1
|
Chen H, Li N, Cai Y, Ma C, Ye Y, Shi X, Guo J, Han Z, Liu Y, Wei X. Exosomes in neurodegenerative diseases: Therapeutic potential and modification methods. Neural Regen Res 2026; 21:478-490. [PMID: 40326981 DOI: 10.4103/nrr.nrr-d-24-00720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/14/2024] [Indexed: 05/07/2025] Open
Abstract
In recent years, exosomes have garnered extensive attention as therapeutic agents and early diagnostic markers in neurodegenerative disease research. Exosomes are small and can effectively cross the blood-brain barrier, allowing them to target deep brain lesions. Recent studies have demonstrated that exosomes derived from different cell types may exert therapeutic effects by regulating the expression of various inflammatory cytokines, mRNAs, and disease-related proteins, thereby halting the progression of neurodegenerative diseases and exhibiting beneficial effects. However, exosomes are composed of lipid bilayer membranes and lack the ability to recognize specific target cells. This limitation can lead to side effects and toxicity when they interact with non-specific cells. Growing evidence suggests that surface-modified exosomes have enhanced targeting capabilities and can be used as targeted drug-delivery vehicles that show promising results in the treatment of neurodegenerative diseases. In this review, we provide an up-to-date overview of existing research aimed at devising approaches to modify exosomes and elucidating their therapeutic potential in neurodegenerative diseases. Our findings indicate that exosomes can efficiently cross the blood-brain barrier to facilitate drug delivery and can also serve as early diagnostic markers for neurodegenerative diseases. We introduce the strategies being used to enhance exosome targeting, including genetic engineering, chemical modifications (both covalent, such as click chemistry and metabolic engineering, and non-covalent, such as polyvalent electrostatic and hydrophobic interactions, ligand-receptor binding, aptamer-based modifications, and the incorporation of CP05-anchored peptides), and nanomaterial modifications. Research into these strategies has confirmed that exosomes have significant therapeutic potential for neurodegenerative diseases. However, several challenges remain in the clinical application of exosomes. Improvements are needed in preparation, characterization, and optimization methods, as well as in reducing the adverse reactions associated with their use. Additionally, the range of applications and the safety of exosomes require further research and evaluation.
Collapse
Affiliation(s)
- Hongli Chen
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, China
| | - Na Li
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, China
| | - Yuanhao Cai
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, China
- School of Intelligent Information Engineering, Medicine & Technology College of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Chunyan Ma
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, China
| | - Yutong Ye
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, China
| | - Xinyu Shi
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, China
| | - Jun Guo
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, China
| | - Zhibo Han
- Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceuticals, National Engineering Research Center of Cell Products, AmCellGene Co., Ltd., Tianjin, China
| | - Yi Liu
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, China
| | - Xunbin Wei
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Cancer Hospital & Institute, International Cancer Institute, Institute of Medical Technology, Peking University Health Science Center, Department of Biomedical Engineering, Peking University, Beijing, China
| |
Collapse
|
2
|
Leung K, Schaefer K, Lin Z, Yao Z, Wells JA. Engineered Proteins and Chemical Tools to Probe the Cell Surface Proteome. Chem Rev 2025; 125:4069-4110. [PMID: 40178992 PMCID: PMC12022999 DOI: 10.1021/acs.chemrev.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/05/2025] [Accepted: 03/07/2025] [Indexed: 04/05/2025]
Abstract
The cell surface proteome, or surfaceome, is the hub for cells to interact and communicate with the outside world. Many disease-associated changes are hard-wired within the surfaceome, yet approved drugs target less than 50 cell surface proteins. In the past decade, the proteomics community has made significant strides in developing new technologies tailored for studying the surfaceome in all its complexity. In this review, we first dive into the unique characteristics and functions of the surfaceome, emphasizing the necessity for specialized labeling, enrichment, and proteomic approaches. An overview of surfaceomics methods is provided, detailing techniques to measure changes in protein expression and how this leads to novel target discovery. Next, we highlight advances in proximity labeling proteomics (PLP), showcasing how various enzymatic and photoaffinity proximity labeling techniques can map protein-protein interactions and membrane protein complexes on the cell surface. We then review the role of extracellular post-translational modifications, focusing on cell surface glycosylation, proteolytic remodeling, and the secretome. Finally, we discuss methods for identifying tumor-specific peptide MHC complexes and how they have shaped therapeutic development. This emerging field of neo-protein epitopes is constantly evolving, where targets are identified at the proteome level and encompass defined disease-associated PTMs, complexes, and dysregulated cellular and tissue locations. Given the functional importance of the surfaceome for biology and therapy, we view surfaceomics as a critical piece of this quest for neo-epitope target discovery.
Collapse
Affiliation(s)
- Kevin
K. Leung
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Kaitlin Schaefer
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Zhi Lin
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Zi Yao
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - James A. Wells
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
- Department
of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
3
|
Tanu, Chaturvedi M, Fatima S, Yadav SS, Padhy PK, Tiwari S, Seth K, Chaturvedi RK, Priya S. Expression analysis of molecular chaperones associated with disaggregation complex in rotenone-induced Parkinsonian rat model. Int J Biochem Cell Biol 2025; 181:106752. [PMID: 39952347 DOI: 10.1016/j.biocel.2025.106752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/30/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the aberrant aggregation and phosphorylation (ser129) of α-synuclein (α-syn, a presynaptic protein) which leads to the formation of pathogenic Lewy bodies. A critical factor in the pathogenesis of PD is the disruption of the cellular protein quality control system, where molecular chaperones and their co-chaperones are integral for mitigating proteotoxic stress. Although the role of molecular chaperones in PD and other protein aggregation diseases has been extensively investigated, the in vivo investigation of disaggregation chaperones, including HSP70, HSP105, and co-chaperone DNAJBs, remains relatively limited. The present study aims to elucidate the expression dynamics of the disaggregation molecular chaperones within the substantia nigra pars compacta of the rotenone-induced Parkinsonian rat model and its association with α-syn aggregation. The rotenone-treated rats exhibited significant behavioural symptoms, α-syn aggregation and degeneration of dopaminergic neurons, confirming the development of Parkinsonism. Significant upregulation of α-syn expression/phosphorylation and co-localization in TH+ve neurons in the SNpc of treated rats was observed. Further, the gene and protein analysis of HSP70, DNAJB6, and HSP105 were found to be upregulated and TH+ve neurons showed their co-localization with p-α-synser129 expression. The total proteomic analysis of SNpc correlated the altered cellular processes with cellular homeostasis imbalance. The observations of the present study provide an in vivo analysis of disaggregation-associated molecular chaperones in Parkinsonian or α-syn related conditions. The study can be helpful for further manipulation in the expression or activity of disaggregation-related chaperones for advanced therapeutic strategies and mechanistic studies in protein aggregation-associated diseases.
Collapse
Affiliation(s)
- Tanu
- Systems Toxicology Group, FEST Division, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
| | - Minal Chaturvedi
- Systems Toxicology Group, FEST Division, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Siraj Fatima
- Systems Toxicology Group, FEST Division, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Smriti Singh Yadav
- Systems Toxicology Group, FEST Division, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prabeen Kumar Padhy
- Systems Toxicology Group, FEST Division, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Food Toxicology Group, FEST Division, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
| | - Saurabh Tiwari
- Systems Toxicology Group, FEST Division, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kavita Seth
- Systems Toxicology Group, FEST Division, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
| | - Rajnish K Chaturvedi
- Systems Toxicology Group, FEST Division, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Smriti Priya
- Systems Toxicology Group, FEST Division, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Kruczkowska W, Gałęziewska J, Buczek P, Płuciennik E, Kciuk M, Śliwińska A. Overview of Metformin and Neurodegeneration: A Comprehensive Review. Pharmaceuticals (Basel) 2025; 18:486. [PMID: 40283923 PMCID: PMC12030719 DOI: 10.3390/ph18040486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
This comprehensive review examines the therapeutic potential of metformin, a well-established diabetes medication, in treating neurodegenerative disorders. Originally used as a first-line treatment for type 2 diabetes, recent studies have begun investigating metformin's effects beyond metabolic disorders, particularly its neuroprotective capabilities against conditions like Parkinson's disease, Alzheimer's disease, Huntington's disease, and multiple sclerosis. Key findings demonstrate that metformin's neuroprotective effects operate through multiple pathways: AMPK activation enhancing cellular energy metabolism and autophagy; upregulation of antioxidant defenses; suppression of inflammation; inhibition of protein aggregation; and improvement of mitochondrial function. These mechanisms collectively address common pathological features in neurodegeneration and neuroinflammation, including oxidative stress, protein accumulation, and mitochondrial dysfunction. Clinical and preclinical evidence supporting metformin's association with improved cognitive performance, reduced risk of dementia, and modulation of pathological hallmarks of neurodegenerative diseases is critically evaluated. While metformin shows promise as a therapeutic agent, this review emphasizes the need for further investigation to fully understand its mechanisms and optimal therapeutic applications in neurodegenerative diseases.
