1
|
Kim MG, Yoon C, Lim HG. Recent Advancements in High-Frequency Ultrasound Applications from Imaging to Microbeam Stimulation. SENSORS (BASEL, SWITZERLAND) 2024; 24:6471. [PMID: 39409511 PMCID: PMC11479296 DOI: 10.3390/s24196471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/18/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024]
Abstract
Ultrasound is a versatile and well-established technique using sound waves with frequencies higher than the upper limit of human hearing. Typically, therapeutic and diagnosis ultrasound operate in the frequency range of 500 kHz to 15 MHz with greater depth of penetration into the body. However, to achieve improved spatial resolution, high-frequency ultrasound (>15 MHz) was recently introduced and has shown promise in various fields such as high-resolution imaging for the morphological features of the eye and skin as well as small animal imaging for drug and gene therapy. In addition, high-frequency ultrasound microbeam stimulation has been demonstrated to manipulate single cells or microparticles for the elucidation of physical and functional characteristics of cells with minimal effect on normal cell physiology and activity. Furthermore, integrating machine learning with high-frequency ultrasound enhances diagnostics, including cell classification, cell deformability estimation, and the diagnosis of diabetes and dysnatremia using convolutional neural networks (CNNs). In this paper, current efforts in the use of high-frequency ultrasound from imaging to stimulation as well as the integration of deep learning are reviewed, and potential biomedical and cellular applications are discussed.
Collapse
Affiliation(s)
- Min Gon Kim
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90007, USA
| | - Changhan Yoon
- Department of Biomedical Engineering, Inje University, Gimhae 50834, Republic of Korea
| | - Hae Gyun Lim
- Department of Biomedical Engineering, Pukyong National University, Busan 48547, Republic of Korea;
| |
Collapse
|
2
|
Yoo J, Ahn J, Ha H, Claud Jonas J, Kim C, Ham Kim H. Single-Beam Acoustic Tweezers for Cell Biology: Molecular to In Vivo Level. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1269-1288. [PMID: 39250365 DOI: 10.1109/tuffc.2024.3456083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Acoustic tweezers have attracted attention in various fields of cell biology, including in vitro single-cell and intercellular mechanics. Compared with other tweezing technologies such as optical and magnetic tweezers, acoustic tweezers possess stronger forces and are safer for use in biological systems. However, due to the limited spatial resolution or limited size of target objects, acoustic tweezers have primarily been used to manipulate cells in vitro. To extend the advantages of acoustic tweezers to other levels (e.g., molecular and in vivo levels), researchers have recently developed various types of acoustic tweezers such as single-beam acoustic tweezers (SBATs), surface acoustic wave (SAW) tweezers, and acoustic-streaming tweezers. Among these, SBATs utilize a single-focused beam, making the transducer and system simple, noninvasive, and capable of producing strong forces compared with other types of tweezers. Depending on the acoustic beam pattern, SBATs can be classified into Rayleigh regime, Mie regime, and acoustic vortex with different trapping dynamics and application levels. In this review, we provide an overview of the principles and configuration of each type of SBAT, their applications ranging from molecular to in vivo studies, and their limitations and prospects. Thus, this review demonstrates the significance and potential of SBAT technology in biophysics and biomedical engineering.
Collapse
|
3
|
Lee JE, Jeon HJ, Lee OJ, Lim HG. Diagnosis of diabetes mellitus using high frequency ultrasound and convolutional neural network. ULTRASONICS 2024; 136:107167. [PMID: 37757513 DOI: 10.1016/j.ultras.2023.107167] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/23/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
The incidence of diabetes mellitus has been increasing, prompting the search for non-invasive diagnostic methods. Although current methods exist, these have certain limitations, such as low reliability and accuracy, difficulty in individual patient adjustment, and discomfort during use. This paper presents a novel approach for diagnosing diabetes using high-frequency ultrasound (HFU) and a convolutional neural network (CNN). This method is based on the observation that glucose in red blood cells (RBCs) forms glycated hemoglobin (HbA1c) and accumulates on its surface. The study incubated RBCs with different glucose concentrations, collected acoustic reflection signals from them using a custom-designed 90-MHz transducer, and analyzed the signals using a CNN. The CNN was applied to the frequency spectra and spectrograms of the signal to identify correlations between changes in RBC properties owing to glucose concentration and signal features. The results confirmed the efficacy of the CNN-based approach with a classification accuracy of 0.98. This non-invasive diagnostic technology using HFU and CNN holds promise for in vivo diagnosis without the need for blood collection.
