of an adult individual and are useful for studying development and for translational research. However, extrapolation of mouse and human ESC knowledge to deriving stable ESC lines of domestic ungulates and large livestock species has been challenging. In contrast to ESCs that are usually established from the blastocyst, mouse expanded potential stem cells (EPSCs) are derived from four-cell and eight-cell embryos. We have recently used the EPSC approach and established stem cells from porcine and human preimplantation embryos. EPSCs are molecularly similar across species and have broader developmental potential to generate embryonic and extraembryonic cell lineages. We further explore the EPSC technology for mammalian species refractory to the standard ESC approaches and report here the successful establishment of bovine EPSCs (bEPSCs) from preimplantation embryos of both wild-type and somatic cell nuclear transfer. bEPSCs express high levels of pluripotency genes, propagate robustly in feeder-free culture, and are genetically stable in long-term culture. bEPSCs have enriched transcriptomic features of early preimplantation embryos and differentiate in vitro to cells of the three somatic germ layers and, in chimeras, contribute to both the embryonic (fetal) and extraembryonic cell lineages. Importantly, precise gene editing is efficiently achieved in bEPSCs, and genetically modified bEPSCs can be used as donors in somatic cell nuclear transfer. bEPSCs therefore hold the potential to substantially advance biotechnology and agriculture.
Collapse
|
13
|
Springer C, Wolf E, Simmet K. A New Toolbox in Experimental Embryology-Alternative Model Organisms for Studying Preimplantation Development. J Dev Biol 2021; 9:15. [PMID: 33918361 PMCID: PMC8167745 DOI: 10.3390/jdb9020015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Preimplantation development is well conserved across mammalian species, but major differences in developmental kinetics, regulation of early lineage differentiation and implantation require studies in different model organisms, especially to better understand human development. Large domestic species, such as cattle and pig, resemble human development in many different aspects, i.e., the timing of zygotic genome activation, mechanisms of early lineage differentiations and the period until blastocyst formation. In this article, we give an overview of different assisted reproductive technologies, which are well established in cattle and pig and make them easily accessible to study early embryonic development. We outline the available technologies to create genetically modified models and to modulate lineage differentiation as well as recent methodological developments in genome sequencing and imaging, which form an immense toolbox for research. Finally, we compare the most recent findings in regulation of the first lineage differentiations across species and show how alternative models enhance our understanding of preimplantation development.
Collapse
Affiliation(s)
- Claudia Springer
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (E.W.)
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (E.W.)
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany
| | - Kilian Simmet
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (E.W.)
| |
Collapse
|
14
|
Aguila L, Suzuki J, Hill ABT, García M, de Mattos K, Therrien J, Smith LC. Dysregulated Gene Expression of Imprinted and X-Linked Genes: A Link to Poor Development of Bovine Haploid Androgenetic Embryos. Front Cell Dev Biol 2021; 9:640712. [PMID: 33869192 PMCID: PMC8044962 DOI: 10.3389/fcell.2021.640712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/25/2021] [Indexed: 11/13/2022] Open
Abstract
Mammalian uniparental embryos are efficient models for genome imprinting research and allow studies on the contribution of the paternal and maternal genomes to early embryonic development. In this study, we analyzed different methods for production of bovine haploid androgenetic embryos (hAE) to elucidate the causes behind their poor developmental potential. Results indicate that hAE can be efficiently generated by using intracytoplasmic sperm injection and oocyte enucleation at telophase II. Although androgenetic haploidy does not disturb early development up to around the 8-cell stage, androgenetic development is disturbed after the time of zygote genome activation and hAE that reach the morula stage are less capable to reach the blastocyst stage of development. Karyotypic comparisons to parthenogenetic- and ICSI-derived embryos excluded chromosomal segregation errors as causes of the developmental constraints of hAE. However, analysis of gene expression indicated abnormal levels of transcripts for key long non-coding RNAs involved in X chromosome inactivation and genomic imprinting of the KCNQ1 locus, suggesting an association with X chromosome and some imprinted loci. Moreover, transcript levels of methyltransferase 3B were significantly downregulated, suggesting potential anomalies in hAE establishing de novo methylation. Finally, the methylation status of imprinted control regions for XIST and KCNQ1OT1 genes remained hypomethylated in hAE at the morula and blastocyst stages, confirming their origin from spermatozoa. Thus, our results exclude micromanipulation and chromosomal abnormalities as major factors disturbing the normal development of bovine haploid androgenotes. In addition, although the cause of the arrest remains unclear, we have shown that the inefficient development of haploid androgenetic bovine embryos to develop to the blastocyst stage is associated with abnormal expression of key factors involved in X chromosome activity and genomic imprinting.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lawrence C. Smith
- Département de Biomédecine Vétérinaire, Centre de Recherche en Reproduction Et Fertilité, Université de Montreal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
15
|
Balaton BP, Fornes O, Wasserman WW, Brown CJ. Cross-species examination of X-chromosome inactivation highlights domains of escape from silencing. Epigenetics Chromatin 2021; 14:12. [PMID: 33597016 PMCID: PMC7890635 DOI: 10.1186/s13072-021-00386-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
Background X-chromosome inactivation (XCI) in eutherian mammals is the epigenetic inactivation of one of the two X chromosomes in XX females in order to compensate for dosage differences with XY males. Not all genes are inactivated, and the proportion escaping from inactivation varies between human and mouse (the two species that have been extensively studied). Results We used DNA methylation to predict the XCI status of X-linked genes with CpG islands across 12 different species: human, chimp, bonobo, gorilla, orangutan, mouse, cow, sheep, goat, pig, horse and dog. We determined the XCI status of 342 CpG islands on average per species, with most species having 80–90% of genes subject to XCI. Mouse was an outlier, with a higher proportion of genes subject to XCI than found in other species. Sixteen genes were found to have discordant X-chromosome inactivation statuses across multiple species, with five of these showing primate-specific escape from XCI. These discordant genes tended to cluster together within the X chromosome, along with genes with similar patterns of escape from XCI. CTCF-binding, ATAC-seq signal and LTR repeats were enriched at genes escaping XCI when compared to genes subject to XCI; however, enrichment was only observed in three or four of the species tested. LINE and DNA repeats showed enrichment around subject genes, but again not in a consistent subset of species. Conclusions In this study, we determined XCI status across 12 species, showing mouse to be an outlier with few genes that escape inactivation. Inactivation status is largely conserved across species. The clustering of genes that change XCI status across species implicates a domain-level control. In contrast, the relatively consistent, but not universal correlation of inactivation status with enrichment of repetitive elements or CTCF binding at promoters demonstrates gene-based influences on inactivation state. This study broadens enrichment analysis of regulatory elements to species beyond human and mouse.
Collapse
Affiliation(s)
- Bradley P Balaton
- Department of Medical Genetics, The University of British Columbia, Vancouver, Canada
| | - Oriol Fornes
- Department of Medical Genetics, The University of British Columbia, Vancouver, Canada.,BC Children's Hospital Research Institute, Vancouver, Canada.,Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, Canada
| | - Wyeth W Wasserman
- Department of Medical Genetics, The University of British Columbia, Vancouver, Canada.,BC Children's Hospital Research Institute, Vancouver, Canada.,Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, Canada
| | - Carolyn J Brown
- Department of Medical Genetics, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|