Collapse
Affiliation(s)
- Weronika Kruczkowska
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (W.K.); (J.G.); (P.B.); (E.P.)
| | - Julia Gałęziewska
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (W.K.); (J.G.); (P.B.); (E.P.)
| | - Paulina Buczek
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (W.K.); (J.G.); (P.B.); (E.P.)
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (W.K.); (J.G.); (P.B.); (E.P.)
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland;
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland
| |
Collapse
|
5
|
Schwartzman JD, McCall M, Ghattas Y, Pugazhendhi AS, Wei F, Ngo C, Ruiz J, Seal S, Coathup MJ. Multifunctional scaffolds for bone repair following age-related biological decline: Promising prospects for smart biomaterial-driven technologies. Biomaterials 2024; 311:122683. [PMID: 38954959 DOI: 10.1016/j.biomaterials.2024.122683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/09/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
The repair of large bone defects due to trauma, disease, and infection can be exceptionally challenging in the elderly. Despite best clinical practice, bone regeneration within contemporary, surgically implanted synthetic scaffolds is often problematic, inconsistent, and insufficient where additional osteobiological support is required to restore bone. Emergent smart multifunctional biomaterials may drive important and dynamic cellular crosstalk that directly targets, signals, stimulates, and promotes an innate bone repair response following age-related biological decline and when in the presence of disease or infection. However, their role remains largely undetermined. By highlighting their mechanism/s and mode/s of action, this review spotlights smart technologies that favorably align in their conceivable ability to directly target and enhance bone repair and thus are highly promising for future discovery for use in the elderly. The four degrees of interactive scaffold smartness are presented, with a focus on bioactive, bioresponsive, and the yet-to-be-developed autonomous scaffold activity. Further, cell- and biomolecular-assisted approaches were excluded, allowing for contemporary examination of the capabilities, demands, vision, and future requisites of next-generation biomaterial-induced technologies only. Data strongly supports that smart scaffolds hold significant promise in the promotion of bone repair in patients with a reduced osteobiological response. Importantly, many techniques have yet to be tested in preclinical models of aging. Thus, greater clarity on their proficiency to counteract the many unresolved challenges within the scope of aging bone is highly warranted and is arguably the next frontier in the field. This review demonstrates that the use of multifunctional smart synthetic scaffolds with an engineered strategy to circumvent the biological insufficiencies associated with aging bone is a viable route for achieving next-generation therapeutic success in the elderly population.
Collapse
Affiliation(s)
| | - Max McCall
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Yasmine Ghattas
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Abinaya Sindu Pugazhendhi
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Fei Wei
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Christopher Ngo
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Jonathan Ruiz
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Sudipta Seal
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA; Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, USA, Orlando, FL
| | - Melanie J Coathup
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
6
|
Yim J, Park J, Kim G, Lee HH, Chung JS, Jo A, Koh M, Park J. Conditional PROTAC: Recent Strategies for Modulating Targeted Protein Degradation. ChemMedChem 2024; 19:e202400326. [PMID: 38993102 PMCID: PMC11581424 DOI: 10.1002/cmdc.202400326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Proteolysis-targeting chimeras (PROTACs) have emerged as a promising technology for inducing targeted protein degradation by leveraging the intrinsic ubiquitin-proteasome system (UPS). While the potential druggability of PROTACs toward undruggable proteins has accelerated their rapid development and the wide-range of applications across diverse disease contexts, off-tissue effects and side-effects of PROTACs have recently received attentions to improve their efficacy. To address these issues, spatial or temporal target protein degradation by PROTACs has been spotlighted. In this review, we explore chemical strategies for modulating protein degradation in a cell type-specific (spatio-) and time-specific (temporal-) manner, thereby offering insights for expanding PROTAC applications to overcome the current limitations of target protein degradation strategy.
Collapse
Affiliation(s)
- Junhyeong Yim
- Department of ChemistryKangwon National UniversityChuncheon24341Republic of Korea
- Multidimensional Genomics Research CenterKangwon National UniversityChuncheon24341Republic of Korea
| | - Junyoung Park
- Department of ChemistryKangwon National UniversityChuncheon24341Republic of Korea
- Institute for Molecular Science and Fusion TechnologyKangwon National UniversityChuncheon24341Republic of Korea
| | - Gabin Kim
- Department of Chemistry and ChemistryInstitute for Functional MaterialsPusan National UniversityBusan46241Republic of Korea
| | - Hyung Ho Lee
- Department of UrologyUrological Cancer CenterResearch Institute and Hospital of National Cancer CenterGoyang10408Republic of Korea
| | - Jin Soo Chung
- Department of UrologyUrological Cancer CenterResearch Institute and Hospital of National Cancer CenterGoyang10408Republic of Korea
| | - Ala Jo
- Center for NanomedicineInstitute for Basic ScienceSeoul03722Republic of Korea
| | - Minseob Koh
- Department of Chemistry and ChemistryInstitute for Functional MaterialsPusan National UniversityBusan46241Republic of Korea
| | - Jongmin Park
- Department of ChemistryKangwon National UniversityChuncheon24341Republic of Korea
- Multidimensional Genomics Research CenterKangwon National UniversityChuncheon24341Republic of Korea
- Institute for Molecular Science and Fusion TechnologyKangwon National UniversityChuncheon24341Republic of Korea
| |
Collapse
|
7
|
Li Y, Yao Q, Xu H, Ren J, Zhu Y, Guo C, Li Y. Lung Single-Cell Transcriptomics Offers Insights into the Pulmonary Interstitial Toxicity Caused by Silica Nanoparticles. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2024; 2:786-801. [PMID: 39568699 PMCID: PMC11574632 DOI: 10.1021/envhealth.4c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 11/22/2024]
Abstract
The adverse respiratory outcomes motivated by silica nanoparticles (SiNPs) exposure have received increasing attention. Herein, we aim to elucidate the interplay of diverse cell populations in the lungs and key contributors in triggering lung injuries caused by SiNPs. We conducted a subchronic respiratory exposure model of SiNPs via intratracheal instillation in Wistar rats, where rats were administered with 1.5, 3.0, or 6.0 mg/kg body weight SiNPs once a week for 12 times in total. We revealed that SiNPs caused pulmonary interstitial injury in rats by histopathological examination and pulmonary hydroxyproline determination. Further, a single-cell RNA-Seq via screening 10 457 cells in the rat lungs disclosed cell-specific responses to SiNPs and cell-to-cell interactions within the alveolar macrophages, epithelial cells, and fibroblasts from rat lungs. These disturbed responses were principally related to the dysregulation of protein homeostasis (proteostasis), accompanied by an inflammatory response in macrophages, cell death in epithelial, proliferation, and extracellular matrix deposition in fibroblast. These cell-specific responses may serve a synergistic role in the pathogenesis of pulmonary interstitial disease triggered by SiNPs. In particular, the analyses of gene interaction networks and gene-disease associations filtered out heat shock proteins (Hsps) family genes crucial to the observed pulmonary lesions caused by SiNPs. Of note, both GEO database analysis and our experiments' validation indicated that Hsps, especially Hspd1, may be a key contributor to pulmonary interstitial injury, possibly through triggering oxidative stress, immune response, and disrupting protein homeostasis. Taken together, our study provides insights into pulmonary toxic effects and underlying molecular mechanisms of SiNPs from a single-cell perspective.
Collapse
Affiliation(s)
- Yan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qing Yao
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Hailin Xu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jiaze Ren
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yurou Zhu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| |
Collapse
|
8
|
Verma AK, Roy B, Dwivedi Y. Decoding the molecular script of 2'-O-ribomethylation: Implications across CNS disorders. Heliyon 2024; 10:e39036. [PMID: 39524798 PMCID: PMC11550049 DOI: 10.1016/j.heliyon.2024.e39036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Emerging evidence underscores the critical role of impaired mRNA translation in various neurobiological conditions. Ribosomal RNA (rRNA), essential for protein synthesis, undergoes crucial post-transcriptional modifications such as 2'-O-ribose methylation, pseudouridylation, and base modifications. These modifications, particularly 2'-O-ribose methylation is vital for stabilizing rRNA structures and optimizing translation efficiency by regulating RNA integrity and its interactions with proteins. Concentrated in key regions like decoding sites and the peptidyl transferase center, dysregulation of these modifications can disrupt ribosomal function, contributing to the pathogenesis of diverse neurological conditions, including mental health disorders, developmental abnormalities, and neurodegenerative diseases. Mechanistically, 2'-O-ribose methylation involves interactions between small nucleolar RNAs (snoRNAs), snoRNPs, and fibrillarin, forming a complex regulatory network crucial for maintaining ribosomal integrity and function. Recent research highlights the association of defective ribosome biogenesis with a spectrum of CNS disorders, emphasizing the importance of understanding rRNA mechanisms in disease pathology. This review focuses on the pivotal role of 2'-O-ribose methylation in shaping ribosomal function and its potential implications for unraveling the pathophysiology of CNS disorders. Insights gained from studying these RNA modifications could pave the way for new therapeutic strategies targeting ribosomal dysfunction and associated neuropathological conditions, advancing precision medicine and therapeutic interventions.