Collapse
Affiliation(s)
- Jeong Eun Lee
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Hyeon-Ju Jeon
- Data Assimilation Group, Korea Institute of Atmospheric Prediction Systems, Seoul 07071, Republic of Korea
| | - O-Joun Lee
- Department of Artificial Intelligence, The Catholic University of Korea, Bucheon 14662, Republic of Korea.
| | - Hae Gyun Lim
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
4
|
Ma T, Ding Q, Liu C, Wu H. Electromagnetic fields regulate calcium-mediated cell fate of stem cells: osteogenesis, chondrogenesis and apoptosis. Stem Cell Res Ther 2023; 14:133. [PMID: 37194107 DOI: 10.1186/s13287-023-03303-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/28/2023] [Indexed: 05/18/2023] Open
Abstract
Electromagnetic fields (EMF) are increasing in popularity as a safe and non-invasive therapy. On the one hand, it is widely acknowledged that EMF can regulate the proliferation and differentiation of stem cells, promoting the undifferentiated cells capable of osteogenesis, angiogenesis, and chondroblast differentiation to achieve bone repair purpose. On the other hand, EMF can inhibit tumor stem cells proliferation and promote apoptosis to suppress tumor growth. As an essential second messenger, intracellular calcium plays a role in regulating cell cycle, such as proliferation, differentiation and apoptosis. There is increasing evidence that the modulation of intracellular calcium ion by EMF leads to differential outcomes in different stem cells. This review summarizes the regulation of channels, transporters, and ion pumps by EMF-induced calcium oscillations. It furtherly discusses the role of molecules and pathways activated by EMF-dependent calcium oscillations in promoting bone and cartilage repair and inhibiting tumor stem cells growth.
Collapse
Affiliation(s)
- Tian Ma
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Qing Ding
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chaoxu Liu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Hua Wu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
5
|
Yoon CW, Pan Y, Wang Y. The application of mechanobiotechnology for immuno-engineering and cancer immunotherapy. Front Cell Dev Biol 2022; 10:1064484. [PMID: 36483679 PMCID: PMC9725026 DOI: 10.3389/fcell.2022.1064484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
Immune-engineering is a rapidly emerging field in the past few years, as immunotherapy evolved from a paradigm-shifting therapeutic approach for cancer treatment to promising immuno-oncology models in clinical trials and commercial products. Linking the field of biomedical engineering with immunology, immuno-engineering applies engineering principles and utilizes synthetic biology tools to study and control the immune system for diseases treatments and interventions. Over the past decades, there has been a deeper understanding that mechanical forces play crucial roles in regulating immune cells at different stages from antigen recognition to actual killing, which suggests potential opportunities to design and tailor mechanobiology tools to novel immunotherapy. In this review, we first provide a brief introduction to recent technological and scientific advances in mechanobiology for immune cells. Different strategies for immuno-engineering are then discussed and evaluated. Furthermore, we describe the opportunities and challenges of applying mechanobiology and related technologies to study and engineer immune cells and ultimately modulate their function for immunotherapy. In summary, the synergetic integration of cutting-edge mechanical biology techniques into immune-engineering strategies can provide a powerful platform and allow new directions for the field of immunotherapy.
