1
|
Willett JLE, Dunny GM. Insights into ecology, pathogenesis, and biofilm formation of Enterococcus faecalis from functional genomics. Microbiol Mol Biol Rev 2025; 89:e0008123. [PMID: 39714182 PMCID: PMC11948497 DOI: 10.1128/mmbr.00081-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
SUMMARYEnterococcus faecalis is a significant resident of the gastrointestinal tract of most animals, including humans. Although generally non-pathogenic in healthy hosts, this microbe is adept at the exploitation of compromises in host immune functions, resulting in life-threatening opportunistic infections whose treatments are complicated by a high degree of intrinsic and acquired resistance to antimicrobial chemotherapy. Historically, progress in enterococcal research was limited by a lack of experimental models that replicate natural infection pathways and the relevance of in vitro studies to the natural biology of the organism. In this review, we summarize the history of enterococcal research during the 20th and early 21st centuries and describe more recent genetic and genomic tools and screens developed to address challenges in the field. We also describe how the results of recent studies reveal the importance of previously uncharacterized enterococcal genes, and we provide examples of interesting determinants that have emerged as important contributors to enterococcal biology. These factors may also serve as targets for future vaccines and chemotherapeutic agents to combat life-threatening hospital infections.
Collapse
Affiliation(s)
- Julia L. E. Willett
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Gary M. Dunny
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Sadones O, Kramarska E, Sainz-Mejías M, Berisio R, Huebner J, McClean S, Romero-Saavedra F. Identification of cross-reactive vaccine antigen candidates in Gram-positive ESKAPE pathogens through subtractive proteome analysis using opsonic sera. PLoS One 2025; 20:e0319933. [PMID: 40138269 PMCID: PMC11940424 DOI: 10.1371/journal.pone.0319933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 02/11/2025] [Indexed: 03/29/2025] Open
Abstract
The Gram-positive pathogens of the ESKAPE group, Enterococcus faecium, and Staphylococcus aureus, are well-known to pose a serious risk to human health because of their high virulence and numerous drug resistances. To narrow down the list of previously identified promising protein vaccine candidates, a combination of several antigen discovery approaches was performed, in particular a "false positive analysis" of peptides generated by trypsin shaving with a subtractive proteome analysis. The final list of nine potential antigens included AdcAau, a protein performing the same function as AdcAfm, an already discovered antigen in enterococci. Bioinformatic analyses revealed that AdcAau and AdcAfm share a sequence identity of 41.2% and that the conserved regions present a high antigenicity. AdcAau was selected for further investigation and the results reported in this manuscript demonstrate the opsonic properties of AdcAau-specific antibodies against the Staphylococcus aureus strain MW2, as well as their cross-binding and cross-opsonic activity against several S. aureus, E. faecium, and E. faecalis strains. The experimental design revealed several promising vaccine candidates, including the newly identified S. aureus antigen, AdcAau. The study shows its potential as a vaccine candidate to prevent infections by dangerous Gram-positive ESKAPE pathogens.
Collapse
Affiliation(s)
- Océane Sadones
- Division of Pediatric Infectious Disease, Hauner Children’s Hospital, LMU, Munich, Germany
| | - Eliza Kramarska
- Institute of Biostructures and Bioimaging, Italian Research Council (CNR), Naples, Italy
| | - Maite Sainz-Mejías
- School of Biomolecular and Biomedical Sciences and UCD Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, Italian Research Council (CNR), Naples, Italy
| | - Johannes Huebner
- Division of Pediatric Infectious Disease, Hauner Children’s Hospital, LMU, Munich, Germany
| | - Siobhán McClean
- School of Biomolecular and Biomedical Sciences and UCD Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland
| | - Felipe Romero-Saavedra
- Division of Pediatric Infectious Disease, Hauner Children’s Hospital, LMU, Munich, Germany
| |
Collapse
|
3
|
Rima M, Dakramanji M, El Hayek E, El Khoury T, Fajloun Z, Rima M. Unveiling the wonders of bacteria-derived extracellular vesicles: From fundamental functions to beneficial applications. Heliyon 2025; 11:e42509. [PMID: 40028522 PMCID: PMC11869109 DOI: 10.1016/j.heliyon.2025.e42509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/26/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025] Open
Abstract
Extracellular vesicles (EVs), are critical mediators of intercellular communication and exhibit significant potential across various biomedical domains. These nano-sized, membrane-encapsulated entities have captured substantial interest due to their diverse roles in pathogenesis and promising therapeutic applications. EVs manage numerous physiological processes by transferring bioactive molecules, including proteins, lipids, and nucleic acids, between cells. This review delves into the factors influencing the properties of EVs, such as temperature and stress conditions, which collectively influence their size, composition, and functional attributes. We also describe the emerging roles of EVs, emphasizing their involvement in microbial interactions, immune modulation, antimicrobial resistance spread and their potential as innovative diagnostic and therapeutic instruments. Despite their promising applications, the advancement of EV-based therapies faces several challenges, which will also be discussed. By elucidating these critical elements, we aim to provide a comprehensive overview of the transformative potential of EVs in revolutionizing diagnostics and therapeutics in medicine.