Collapse
Affiliation(s)
- Anuj K. Verma
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bhaskar Roy
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
9
|
Peng A, Li J, Xing J, Yao Y, Niu X, Zhang K. The function of nicotinamide phosphoribosyl transferase (NAMPT) and its role in diseases. Front Mol Biosci 2024; 11:1480617. [PMID: 39513038 PMCID: PMC11540786 DOI: 10.3389/fmolb.2024.1480617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024] Open
Abstract
Nicotinamide phosphoribosyl transferase (NAMPT) is a rate-limiting enzyme in the mammalian nicotinamide adenine dinucleotide (NAD) salvage pathway, and plays a vital role in the regulation of cell metabolic activity, reprogramming, aging and apoptosis. NAMPT synthesizes nicotinamide mononucleotide (NMN) through enzymatic action, which is a key protein involved in host defense mechanism and plays an important role in metabolic homeostasis and cell survival. NAMPT is involved in NAD metabolism and maintains intracellular NAD levels. Sirtuins (SIRTs) are a family of nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylases (HDACs), the members are capable of sensing cellular NAD+ levels. NAMPT-NAD and SIRT constitute a powerful anti-stress defense system. In this paper, the structure, biological function and correlation with diseases of NAMPT are introduced, aiming to provide new ideas for the targeted therapy of related diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Center Hospital, Taiyuan, China
| |
Collapse
|
10
|
Kron NS, Fieber LA, Baker L, Campbell C, Schmale MC. Host response to Aplysia Abyssovirus 1 in nervous system and gill. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 159:105211. [PMID: 38885747 PMCID: PMC11378725 DOI: 10.1016/j.dci.2024.105211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
The California sea hare (Aplysia californica) is a model for age associated cognitive decline. Recent researched identified a novel nidovirus, Aplysia Abyssovirus 1, with broad tropism enriched in the Aplysia nervous system. This virus is ubiquitous in wild and maricultured, young and old animals without obvious pathology. Here we re-evaluated gene expression data from several previous studies to investigate differential expression in the nervous system and gill in response to virus and aging as well as the mutational spectrum observed in the viral sequences obtained from these datasets. Viral load and age were highly correlated, indicating persistent infection. Upregulated genes in response to virus were enriched for immune genes and signatures of ER and proteostatic stress, while downregulated genes were enriched for mitochondrial metabolism. Differential expression with respect to age suggested increased iron accumulation and decreased glycolysis, fatty acid metabolism, and proteasome function. Interaction of gene expression trends associated with viral infection and aging suggest that viral infection likely plays a role in aging in the Aplysia nervous system. Mutation analysis of viral RNA identified signatures suggesting ADAR and AID/APOBEC like deaminase act as part of Aplysia anti-viral defense.
Collapse
Affiliation(s)
- Nicholas S Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA.
| | - Lynne A Fieber
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA
| | - Lydia Baker
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA
| | | | - Michael C Schmale
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA
| |
Collapse
|
11
|
Marzetti E, Calvani R, Landi F, Coelho-Júnior HJ, Picca A. Mitochondrial Quality Control Processes at the Crossroads of Cell Death and Survival: Mechanisms and Signaling Pathways. Int J Mol Sci 2024; 25:7305. [PMID: 39000412 PMCID: PMC11242688 DOI: 10.3390/ijms25137305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Biological aging results from an accumulation of damage in the face of reduced resilience. One major driver of aging is cell senescence, a state in which cells remain viable but lose their proliferative capacity, undergo metabolic alterations, and become resistant to apoptosis. This is accompanied by complex cellular changes that enable the development of a senescence-associated secretory phenotype (SASP). Mitochondria, organelles involved in energy provision and activities essential for regulating cell survival and death, are negatively impacted by aging. The age-associated decline in mitochondrial function is also accompanied by the development of chronic low-grade sterile inflammation. The latter shares some features and mediators with the SASP. Indeed, the unloading of damage-associated molecular patterns (DAMPs) at the extracellular level can trigger sterile inflammatory responses and mitochondria can contribute to the generation of DAMPs with pro-inflammatory properties. The extrusion of mitochondrial DNA (mtDNA) via mitochondrial outer membrane permeabilization under an apoptotic stress triggers senescence programs. Additional pathways can contribute to sterile inflammation. For instance, pyroptosis is a caspase-dependent inducer of systemic inflammation, which is also elicited by mtDNA release and contributes to aging. Herein, we overview the molecular mechanisms that may link mitochondrial dyshomeostasis, pyroptosis, sterile inflammation, and senescence and discuss how these contribute to aging and could be exploited as molecular targets for alleviating the cell damage burden and achieving healthy longevity.
Collapse
Affiliation(s)
- Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy
| | - Francesco Landi
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy
| | - Helio José Coelho-Júnior
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Anna Picca
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy
- Department of Medicine and Surgery, LUM University, SS100 km 18, 70010 Casamassima, Italy
| |
Collapse
|
12
|
Doke AA, Jha SK. Electrostatics Choreographs the Aggregation Dynamics of Full-Length TDP-43 via a Monomeric Amyloid Precursor. Biochemistry 2024; 63:1553-1568. [PMID: 38820318 DOI: 10.1021/acs.biochem.4c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
TDP-43 is a ubiquitously expressed, multidomain functional protein that is distinctively known to form aggregates in many fatal neurodegenerative disorders. However, the information for arresting TDP-43 aggregation is missing due to a lack of understanding of the molecular mechanism of the aggregation and structural properties of TDP-43. TDP-43 is inherently prone to aggregation and has minimal protein solubility. Multiple studies have been performed on the smaller parts of TDP-43 or the full-length protein attached to a large solubilization tag. However, the presence of co-solutes or solubilization tags is observed to interfere with the molecular properties and aggregation mechanism of full-length TDP-43. Notably, this study populated and characterized the native, dimeric state of TDP-43 without the interference of co-solutes or protein modifications. We observed that the electrostatics of the local environment is capable of the partial unfolding and monomerization of the native dimeric state of TDP-43 into an amyloidogenic molten globule. By employing the tools of thermodynamics and kinetics, we reveal the structural characteristics and temporal order of the early intermediates and transition states during the transition of the molten globule to β-rich, amyloid-like aggregates of TDP-43, which is governed by the electrostatics of the environment. The current advanced understanding of the nature of native and early aggregation-prone intermediates, early steps, and the influence of electrostatics in TDP-43 aggregation is essential for drug design.
Collapse
Affiliation(s)
- Abhilasha A Doke
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
13
|
Kettunen P, Koistinaho J, Rolova T. Contribution of CNS and extra-CNS infections to neurodegeneration: a narrative review. J Neuroinflammation 2024; 21:152. [PMID: 38845026 PMCID: PMC11157808 DOI: 10.1186/s12974-024-03139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Central nervous system infections have been suggested as a possible cause for neurodegenerative diseases, particularly sporadic cases. They trigger neuroinflammation which is considered integrally involved in neurodegenerative processes. In this review, we will look at data linking a variety of viral, bacterial, fungal, and protozoan infections to Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis and unspecified dementia. This narrative review aims to bring together a broad range of data currently supporting the involvement of central nervous system infections in the development of neurodegenerative diseases. The idea that no single pathogen or pathogen group is responsible for neurodegenerative diseases will be discussed. Instead, we suggest that a wide range of susceptibility factors may make individuals differentially vulnerable to different infectious pathogens and subsequent pathologies.