Collapse
Affiliation(s)
- Chi Woo Yoon
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, San Diego, CA, United States
| | - Yijia Pan
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, San Diego, CA, United States
| | - Yingxiao Wang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
6
|
Truong TT, Chiu WT, Lai YS, Huang H, Jiang X, Huang CC. Ca 2+ signaling-mediated low-intensity pulsed ultrasound-induced proliferation and activation of motor neuron cells. ULTRASONICS 2022; 124:106739. [PMID: 35367809 DOI: 10.1016/j.ultras.2022.106739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/24/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Motor neuron diseases (MND) including amyotrophic lateral sclerosis and Parkinson disease are commonly neurodegenerative, causing a gradual loss of nerve cells and affecting the mechanisms underlying changes in calcium (Ca2+)-regulated dendritic growth. In this study, the NSC-34 cell line, a population of hybridomas generated using mouse spinal cord cells with neuroblastoma, was used to investigate the effect of low-intensity pulsed ultrasound (LIPUS) as part of an MND treatment model. After NSC-34 cells were seeded for 24 h, LIPUS stimulation was performed on the cells at days 1 and 3 using a non-focused transducer at 1.15 MHz for 8 min. NSC-34 cell proliferation and morphological changes were observed at various LIPUS intensities and different combinations of Ca2+ channel blockers. The nuclear translocation of Ca2+-dependent transcription factors was also examined. We observed that the neurite outgrowth and cell number of NSC-34 significantly increased with LIPUS stimulation at days 2 and 4, which may be associated with the treatment's positive effect on the activation of Ca2+-dependent transcription factors, such as nuclear factor of activated T cells and nuclear factor-kappa B. Our findings suggest that the LIPUS-induced Ca2+ signaling and transcription factor activation facilitate the morphological maturation and proliferation of NSC-34 cells, presenting a promising noninvasive method to improve stimulation therapy for MNDs in the future.
Collapse
Affiliation(s)
- Thi-Thuyet Truong
- Department of Biomedical Engineering, National Cheng Kung University, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Taiwan
| | - Yi-Shyun Lai
- Department of Biomedical Engineering, National Cheng Kung University, Taiwan
| | - Hsien Huang
- Department of Biomedical Engineering, National Cheng Kung University, Taiwan
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, USA
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Taiwan; Department of Mechanical and Aerospace Engineering, North Carolina State University, USA; Medical Device Innovation Center, National Cheng Kung University, Taiwan.
| |
Collapse
|
7
|
Automated estimation of cancer cell deformability with machine learning and acoustic trapping. Sci Rep 2022; 12:6891. [PMID: 35477742 PMCID: PMC9046201 DOI: 10.1038/s41598-022-10882-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/13/2022] [Indexed: 11/28/2022] Open
Abstract
Cell deformability is a useful feature for diagnosing various diseases (e.g., the invasiveness of cancer cells). Existing methods commonly inflict pressure on cells and observe changes in cell areas, diameters, or thickness according to the degree of pressure. Then, the Young’s moduli (i.e., a measure of deformability) of cells are estimated based on the assumption that the degrees of the changes are inversely proportional to Young’s moduli. However, manual measurements of the physical changes in cells are labor-intensive, and the subjectivity of the operators can intervene during this step, thereby causing considerable uncertainty. Further, because the shapes of cells are nonuniform, we cannot ensure the assumption for linear correlations of physical changes in cells with their deformability. Therefore, this study aims at measuring non-linear elastic moduli of live cells (degrees of cell deformability) automatically by employing conventional neural networks (CNN) and multilayer perceptrons (MLP) while preserving (or enhancing) the accuracy of the manual methods. First, we obtain photomicrographs of cells on multiple pressure levels using single-beam acoustic tweezers, and then, we suggest an image preprocessing method for emphasizing changes in cell areas on the photomicrographs. The CNN model is trained to measure the ratios of the cell area change at each pressure level. Then, we apply the multilayer perceptron (MLP) to learn the correlations of the cell area change ratios according to the pressure levels with cell deformability. The accuracy of the CNN was evaluated using two types of breast cancer cells: MDA-MB-231 (invasive) and MCF-7 (noninvasive). The MLP was assessed using five different beads (Young’s moduli from 0.214 to 9.235 kPa), which provides standardized reference data of the non-linear elastic moduli of live cells. Finally, we validated the practicality of the proposed system by examining whether the non-linear elastic moduli estimated by the proposed system can distinguish invasive breast cancer cells from noninvasive ones.