Collapse
Affiliation(s)
- Mariam Rima
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, 1300, Tripoli, Lebanon
| | - Mariam Dakramanji
- Department of Biological Sciences, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Elie El Hayek
- Department of Biological Sciences, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Tia El Khoury
- Department of Biological Sciences, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, 1300, Tripoli, Lebanon
- Department of Biology, Faculty of Sciences 3, Campus Michel Slayman Ras Maska, Lebanese University, 1352, Tripoli, Lebanon
| | - Mohamad Rima
- Department of Biological Sciences, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| |
Collapse
|
4
|
Wei Y, Palacios Araya D, Palmer KL. Enterococcus faecium: evolution, adaptation, pathogenesis and emerging therapeutics. Nat Rev Microbiol 2024; 22:705-721. [PMID: 38890478 DOI: 10.1038/s41579-024-01058-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 06/20/2024]
Abstract
The opportunistic pathogen Enterococcus faecium colonizes humans and a wide range of animals, endures numerous stresses, resists antibiotic treatment and stubbornly persists in clinical environments. The widespread application of antibiotics in hospitals and agriculture has contributed to the emergence of vancomycin-resistant E. faecium, which causes many hospital-acquired infections. In this Review, we explore recent discoveries about the evolutionary history, the environmental adaptation and the colonization and dissemination mechanisms of E. faecium and vancomycin-resistant E. faecium. These studies provide critical insights necessary for developing novel preventive and therapeutic approaches against vancomycin-resistant E. faecium and also reveal the intricate interrelationships between the environment, the microorganism and the host, providing knowledge that is broadly relevant to how antibiotic-resistant pathogens emerge and endure.
Collapse
Affiliation(s)
- Yahan Wei
- School of Podiatric Medicine, The University of Texas Rio Grande Valley, Harlingen, TX, USA
| | - Dennise Palacios Araya
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Kelli L Palmer
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
5
|
Lam LN, Sedra A, Kajfasz J, Berges A, Saengpet IS, Adams G, Fairman J, Lemos JA. Trivalent immunization with metal-binding proteins confers protection against enterococci in a mouse infection model. FEMS MICROBES 2024; 5:xtae031. [PMID: 39524556 PMCID: PMC11549557 DOI: 10.1093/femsmc/xtae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
Enterococcus faecalis is ranked among the top five bacterial pathogens responsible for catheter-associated urinary tract infections, wound infections, secondary root canal infections, and infective endocarditis. Previously, we showed that inactivation of either the manganese- and iron-binding (EfaA) or zinc-binding (AdcA and AdcAII) lipoproteins significantly reduced E. faecalis virulence. Here, we explored whether immunization using a multi-valent approach induces protective immunity against systemic enterococcal infections. We found that multi-antigen antisera raised against EfaA, AdcA, and AdcAII displayed similar capacities to initiate neutrophil-mediated opsonization, like their single-antigen counterparts. Further, these antigen-specific antibodies worked synergistically with calprotectin, a divalent host metal chelator, to inhibit the growth of E. faecalis in laboratory media as well as in human sera. Using the Galleria mellonella invertebrate model and mouse peritonitis model, we showed that passive immunization with multi-antigen antisera conferred robust protection against E. faecalis infection, while the protective effects of single antigen antisera were negligible in G. mellonella, and negligible-to-moderate in the mouse model. Lastly, active immunization with the 3-antigen (trivalent) cocktail significantly protected mice against either lethal or non-lethal E. faecalis infections, with this protection appearing to be far-reaching based on immunization results obtained with contemporary strains of E. faecalis and closely related Enterococcus faecium.