Collapse
Affiliation(s)
- Pinja Kettunen
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Jari Koistinaho
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | - Taisia Rolova
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Kulesskaya N, Bhattacharjee A, Holmström KM, Vuorio P, Henriques A, Callizot N, Huttunen HJ. HER-096 is a CDNF-derived brain-penetrating peptidomimetic that protects dopaminergic neurons in a mouse synucleinopathy model of Parkinson's disease. Cell Chem Biol 2024; 31:593-606.e9. [PMID: 38039968 DOI: 10.1016/j.chembiol.2023.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/28/2023] [Accepted: 11/07/2023] [Indexed: 12/03/2023]
Abstract
Cerebral dopamine neurotrophic factor (CDNF) is an unconventional neurotropic factor that modulates unfolded protein response (UPR) pathway signaling and alleviates endoplasmic reticulum (ER) stress providing cytoprotective effects in different models of neurodegenerative disorders. Here, we developed a brain-penetrating peptidomimetic compound based on human CDNF. This compound called HER-096 shows similar potency and mechanism of action as CDNF, and promotes dopamine neuron survival, reduces α-synuclein aggregation and modulates UPR signaling in in vitro models. HER-096 is metabolically stable and able to penetrate to cerebrospinal (CSF) and brain interstitial fluids (ISF) after subcutaneous administration, with an extended CSF and brain ISF half-life compared to plasma. Subcutaneously administered HER-096 modulated UPR pathway activity, protected dopamine neurons, and reduced α-synuclein aggregates and neuroinflammation in substantia nigra of aged mice with synucleinopathy. Peptidomimetic HER-096 is a candidate for development of a disease-modifying therapy for Parkinson's disease with a patient-friendly route of administration.
Collapse
|
15
|
Talepoor AG, Doroudchi M. Regulatory RNAs in immunosenescence. Immun Inflamm Dis 2024; 12:e1209. [PMID: 38456619 PMCID: PMC10921898 DOI: 10.1002/iid3.1209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Immunosenescence is a multifactorial stress response to different intrinsic and extrinsic insults that cause immune deterioration and is accompanied by genomic or epigenomic perturbations. It is now widely recognized that genes and proteins contributing in the process of immunosenescence are regulated by various noncoding (nc) RNAs, including microRNAs (miRNAs), long ncRNAs, and circular RNAs. AIMS This review article aimed to evaluate the regulatore RNAs roles in the process of immunosenescence. METHODS We analyzed publications that were focusing on the different roles of regulatory RNAs on the several aspects of immunosenescence. RESULTS In the immunosenescence setting, ncRNAs have been found to play regulatory roles at both transcriptional and post-transcriptional levels. These factors cooperate to regulate the initiation of gene expression programs and sustaining the senescence phenotype and proinflammatory responses. CONCLUSION Immunosenescence is a complex process with pivotal alterations in immune function occurring with age. The extensive network that drive immunosenescence-related features are are mainly directed by a variety of regulatory RNAs such as miRNAs, lncRNAs, and circRNAs. Latest findings about regulation of senescence by ncRNAs in the innate and adaptive immune cells as well as their role in the immunosenescence pathways, provide a better understanding of regulatory RNAs function in the process of immunosenescence.
Collapse
Affiliation(s)
- Atefe Ghamar Talepoor
- Department of Immunology, School of MedicineShiraz University of Medical SciencesShirazIran
- Autoimmune Diseases Research CenterUniversity of Medical SciencesShirazIran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of MedicineShiraz University of Medical SciencesShirazIran
| |
Collapse
|
16
|
Upadhyay A, Joshi V. Proteasome Activators and Ageing: Restoring Proteostasis Using Small Molecules. Subcell Biochem 2024; 107:21-41. [PMID: 39693018 DOI: 10.1007/978-3-031-66768-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Ageing is an inevitable phenomenon that remains under control of a plethora of signalling pathways and regulatory mechanisms. Slowing of cellular homeostasis and repair pathways, declining genomic and proteomic integrity, and deficient stress regulatory machinery may cause accumulating damage triggering initiation of pathways leading to ageing-associated changes. Multiple genetic studies in small laboratory organisms focused on the manipulation of proteasomal activities have shown promising results in delaying the age-related decline and improving the lifespan. In addition, a number of studies indicate a prominent role of small molecule-based proteasome activators showing positive results in ameliorating the stress conditions, protecting degenerating neurons, restoring cognitive functions, and extending life span of organisms. In this chapter, we provide a brief overview of the multi-enzyme proteasome complex, its structure, subunit composition and variety of cellular functions. We also highlight the strategies applied in the past to modulate the protein degradation efficiency of proteasome and their impact on rebalancing the proteostasis defects. Finally, we provide a descriptive account of proteasome activation mechanisms and small molecule-based strategies to improve the overall organismal health and delay the development of age-associated pathologies.
Collapse
Affiliation(s)
- Arun Upadhyay
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Department of Bioscience and Biomedical Engineering, Indian Institute of Technology Bhilai, Chhattisgarh, India.
| | - Vibhuti Joshi
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
17
|
Raghul Kannan S, Tamizhselvi R. N-acetyltransferase and inflammation: Bridging an unexplored niche. Gene 2023; 887:147730. [PMID: 37625560 DOI: 10.1016/j.gene.2023.147730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
Protein N-terminal (Nt) acetylation is an essential post-translational process catalysed by N-acetyltransferases or N-terminal acetyltransferases (NATs). Over the past several decades, several types of NATs (NatA- NatH) have been identified along with their substrates, explaining their significance in eukaryotes. It affects protein stability, protein degradation, protein translocation, and protein-protein interaction. NATs have recently drawn attention as they are associated with the pathogenesis of human diseases. In particular, NAT-induced epigenetic modifications play an important role in the control of mitochondrial function, which may lead to inflammatory diseases. NatC knockdown causes a marked reduction in mitochondrial membrane proteins, impairing their functions, and NatA affects mitophagy via reduced phosphorylation and transcription of the autophagy receptor. However, the NAT-mediated mitochondrial epigenetic mechanisms involved in the inflammatory process remain unexplored. The current review will impart an overview of the biological functions and aberrations of various NAT, which may provide a novel therapeutic strategy for inflammatory disorders.
Collapse
Affiliation(s)
- Sampath Raghul Kannan
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Ramasamy Tamizhselvi
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
18
|
Kubra KT, Barabutis N. Ceapin-A7 potentiates lipopolysaccharide-induced endothelial injury. J Biochem Mol Toxicol 2023; 37:e23460. [PMID: 37431958 PMCID: PMC10782819 DOI: 10.1002/jbt.23460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/14/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023]
Abstract
Barrier dysfunction is the hallmark of severe lung injury, including acute respiratory distress syndrome. Efficient medical countermeasures to counteract endothelial hyperpermeability do not exist, hence the mortality rates of disorders related to barrier abnormalities are unacceptable high. The unfolded protein response is a highly conserved mechanism, which aims to support the cells against endoplasmic reticulum stress, and ATF6 is a protein sensor that triggers its activation. In the current study, we investigate the effects of ATF6 suppression in LPS-induced endothelial inflammation. Our observations suggest that Ceapin-A7, which is an ATF6 suppressor, potentiates LPS-induced STAT3 and JAK2 activation. Hence ATF6 activation may serve as a new therapeutic possibility toward diseases related to barrier dysfunction.
Collapse
Affiliation(s)
- Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA
| |
Collapse
|
19
|
Walker A, Czyz DM. Oh my gut! Is the microbial origin of neurodegenerative diseases real? Infect Immun 2023; 91:e0043722. [PMID: 37750713 PMCID: PMC10580905 DOI: 10.1128/iai.00437-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
There is no cure or effective treatment for neurodegenerative protein conformational diseases (PCDs), such as Alzheimer's or Parkinson's diseases, mainly because the etiology of these diseases remains elusive. Recent data suggest that unique changes in the gut microbial composition are associated with these ailments; however, our current understanding of the bacterial role in the pathogenesis of PCDs is hindered by the complexity of the microbial communities associated with specific microbiomes, such as the gut, oral, or vaginal microbiota. The composition of these specific microbiomes is regarded as a unique fingerprint affected by factors such as infections, diet, lifestyle, and antibiotics. All of these factors also affect the severity of neurodegenerative diseases. The majority of studies that reveal microbial contribution are correlational, and various models, including worm, fly, and mouse, are being utilized to decipher the role of individual microbes that may affect disease onset and progression. Recent evidence from across model organisms and humans shows a positive correlation between the presence of gram-negative enteropathogenic bacteria and the pathogenesis of PCDs. While these correlational studies do not provide a mechanistic explanation, they do reveal contributing bacterial species and provide an important basis for further investigation. One of the lurking concerns related to the microbial contribution to PCDs is the increasing prevalence of antibiotic resistance and poor antibiotic stewardship, which ultimately select for proteotoxic bacteria, especially the gram-negative species that are known for intrinsic resistance. In this review, we summarize what is known about individual microbial contribution to PCDs and the potential impact of increasing antimicrobial resistance.