Collapse
|
8
|
Jin M, Seo SH, Kim BS, Hwang S, Kang YG, Shin JW, Cho KH, Byeon J, Shin MC, Kim D, Yoon C, Min KA. Combined Application of Prototype Ultrasound and BSA-Loaded PLGA Particles for Protein Delivery. Pharm Res 2021; 38:1455-1466. [PMID: 34398405 DOI: 10.1007/s11095-021-03091-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/02/2021] [Indexed: 01/22/2023]
Abstract
PURPOSE To develop an in vitro culture system for tissue engineering to mimic the in vivo environment and evaluate the applicability of ultrasound and PLGA particle system. METHODS For tissue engineering, large molecules such as growth factors for cell differentiation should be supplied in a controlled manner into the culture system, and the in vivo microenvironment need to be reproduced in the system for the regulation of cellular function. In this study, portable prototype ultrasound with low intensity was devised and tested for protein release from bovine serum albumin (BSA)-loaded poly(lactic-co-glycolic acid) (PLGA) particles. RESULTS BSA-loaded PLGA particles were prepared using various types of PLGA reagents and their physicochemical properties were characterized including particle size, shape, or aqueous wetting profiles. The BSA-loaded formulation showed nano-ranged size distribution with optimal physical stability during storage period, and protein release behaviors in a controlled manner. Notably, the application of prototype ultrasound with low intensity influenced protein release patterns in the culture system containing the BSA-loaded PLGA formulation. The results revealed that the portable ultrasound set controlled by the computer could contribute for the protein delivery in the culture medium. CONCLUSIONS This study suggests that combined application with ultrasound and protein-loaded PLGA encapsulation system could be utilized to improve culture system for tissue engineering or cell regeneration therapy.
Collapse
Affiliation(s)
| | | | - Bo Seok Kim
- Department of Nanoscience and Engineering, School of Biomedical Engineering, Inje University, Gimhae, 50834, Republic of Korea
| | - Seungmi Hwang
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Injero, Gimhae, Gyeongnam, 50834, Republic of Korea
| | - Yun Gyeong Kang
- Department of Biomedical Engineering, Inje University, Gimhae, 50834, Republic of Korea
| | - Jung-Woog Shin
- Department of Biomedical Engineering, Inje University, Gimhae, 50834, Republic of Korea
| | - Kwan Hyung Cho
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Injero, Gimhae, Gyeongnam, 50834, Republic of Korea
| | - Jimi Byeon
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Injero, Gimhae, Gyeongnam, 50834, Republic of Korea
| | - Meong Cheol Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Doyeon Kim
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Injero, Gimhae, Gyeongnam, 50834, Republic of Korea
| | - Changhan Yoon
- Department of Nanoscience and Engineering, School of Biomedical Engineering, Inje University, Gimhae, 50834, Republic of Korea. .,Department of Biomedical Engineering, Inje University, Gimhae, 50834, Republic of Korea.
| | - Kyoung Ah Min
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Injero, Gimhae, Gyeongnam, 50834, Republic of Korea.