Collapse
Affiliation(s)
- Ling Ning Lam
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, United States
| | - Angie Sedra
- Vaxcyte, Inc., San Carlos, CA 94070, United States
| | - Jessica Kajfasz
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, United States
| | - Aym Berges
- Vaxcyte, Inc., San Carlos, CA 94070, United States
| | - Irene S Saengpet
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, United States
| | - Grace Adams
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, United States
| | | | - José A Lemos
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, United States
| |
Collapse
|
6
|
Fanelli C, Pistidda L, Terragni P, Pasero D. Infection Prevention and Control Strategies According to the Type of Multidrug-Resistant Bacteria and Candida auris in Intensive Care Units: A Pragmatic Resume including Pathogens R 0 and a Cost-Effectiveness Analysis. Antibiotics (Basel) 2024; 13:789. [PMID: 39200090 PMCID: PMC11351734 DOI: 10.3390/antibiotics13080789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
Multidrug-resistant organism (MDRO) outbreaks have been steadily increasing in intensive care units (ICUs). Still, healthcare institutions and workers (HCWs) have not reached unanimity on how and when to implement infection prevention and control (IPC) strategies. We aimed to provide a pragmatic physician practice-oriented resume of strategies towards different MDRO outbreaks in ICUs. We performed a narrative review on IPC in ICUs, investigating patient-to-staff ratios; education, isolation, decolonization, screening, and hygiene practices; outbreak reporting; cost-effectiveness; reproduction numbers (R0); and future perspectives. The most effective IPC strategy remains unknown. Most studies focus on a specific pathogen or disease, making the clinician lose sight of the big picture. IPC strategies have proven their cost-effectiveness regardless of typology, country, and pathogen. A standardized, universal, pragmatic protocol for HCW education should be elaborated. Likewise, the elaboration of a rapid outbreak recognition tool (i.e., an easy-to-use mathematical model) would improve early diagnosis and prevent spreading. Further studies are needed to express views in favor or against MDRO decolonization. New promising strategies are emerging and need to be tested in the field. The lack of IPC strategy application has made and still makes ICUs major MDRO reservoirs in the community. In a not-too-distant future, genetic engineering and phage therapies could represent a plot twist in MDRO IPC strategies.
Collapse
Affiliation(s)
- Chiara Fanelli
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy (L.P.); (P.T.)
| | - Laura Pistidda
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy (L.P.); (P.T.)
| | - Pierpaolo Terragni
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy (L.P.); (P.T.)
- Head of Intensive Care Unit, University Hospital of Sassari, 07100 Sassari, Italy
| | - Daniela Pasero
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy (L.P.); (P.T.)
- Head of Intensive Care Unit, Civil Hospital of Alghero, 07041 Alghero, Italy
| |
Collapse
|
7
|
Kramarska E, Toumi E, Squeglia F, Laverde D, Napolitano V, Frapy E, Autiero I, Sadones O, Huebner J, Skurnik D, Romero-Saavedra F, Berisio R. A rationally designed antigen elicits protective antibodies against multiple nosocomial Gram-positive pathogens. NPJ Vaccines 2024; 9:151. [PMID: 39155280 PMCID: PMC11330964 DOI: 10.1038/s41541-024-00940-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
ESKAPE pathogens are responsible for complicated nosocomial infections worldwide and are often resistant to commonly used antibiotics in clinical settings. Among ESKAPE, vancomycin-resistant Enterococcus faecium (VREfm) and methicillin-resistant Staphylococcus aureus (MRSA) are two important Gram-positive pathogens for which non-antibiotic alternatives are urgently needed. We previously showed that the lipoprotein AdcA of E. faecium elicits opsonic and protective antibodies against E. faecium and E. faecalis. Prompted by our observation, reported here, that AdcA also elicits opsonic antibodies against MRSA and other clinically relevant Gram-positive pathogens, we identified the dominant epitope responsible for AdcA cross-reactive activity and designed a hyper-thermostable and multi-presenting antigen, Sc(EH)3. We demonstrate that antibodies raised against Sc(EH)3 mediate opsonic killing of a wide-spectrum of Gram-positive pathogens, including VREfm and MRSA, and confer protection both in passive and active immunisation models. Our data indicate that Sc(EH)3 is a promising antigen for the development of vaccines against different Gram-positive pathogens.