Collapse
Affiliation(s)
- Alyssa Walker
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Daniel M. Czyz
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
20
|
ZHOU H, LI H, WANG H. Potential protective effects of the water-soluble Chinese propolis on experimental ulcerative colitis. J TRADIT CHIN MED 2023; 43:925-933. [PMID: 37679980 PMCID: PMC10465833 DOI: 10.19852/j.cnki.jtcm.20230727.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/24/2022] [Indexed: 09/09/2023]
Abstract
OBJECTIVE To investigate the outcome of Chinese water-soluble propolis (WSP) on the inflammatory response and oxidative stress (OS) of colonic mucosa in rats with ulcerative colitis. METHODS Dextran sulfate sodium (DSS) was employed to establish the ucerative colitis (UC) rat model. Forty-eight male rats were arbitrarily separated into six groups, namely control, UC, low-dose water-soluble propolis (L-WSP), medium-dose water-soluble propolis (M-WSP), high-dose water-soluble propolis (H-WSP), and sulfasalazine (Sulfa). In this study, we adopted a method of pre-administration and reconstruction of the model that assessed the water-soluble propolis mediated protection against DSS-induced UC rats. Moreover, we examined the body weight (BW), disease activity index (DAI), bloody stool, colon length, and intestinal mucosal injury index of rats. In addition, using enzyme linked immunosorbent assays, we assessed indicators, such as, colonic myeloperoxidase (MPO), interleukin-6 (IL-6), interleukin-9 (IL-9), tumor necrosis factor-ɑ (TNF-ɑ), superoxide dismutase (SOD), malondialdehyde, and glutathione peroxidase (GSH-Px) levels. RESULTS The pro-inflammatory cytokine expression, as well as OS, was increased in the model rats. However, upon WSP intervention, both pro-inflammatory cytokine levels and OS reduced dramatically, and the therapeutic effect was dose-dependent. CONCLUSION WSP downregulates OS by enhancing the function of endogenous antioxidant enzymes like SOD and GSH-Px, that inhibit neutrophil activity, as well as diminish pro-inflammatory cytokines like TNF-ɑ, IL-6, and IL-9, along with mechanisms that attenuate intestinal inflammation in UC rat model.
Collapse
Affiliation(s)
- Hua ZHOU
- 1 Department of Physiology, Anhui Medical College, Hefei 230601, China
| | - Hui LI
- 2 Department of Physiology, Wannan Medical College, Wuhu 241002, China
| | - Haihua WANG
- 2 Department of Physiology, Wannan Medical College, Wuhu 241002, China
| |
Collapse
|
21
|
Imbesi C, Ettari R, Irrera N, Zappalà M, Pallio G, Bitto A, Mannino F. Blunting Neuroinflammation by Targeting the Immunoproteasome with Novel Amide Derivatives. Int J Mol Sci 2023; 24:10732. [PMID: 37445907 DOI: 10.3390/ijms241310732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Neuroinflammation is an inflammatory response of the nervous tissue mediated by the production of cytokines, chemokines, and reactive oxygen species. Recent studies have shown that an upregulation of immunoproteasome is highly associated with various diseases and its inhibition attenuates neuroinflammation. In this context, the development of non-covalent immunoproteasome-selective inhibitors could represent a promising strategy for treating inflammatory diseases. Novel amide derivatives, KJ3 and KJ9, inhibit the β5 subunit of immunoproteasome and were used to evaluate their possible anti-inflammatory effects in an in vitro model of TNF-α induced neuroinflammation. Differentiated SH-SY5Y and microglial cells were challenged with 10 ng/mL TNF-α for 24 h and treated with KJ3 (1 µM) and KJ9 (1 µM) for 24 h. The amide derivatives showed a significant reduction of oxidative stress and the inflammatory cascade triggered by TNF-α reducing p-ERK expression in treated cells. Moreover, the key action of these compounds on the immunoproteasome was further confirmed by halting the IkB-α phosphorylation and the consequent inhibition of NF-kB. As downstream targets, IL-1β and IL-6 expression resulted also blunted by either KJ3 and KJ9. These preliminary results suggest that the effects of these two compounds during neuroinflammatory response relies on the reduced expression of pro-inflammatory targets.
Collapse
Affiliation(s)
- Chiara Imbesi
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 98166 Messina, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Maria Zappalà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 98166 Messina, Italy
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| |
Collapse
|
22
|
Elsasser S, Elia LP, Morimoto RI, Powers ET, Finley D, Costa B, Budron M, Tokuno Z, Wang S, Iyer RG, Barth B, Mockler E, Finkbeiner S, Gestwicki JE, Richardson RAK, Stoeger T, Tan EP, Xiao Q, Cole CM, Massey LA, Garza D, Kelly JW, Rainbolt TK, Chou CC, Masto VB, Frydman J, Nixon RA. A Comprehensive Enumeration of the Human Proteostasis Network. 2. Components of the Autophagy-Lysosome Pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.22.533675. [PMID: 36993380 PMCID: PMC10055369 DOI: 10.1101/2023.03.22.533675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The condition of having a healthy, functional proteome is known as protein homeostasis, or proteostasis. Establishing and maintaining proteostasis is the province of the proteostasis network, approximately 2,700 components that regulate protein synthesis, folding, localization, and degradation. The proteostasis network is a fundamental entity in biology that is essential for cellular health and has direct relevance to many diseases of protein conformation. However, it is not well defined or annotated, which hinders its functional characterization in health and disease. In this series of manuscripts, we aim to operationally define the human proteostasis network by providing a comprehensive, annotated list of its components. We provided in a previous manuscript a list of chaperones and folding enzymes as well as the components that make up the machineries for protein synthesis, protein trafficking into and out of organelles, and organelle-specific degradation pathways. Here, we provide a curated list of 838 unique high-confidence components of the autophagy-lysosome pathway, one of the two major protein degradation systems in human cells.
Collapse
Affiliation(s)
- Suzanne Elsasser
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Lisa P Elia
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, CA, USA
- The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Richard I Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL, USA
| | - Evan T Powers
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA USA
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Beatrice Costa
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, CA, USA
- The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Maher Budron
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, CA, USA
- The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Zachary Tokuno
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, CA, USA
- The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Shijie Wang
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, CA, USA
- The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Rajshri G Iyer
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, CA, USA
- The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Bianca Barth
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, CA, USA
- The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Eric Mockler
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, CA, USA
- The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Steve Finkbeiner
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, CA, USA
- The J. David Gladstone Institutes, San Francisco, CA, USA
- Departments of Neurology and Physiology, UCSF, San Francisco, CA, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco, CA, USA
| | - Reese A K Richardson
- Center for Genetic Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Institute on Complex Systems (NICO), Northwestern University, Evanston, IL, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL USA
| | - Thomas Stoeger
- Center for Genetic Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Institute on Complex Systems (NICO), Northwestern University, Evanston, IL, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL USA
| | - Ee Phie Tan
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA USA
| | - Qiang Xiao
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA USA
| | - Christian M Cole
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA USA
| | - Lynée A Massey
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA USA
| | - Dan Garza
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA USA
| | - Jeffery W Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - T Kelly Rainbolt
- Department of Biology and Genetics, Stanford University, Stanford, CA, USA
| | - Ching-Chieh Chou
- Department of Biology and Genetics, Stanford University, Stanford, CA, USA
| | - Vincent B Masto
- Department of Biology and Genetics, Stanford University, Stanford, CA, USA
| | - Judith Frydman
- Department of Biology and Genetics, Stanford University, Stanford, CA, USA
| | - Ralph A Nixon
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA
- Department of Psychiatry, New York University Langone Health, New York, NY, USA
- Department of Cell Biology, New York University Langone Health, New York, NY, USA
- NYU Neuroscience Institute, New York University Langone Health, New York, NY, USA
| |
Collapse
|
23
|
Ma C, Yu R, Li J, Xiao E, Guo J, Wang X, Li G, Liu P. Cross-sectional study and bioinformatics analysis to reveal the correlations of osteoporosis in patients with Parkinson's disease. Exp Gerontol 2023; 173:112111. [PMID: 36736467 DOI: 10.1016/j.exger.2023.112111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Osteoporosis and Parkinson's disease (PD) are both aging-related diseases. PD patients with comorbid osteoporosis are vulnerable to the risk of fracture, which leads to a serious public health burden to the whole society. Therefore, this study sought to reveal the clinical and genetic correlations between PD and osteoporosis based on a cross-sectional study and bioinformatics analysis. METHODS A cross-sectional study of 95 PD patients and 99 healthy controls was conducted. Ordinal logistic regression analysis was utilized to investigate the clinical correlations between PD and osteoporosis. Two microarray datasets (GSE20292, GSE35958) including PD, osteoporosis and normal control samples were retrieved from the GEO database for GO analysis, KEGG pathway analysis and PPI network. RESULTS PD patients had lower 25(OH)VitD, FN BMD, BMD and T-score of the LS and TH, as well as poorer bone mass diagnosis, yet higher PINP compared to healthy controls. Both age and UPDRS II score of PD patients were adversely correlated with BMD of LS and TH. PD diagnosis acted as an independent risk factor of osteoporosis, and PD patients had approximately double risk for osteoporosis. Bioinformatics analysis further revealed that SNAP25, AQP4, SV2B, KCND3, and ABCA2 had important diagnostic value and risk prediction value for both PD and osteoporosis. CONCLUSIONS PD diagnosis can be used as an independent risk factor for osteoporosis. Moreover, SNAP25, AQP4, SV2B, KCND3 and ABCA2 as the top 5 hub genes have important diagnostic and risk predictive value for both PD and osteoporosis.