| |
Collapse
|
9
|
Jin M, Kim BS, Seo SH, Kim M, Kang YG, Shin JW, Cho KH, Shin MC, Yoon C, Min KA. Synergistic Effect of Growth Factor Releasing Polymeric Nanoparticles and Ultrasound Stimulation on Osteogenic Differentiation. Pharmaceutics 2021; 13:pharmaceutics13040457. [PMID: 33801692 PMCID: PMC8066944 DOI: 10.3390/pharmaceutics13040457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 01/16/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been extensively used in the tissue regeneration therapy. Ex vivo therapy with well-differentiated osteogenic cells is known as an efficient treatment for musculoskeletal diseases, including rheumatoid diseases. However, along with its high cost, the current therapy has limitations in terms of restoring bone regeneration procedures. An efficient process for the cell differentiation to obtain a large number of functionalized osteogenic cells is necessary. Therefore, it is strongly recommended to develop strategies to produce sufficient numbers of well-differentiated osteogenic cells from the MSCs. In general, differentiation media with growth factors have been used to facilitate cell differentiation. In the present study, the poly (lactic-co-glycolic acid) (PLGA) nanoparticles incorporating the growth factors were included in the media, resulting in releasing growth factors (dexamethasone and β-glycerophosphate) in the media in the controlled manner. Stable growth and early differentiation of osteogenic cells were achieved by the PLGA-based growth factor releasing system. Moreover, low intensity pulsed ultrasound was applied to this system to induce cell differentiation process. The results revealed that, as a biomarker at early stage of osteogenic cell differentiation, Lamin A/C nuclear protein was efficiently expressed in the cells growing in the presence of PLGA-based growth factor reservoirs and ultrasound. In conclusion, our results showed that the ultrasound stimulation combined with polymeric nanoparticles releasing growth factors could potentially induce osteogenic cell differentiation.
Collapse
Affiliation(s)
- Minki Jin
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Injero, Gimhae 50834, Gyeongnam, Korea; (M.J.); (K.H.C.)
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Bo Seok Kim
- Department of Nanoscience and Engineering, School of Biomedical Engineering, Inje University, 197 Injero, Gimhae 50834, Gyeongnam, Korea; (B.S.K.); (S.H.S.)
| | - Sung Ho Seo
- Department of Nanoscience and Engineering, School of Biomedical Engineering, Inje University, 197 Injero, Gimhae 50834, Gyeongnam, Korea; (B.S.K.); (S.H.S.)
| | - Minjeong Kim
- Department of Biomedical Engineering, Inje University, 197 Injero, Gimhae 50834, Gyeongnam, Korea; (M.K.); (Y.G.K.); (J.-W.S.)
| | - Yun Gyeong Kang
- Department of Biomedical Engineering, Inje University, 197 Injero, Gimhae 50834, Gyeongnam, Korea; (M.K.); (Y.G.K.); (J.-W.S.)
| | - Jung-Woog Shin
- Department of Biomedical Engineering, Inje University, 197 Injero, Gimhae 50834, Gyeongnam, Korea; (M.K.); (Y.G.K.); (J.-W.S.)
| | - Kwan Hyung Cho
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Injero, Gimhae 50834, Gyeongnam, Korea; (M.J.); (K.H.C.)
| | - Meong Cheol Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju 52828, Gyeongnam, Korea;
| | - Changhan Yoon
- Department of Nanoscience and Engineering, School of Biomedical Engineering, Inje University, 197 Injero, Gimhae 50834, Gyeongnam, Korea; (B.S.K.); (S.H.S.)
- Department of Biomedical Engineering, Inje University, 197 Injero, Gimhae 50834, Gyeongnam, Korea; (M.K.); (Y.G.K.); (J.-W.S.)
- Correspondence: (C.Y.); (K.A.M.); Tel.: +82-55-320-3301 (C.Y.); +82-55-320-3459 (K.A.M.)
| | - Kyoung Ah Min
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Injero, Gimhae 50834, Gyeongnam, Korea; (M.J.); (K.H.C.)
- Correspondence: (C.Y.); (K.A.M.); Tel.: +82-55-320-3301 (C.Y.); +82-55-320-3459 (K.A.M.)
| |
Collapse
|