Collapse
Affiliation(s)
- Cong Ma
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China; Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ronghui Yu
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Junhong Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Erya Xiao
- Center of Clinical Laboratory, Dushu Lake Hospital Affiliated to Soochow University, Suzhou 215000, China
| | - Jingjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoyan Wang
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Guanglei Li
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Ping Liu
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China.
| |
Collapse
|
24
|
Rybarski M, Mrohs D, Osenberg K, Hemmersbach M, Pfeffel K, Steinkamp J, Schmidt D, Violou K, Schäning R, Schmidtke K, Bader V, Andriske M, Bohne P, Mark MD, Winklhofer KF, Lübbert H, Zhu XR. Loss of parkin causes endoplasmic reticulum calcium dyshomeostasis by upregulation of reticulocalbin 1. Eur J Neurosci 2023; 57:739-761. [PMID: 36656174 DOI: 10.1111/ejn.15917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023]
Abstract
Increasing evidence suggests that astrocytes play an important role in the progression of Parkinson's disease (PD). Previous studies on our parkin knockout mouse demonstrated a higher accumulation of damaged mitochondria in astrocytes than in surrounding dopaminergic (DA) neurons, suggesting that Parkin plays a crucial role regarding their interaction during PD pathogenesis. In the current study, we examined primary mesencephalic astrocytes and neurons in a direct co-culture system and discovered that the parkin deletion causes an impaired differentiation of mesencephalic neurons. This effect required the parkin mutation in astrocytes as well as in neurons. In Valinomycin-treated parkin-deficient astrocytes, ubiquitination of Mitofusin 2 was abolished, whereas there was no significant degradation of the outer mitochondrial membrane protein Tom70. This result may explain the accumulation of damaged mitochondria in parkin-deficient astrocytes. We examined differential gene expression in the substantia nigra region of our parkin-KO mouse by RNA sequencing and identified an upregulation of the endoplasmic reticulum (ER) Ca2+ -binding protein reticulocalbin 1 (RCN1) expression, which was validated using qPCR. Immunostaining of the SN brain region revealed RCN1 expression mainly in astrocytes. Our subcellular fractionation of brain extract has shown that RCN1 is located in the ER and in mitochondria-associated membranes (MAM). Moreover, a loss of Parkin function reduced ATP-stimulated calcium-release in ER mesencephalic astrocytes that could be attenuated by siRNA-mediated RCN1 knockdown. Our results indicate that RCN1 plays an important role in ER-associated calcium dyshomeostasis caused by the loss of Parkin function in mesencephalic astrocytes, thereby highlighting the relevance of astrocyte function in PD pathomechanisms.
Collapse
Affiliation(s)
- Max Rybarski
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany.,Department of Behavioral Neuroscience, Ruh University Bochum, Bochum, Germany
| | - David Mrohs
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany
| | - Katharina Osenberg
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany.,Biofrontera Pharmaceuticals AG, Leverkusen, Germany
| | - Maren Hemmersbach
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany
| | - Katharina Pfeffel
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany
| | - Joy Steinkamp
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany
| | - David Schmidt
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany
| | - Karina Violou
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany
| | - Ruth Schäning
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany
| | - Katja Schmidtke
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany.,Department of Behavioral Neuroscience, Ruh University Bochum, Bochum, Germany
| | - Verian Bader
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Michael Andriske
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany
| | - Pauline Bohne
- Department of Behavioral Neuroscience, Ruh University Bochum, Bochum, Germany
| | - Melanie D Mark
- Department of Behavioral Neuroscience, Ruh University Bochum, Bochum, Germany
| | - Konstanze F Winklhofer
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Hermann Lübbert
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany.,Biofrontera Pharmaceuticals AG, Leverkusen, Germany
| | - Xin-Ran Zhu
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany.,Department of Behavioral Neuroscience, Ruh University Bochum, Bochum, Germany
| |
Collapse
|
25
|
Hellauer K, Oskolkova OV, Gesslbauer B, Bochkov V. Pharmacological heat-shock protein inducers and chemical chaperones inhibit upregulation of interleukin-8 by oxidized phospholipids. Inflammopharmacology 2023; 31:1319-1327. [PMID: 36692663 DOI: 10.1007/s10787-022-01124-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/17/2022] [Indexed: 01/25/2023]
Abstract
Oxidised phospholipids such as oxidised palmitoyl-arachidonoyl-phosphatidylcholine (OxPAPC) are increasingly recognised as danger-associated molecular patterns (DAMPs) inducing cyto- and chemokines. The pathological impact of oxidised phosphatidylcholine in vivo has been demonstrated in several animal models, as well as in human association studies. In this work, we have tested a number of small molecules with known or potential anti-inflammatory properties for their ability to inhibit secretion of interleukin-8 by OxPAPC-treated endothelial cells. Six compounds capable of inhibiting the induction of IL-8 were selected. Analysis of gene expression has shown that all these substances reduced the OxPAPC-induced elevation of IL-8 mRNA but potentiated induction of heat-shock proteins (HSPs). We further found that drug-like HSP inducers also prevented the induction of IL-8 by OxPAPC. Similar inhibitory action was demonstrated by two chemical chaperones, which stabilise proteins through physicochemical mechanisms thus mimicking effects of HSPs. Our data suggest that proteostatic stress plays an important mechanistic role in the pro-inflammatory effects of OxPAPC and that stabilisation of proteome by overexpression of HSPs or by chemical chaperones can reduce the pro-inflammatory effects of OxPLs.
Collapse
Affiliation(s)
- Klara Hellauer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Humboldtstrasse 46/III, 8010, Graz, Austria
| | - Olga V Oskolkova
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Humboldtstrasse 46/III, 8010, Graz, Austria
| | - Bernd Gesslbauer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Humboldtstrasse 46/III, 8010, Graz, Austria
| | - Valery Bochkov
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Humboldtstrasse 46/III, 8010, Graz, Austria. .,Field of Excellence BioHealth, University of Graz, Graz, Austria.
| |
Collapse
|
26
|
Mhalhel K, Sicari M, Pansera L, Chen J, Levanti M, Diotel N, Rastegar S, Germanà A, Montalbano G. Zebrafish: A Model Deciphering the Impact of Flavonoids on Neurodegenerative Disorders. Cells 2023; 12:252. [PMID: 36672187 PMCID: PMC9856690 DOI: 10.3390/cells12020252] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/17/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Over the past century, advances in biotechnology, biochemistry, and pharmacognosy have spotlighted flavonoids, polyphenolic secondary metabolites that have the ability to modulate many pathways involved in various biological mechanisms, including those involved in neuronal plasticity, learning, and memory. Moreover, flavonoids are known to impact the biological processes involved in developing neurodegenerative diseases, namely oxidative stress, neuroinflammation, and mitochondrial dysfunction. Thus, several flavonoids could be used as adjuvants to prevent and counteract neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Zebrafish is an interesting model organism that can offer new opportunities to study the beneficial effects of flavonoids on neurodegenerative diseases. Indeed, the high genome homology of 70% to humans, the brain organization largely similar to the human brain as well as the similar neuroanatomical and neurochemical processes, and the high neurogenic activity maintained in the adult brain makes zebrafish a valuable model for the study of human neurodegenerative diseases and deciphering the impact of flavonoids on those disorders.
Collapse
Affiliation(s)
- Kamel Mhalhel
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Mirea Sicari
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Lidia Pansera
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Jincan Chen
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Maria Levanti
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Nicolas Diotel
- Université de la Réunion, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Plateforme CYROI, F-97490 Sainte-Clotilde, France
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| |
Collapse
|
27
|
Targeting immunoproteasome in neurodegeneration: A glance to the future. Pharmacol Ther 2023; 241:108329. [PMID: 36526014 DOI: 10.1016/j.pharmthera.2022.108329] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
The immunoproteasome is a specialized form of proteasome equipped with modified catalytic subunits that was initially discovered to play a pivotal role in MHC class I antigen processing and immune system modulation. However, over the last years, this proteolytic complex has been uncovered to serve additional functions unrelated to antigen presentation. Accordingly, it has been proposed that immunoproteasome synergizes with canonical proteasome in different cell types of the nervous system, regulating neurotransmission, metabolic pathways and adaptation of the cells to redox or inflammatory insults. Hence, studying the alterations of immunoproteasome expression and activity is gaining research interest to define the dynamics of neuroinflammation as well as the early and late molecular events that are likely involved in the pathogenesis of a variety of neurological disorders. Furthermore, these novel functions foster the perspective of immunoproteasome as a potential therapeutic target for neurodegeneration. In this review, we provide a brain and retina-wide overview, trying to correlate present knowledge on structure-function relationships of immunoproteasome with the variety of observed neuro-modulatory functions.
Collapse
|
28
|
Emery DC, Davies M, Cerajewska TL, Taylor J, Hazell M, Paterson A, Allen-Birt SJ, West NX. High resolution 16S rRNA gene Next Generation Sequencing study of brain areas associated with Alzheimer's and Parkinson's disease. Front Aging Neurosci 2022; 14:1026260. [PMID: 36570533 PMCID: PMC9780557 DOI: 10.3389/fnagi.2022.1026260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/02/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Alzheimer's (AD) and Parkinson's disease (PD) are neurodegenerative conditions characterized by incremental deposition of β-amyloid (Aβ) and α-synuclein in AD and PD brain, respectively, in relatively conserved patterns. Both are associated with neuroinflammation, with a proposed microbial component for disease initiation and/or progression. Notably, Aβ and α-synuclein have been shown to possess antimicrobial properties. There is evidence for bacterial presence within the brain, including the oral pathobiont Porphyromonas gingivalis, with cognitive impairment and brain pathology being linked to periodontal (gum) disease and gut dysbiosis. Methods Here, we use high resolution 16S rRNA PCR-based Next Generation Sequencing (16SNGS) to characterize bacterial composition in brain areas associated with the early, intermediate and late-stage of the diseases. Results and discussion This study reveals the widespread presence of bacteria in areas of the brain associated with AD and PD pathology, with distinctly different bacterial profiles in blood and brain. Brain area profiles were overall somewhat similar, predominantly oral, with some bacteria subgingival and oronasal in origin, and relatively comparable profiles in AD and PD brain. However, brain areas associated with early disease development, such as the locus coeruleus, were substantially different in bacterial DNA content compared to areas affected later in disease etiology.
Collapse
Affiliation(s)
| | | | | | | | - Mae Hazell
- Translational Health Sciences, Learning and Research, Bristol Medical School, Southmead Hospital, Bristol, United Kingdom
| | - Alex Paterson
- School of Biological Sciences, University of Bristol Genomics Facility, Bristol, United Kingdom
| | - Shelley J. Allen-Birt
- Translational Health Sciences, Learning and Research, Bristol Medical School, Southmead Hospital, Bristol, United Kingdom
| | - Nicola X. West
- Bristol Dental School, Bristol, United Kingdom,*Correspondence: Nicola X. West,
| |
Collapse
|
29
|
Çetin G, Studencka-Turski M, Venz S, Schormann E, Junker H, Hammer E, Völker U, Ebstein F, Krüger E. Immunoproteasomes control activation of innate immune signaling and microglial function. Front Immunol 2022; 13:982786. [PMID: 36275769 PMCID: PMC9584546 DOI: 10.3389/fimmu.2022.982786] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system (CNS) and play a major role in the regulation of brain homeostasis. To maintain their cellular protein homeostasis, microglia express standard proteasomes and immunoproteasomes (IP), a proteasome isoform that preserves protein homeostasis also in non-immune cells under challenging conditions. The impact of IP on microglia function in innate immunity of the CNS is however not well described. Here, we establish that IP impairment leads to proteotoxic stress and triggers the unfolded and integrated stress responses in mouse and human microglia models. Using proteomic analysis, we demonstrate that IP deficiency in microglia results in profound alterations of the ubiquitin-modified proteome among which proteins involved in the regulation of stress and immune responses. In line with this, molecular analysis revealed chronic activation of NF-κB signaling in IP-deficient microglia without further stimulus. In addition, we show that IP impairment alters microglial function based on markers for phagocytosis and motility. At the molecular level IP impairment activates interferon signaling promoted by the activation of the cytosolic stress response protein kinase R. The presented data highlight the importance of IP function for the proteostatic potential as well as for precision proteolysis to control stress and immune signaling in microglia function.
Collapse
Affiliation(s)
- Gonca Çetin
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Maja Studencka-Turski
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Simone Venz
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Eileen Schormann
- Institute of Biochemistry, Charité – University Medicine Berlin, Berlin, Germany
| | - Heike Junker
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Elke Hammer
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Frédéric Ebstein
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
- *Correspondence: Elke Krüger,
| |
Collapse
|
30
|
Autophagy-Mediated Inflammatory Cytokine Secretion in Sporadic ALS Patient iPSC-Derived Astrocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6483582. [PMID: 36046683 PMCID: PMC9423978 DOI: 10.1155/2022/6483582] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/04/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022]
Abstract
Background. Astrocytes can be involved in motor neuron toxicity in amyotrophic lateral sclerosis (ALS) induced by noncell autonomous effects, and inflammatory cytokines may play the main role in mediating this process. However, the etiology of aberrant cytokine secretion is unclear. The present study assessed possible involvement of the mTOR-autophagy pathway in aberrant cytokine secretion by ALS patient iPSC-derived astrocytes. Method and Results. PBMCs from sporadic ALS patients and control subjects were reprogrammed into iPSCs, which were then differentiated into astrocytes and/or motor neurons. Comparison with control astrocytes indicated that conditioned medium of ALS astrocytes reduced the viability of the control motor neurons (
) assessed using the MTT assay. The results of ELISA showed that the concentrations of TNFα, IL1β, and IL6 in cell culture medium of ALS astrocytes were increased (
). ALS astrocytes had higher p62 and mTOR levels and lower LC3BII/LC3BI ratio and ULK1 and p-Beclin-1 (Ser15) levels (
), indicating defective autophagy. Exogenous inhibition of the mTOR-autophagy pathway, but not the activation of the pathway in control subject astrocytes, increased the levels of p62 and mTOR and concentration of IL-1β, TNF-α, and IL-6 in cell culture medium and decreased the LC3BII/LC3BI ratio and levels of ULK1 and p-Beclin-1 (Ser15), and these changes were comparable to those in ALS astrocytes. After 48 h of rapamycin (autophagy activator) and 3-methyladenine (autophagy inhibitor) treatments, the exogenous activation of the mTOR-autophagy pathway, but not inhibition of the pathway, in ALS astrocytes significantly reduced the concentrations of TNFα, IL1β, and IL6 in cell culture medium and reduced the levels of p62, while increasing the levels of LC3B-II/LC3B-I, ULK1, and p-Beclin-1 (Ser15), and these changes were comparable to those in control subject astrocytes. Conclusion. Alteration in the mTOR/ULK1/Beclin-1 pathway regulated cytokine secretion in ALS astrocytes, which was able to lead to noncell autonomous toxicity. Autophagy activation mitigated cytokine secretion by ALS astrocytes.
Collapse
|
31
|
Zhu Y, Xu P, Huang X, Shuai W, Liu L, Zhang S, Zhao R, Hu X, Wang G. From Rate-Limiting Enzyme to Therapeutic Target: The Promise of NAMPT in Neurodegenerative Diseases. Front Pharmacol 2022; 13:920113. [PMID: 35903330 PMCID: PMC9322656 DOI: 10.3389/fphar.2022.920113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/08/2022] [Indexed: 11/15/2022] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in the nicotinamide adenine dinucleotide (NAD) salvage pathway in mammals. It is of great significance in the metabolic homeostasis and cell survival via synthesizing nicotinamide mononucleotide (NMN) through enzymatic activities, serving as a key protein involved in the host's defense mechanism. The NAMPT metabolic pathway connects NAD-dependent sirtuin (SIRT) signaling, constituting the NAMPT-NAD-SIRT cascade, which is validated as a strong intrinsic defense system. Neurodegenerative diseases belong to the central nervous system (CNS) disease that seriously endangers human health. The World Health Organization (WHO) proposed that neurodegenerative diseases will become the second leading cause of human death in the next two decades. However, effective drugs for neurodegenerative diseases are scant. NAMPT is specifically highly expressed in the hippocampus, which mediates cell self-renewal and proliferation and oligodendrocyte synthesis by inducing the biosynthesis of NAD in neural stem cells/progenitor cells. Owing to the active biological function of NAMPT in neurogenesis, targeting NAMPT may be a powerful therapeutic strategy for neurodegenerative diseases. This study aims to review the structure and biological functions, the correlation with neurodegenerative diseases, and treatment advance of NAMPT, aiming to provide a novel idea for targeted therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yumeng Zhu
- Innovation Center of Nursing Research, West China School of Nursing, Department of Gastrointestinal Surgery, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Xu
- Emergency Department, Institute of Medical Big Data, Zigong Academy of Big Data for Science and Artificial Intelligence, Zigong Fourth People’s Hospital, Zigong, China
| | - Xuan Huang
- Innovation Center of Nursing Research, West China School of Nursing, Department of Gastrointestinal Surgery, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Shuai
- Innovation Center of Nursing Research, West China School of Nursing, Department of Gastrointestinal Surgery, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Li Liu
- Innovation Center of Nursing Research, West China School of Nursing, Department of Gastrointestinal Surgery, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Shuai Zhang
- Innovation Center of Nursing Research, West China School of Nursing, Department of Gastrointestinal Surgery, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Zhao
- Innovation Center of Nursing Research, West China School of Nursing, Department of Gastrointestinal Surgery, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Xiuying Hu
- Innovation Center of Nursing Research, West China School of Nursing, Department of Gastrointestinal Surgery, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Guan Wang
- Innovation Center of Nursing Research, West China School of Nursing, Department of Gastrointestinal Surgery, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Kuijpers M. Keeping synapses in shape: degradation pathways in the healthy and aging brain. Neuronal Signal 2022; 6:NS20210063. [PMID: 35813265 PMCID: PMC9208270 DOI: 10.1042/ns20210063] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
Synapses maintain their molecular composition, plasticity and function through the concerted action of protein synthesis and removal. The complex and polarized neuronal architecture poses specific challenges to the logistics of protein and organelle turnover since protein synthesis and degradation mainly happen in the cell soma. In addition, post-mitotic neurons accumulate damage over a lifetime, challenging neuronal degradative pathways and making them particularly susceptible to the effects of aging. This review will summarize the current knowledge on neuronal protein turnover mechanisms with a particular focus on the presynapse, including the proteasome, autophagy and the endolysosomal route and their roles in regulating presynaptic proteostasis and function. In addition, the author will discuss how physiological brain aging, which entails a progressive decline in cognitive functions, affects synapses and the degradative machinery.
Collapse
Affiliation(s)
- Marijn Kuijpers
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
33
|
Zhou C, Ni W, Zhu T, Dong S, Sun P, Hua F. Cellular Reprogramming and Its Potential Application in Alzheimer's Disease. Front Neurosci 2022; 16:884667. [PMID: 35464309 PMCID: PMC9023048 DOI: 10.3389/fnins.2022.884667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) has become the most common age-related dementia in the world and is currently incurable. Although many efforts have been made, the underlying mechanisms of AD remain unclear. Extracellular amyloid-beta deposition, intracellular tau hyperphosphorylation, neuronal death, glial cell activation, white matter damage, blood-brain barrier disruption, and other mechanisms all take part in this complicated disease, making it difficult to find an effective therapy. In the study of therapeutic methods, how to restore functional neurons and integrate myelin becomes the main point. In recent years, with the improvement and maturity of induced pluripotent stem cell technology and direct cell reprogramming technology, it has become possible to induce non-neuronal cells, such as fibroblasts or glial cells, directly into neuronal cells in vitro and in vivo. Remarkably, the induced neurons are functional and capable of entering the local neural net. These encouraging results provide a potential new approach for AD therapy. In this review, we summarized the characteristics of AD, the reprogramming technique, and the current research on the application of cellular reprogramming in AD. The existing problems regarding cellular reprogramming and its therapeutic potential for AD were also reviewed.
Collapse
Affiliation(s)
- Chao Zhou
- Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wanyan Ni
- Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Taiyang Zhu
- Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shuyu Dong
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, China
| | - Ping Sun
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Fang Hua
- Institute of Neurological Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
34
|
CNS Redox Homeostasis and Dysfunction in Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:antiox11020405. [PMID: 35204286 PMCID: PMC8869494 DOI: 10.3390/antiox11020405] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/11/2022] Open
Abstract
A single paragraph of about 200 words maximum. Neurodegenerative diseases (ND), such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis, pose a global challenge in the aging population due to the lack of treatments for their cure. Despite various disease-specific clinical symptoms, ND have some fundamental common pathological mechanisms involving oxidative stress and neuroinflammation. The present review focuses on the major causes of central nervous system (CNS) redox homeostasis imbalance comprising mitochondrial dysfunction and endoplasmic reticulum (ER) stress. Mitochondrial disturbances, leading to reduced mitochondrial function and elevated reactive oxygen species (ROS) production, are thought to be a major contributor to the pathogenesis of ND. ER dysfunction has been implicated in ND in which protein misfolding evidently causes ER stress. The consequences of ER stress ranges from an increase in ROS production to altered calcium efflux and proinflammatory signaling in glial cells. Both pathological pathways have links to ferroptotic cell death, which has been implicated to play an important role in ND. Pharmacological targeting of these pathological pathways may help alleviate or slow down neurodegeneration.
Collapse
|
35
|
Peze-Heidsieck E, Bonnifet T, Znaidi R, Ravel-Godreuil C, Massiani-Beaudoin O, Joshi RL, Fuchs J. Retrotransposons as a Source of DNA Damage in Neurodegeneration. Front Aging Neurosci 2022; 13:786897. [PMID: 35058771 PMCID: PMC8764243 DOI: 10.3389/fnagi.2021.786897] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/30/2021] [Indexed: 01/09/2023] Open
Abstract
The etiology of aging-associated neurodegenerative diseases (NDs), such as Parkinson's disease (PD) and Alzheimer's disease (AD), still remains elusive and no curative treatment is available. Age is the major risk factor for PD and AD, but the molecular link between aging and neurodegeneration is not fully understood. Aging is defined by several hallmarks, some of which partially overlap with pathways implicated in NDs. Recent evidence suggests that aging-associated epigenetic alterations can lead to the derepression of the LINE-1 (Long Interspersed Element-1) family of transposable elements (TEs) and that this derepression might have important implications in the pathogenesis of NDs. Almost half of the human DNA is composed of repetitive sequences derived from TEs and TE mobility participated in shaping the mammalian genomes during evolution. Although most TEs are mutated and no longer mobile, more than 100 LINE-1 elements have retained their full coding potential in humans and are thus retrotransposition competent. Uncontrolled activation of TEs has now been reported in various models of neurodegeneration and in diseased human brain tissues. We will discuss in this review the potential contribution of LINE-1 elements in inducing DNA damage and genomic instability, which are emerging pathological features in NDs. TEs might represent an important molecular link between aging and neurodegeneration, and a potential target for urgently needed novel therapeutic disease-modifying interventions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Julia Fuchs
- Center for Interdisciplinary Research in Biology (CIRB), CNRS, INSERM, Collège de France, Université PSL, Paris, France
| |
Collapse
|
36
|
Anti-Oxidative, Anti-Inflammatory and Anti-Apoptotic Effects of Flavonols: Targeting Nrf2, NF-κB and p53 Pathways in Neurodegeneration. Antioxidants (Basel) 2021; 10:antiox10101628. [PMID: 34679762 PMCID: PMC8533072 DOI: 10.3390/antiox10101628] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative diseases are one of the leading causes of disability and death worldwide. Intracellular transduction pathways that end in the activation of specific transcription factors are highly implicated in the onset and progression of pathological changes related to neurodegeneration, of which those related to oxidative stress (OS) and neuroinflammation are particularly important. Here, we provide a brief overview of the key concepts related to OS- and neuroinflammation-mediated neuropathological changes in neurodegeneration, together with the role of transcription factors nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB). This review is focused on the transcription factor p53 that coordinates the cellular response to diverse genotoxic stimuli, determining neuronal death or survival. As current pharmacological options in the treatment of neurodegenerative disease are only symptomatic, many research efforts are aimed at uncovering efficient disease-modifying agents. Natural polyphenolic compounds demonstrate powerful anti-oxidative, anti-inflammatory and anti-apoptotic effects, partially acting as modulators of signaling pathways. Herein, we review the current understanding of the therapeutic potential and limitations of flavonols in neuroprotection, with emphasis on their anti-oxidative, anti-inflammatory and anti-apoptotic effects along the Nrf2, NF-κB and p53 pathways. A better understanding of cellular and molecular mechanisms of their action may pave the way toward new treatments.
Collapse
|
37
|
Dietary Polyphenols in Metabolic and Neurodegenerative Diseases: Molecular Targets in Autophagy and Biological Effects. Antioxidants (Basel) 2021; 10:antiox10020142. [PMID: 33498216 PMCID: PMC7908992 DOI: 10.3390/antiox10020142] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 12/16/2022] Open
Abstract
Polyphenols represent a group of secondary metabolites of plants which have been analyzed as potent regulators of multiple biological processes, including cell proliferation, apoptosis, and autophagy, among others. These natural compounds exhibit beneficial effects and protection against inflammation, oxidative stress, and related injuries including metabolic diseases, such as cardiovascular damage, obesity and diabetes, and neurodegeneration. This review aims to summarize the mechanisms of action of polyphenols in relation to the activation of autophagy, stimulation of mitochondrial function and antioxidant defenses, attenuation of oxidative stress, and reduction in cell apoptosis, which may be responsible of the health promoting properties of these compounds.
Collapse
|