Collapse
Affiliation(s)
- Eliza Kramarska
- Institute of Biostructures and Bioimaging, Italian Research Council (CNR), Naples, Italy
| | - Eya Toumi
- CNRS, INSERM, Institut Necker-Enfants Malades, U1151-Equipe 11, Faculté de Médecine, University of Paris City, Paris, France
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, Italian Research Council (CNR), Naples, Italy
| | - Diana Laverde
- Division of Paediatric Infectious Disease, Hauner Children's Hospital LMU, LMU, Munich, Germany
| | - Valeria Napolitano
- Institute of Biostructures and Bioimaging, Italian Research Council (CNR), Naples, Italy
| | - Eric Frapy
- CNRS, INSERM, Institut Necker-Enfants Malades, U1151-Equipe 11, Faculté de Médecine, University of Paris City, Paris, France
| | - Ida Autiero
- Institute of Biostructures and Bioimaging, Italian Research Council (CNR), Naples, Italy
| | - Oceane Sadones
- Division of Paediatric Infectious Disease, Hauner Children's Hospital LMU, LMU, Munich, Germany
| | - Johannes Huebner
- Division of Paediatric Infectious Disease, Hauner Children's Hospital LMU, LMU, Munich, Germany
| | - David Skurnik
- CNRS, INSERM, Institut Necker-Enfants Malades, U1151-Equipe 11, Faculté de Médecine, University of Paris City, Paris, France.
- Department of Clinical Microbiology, Fédération Hospitalo-Universitaire Prématurité (FHU PREMA), Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris City, Paris, France.
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Felipe Romero-Saavedra
- Division of Paediatric Infectious Disease, Hauner Children's Hospital LMU, LMU, Munich, Germany.
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, Italian Research Council (CNR), Naples, Italy.
| |
Collapse
|
8
|
Sadones O, Kramarska E, Laverde D, Berisio R, Huebner J, Romero-Saavedra F. Investigation of cross-opsonic effect leads to the discovery of PPIase-domain containing protein vaccine candidate to prevent infections by Gram-positive ESKAPE pathogens. BMC Microbiol 2024; 24:280. [PMID: 39068414 PMCID: PMC11282748 DOI: 10.1186/s12866-024-03427-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Enterococcus faecium and Staphylococcus aureus are the Gram-positive pathogens of the ESKAPE group, known to represent a great threat to human health due to their high virulence and multiple resistances to antibiotics. Combined, enterococci and S. aureus account for 26% of healthcare-associated infections and are the most common organisms responsible for blood stream infections. We previously showed that the peptidyl-prolyl cis/trans isomerase (PPIase) PpiC of E. faecium elicits the production of specific, opsonic, and protective antibodies that are effective against several strains of E. faecium and E. faecalis. Due to the ubiquitous characteristics of PPIases and their essential function within Gram-positive cells, we hypothesized a potential cross-reactive effect of anti-PpiC antibodies. RESULTS Opsonophagocytic assays combined with bioinformatics led to the identification of the foldase protein PrsA as a new potential vaccine antigen in S. aureus. We show that PrsA is a stable dimeric protein able to elicit opsonic antibodies against the S. aureus strain MW2, as well as cross-binding and cross-opsonic in several S. aureus, E. faecium and E. faecalis strains. CONCLUSIONS Given the multiple antibiotic resistances S. aureus and enterococci present, finding preventive strategies is essential to fight those two nosocomial pathogens. The study shows the potential of PrsA as an antigen to use in vaccine formulation against the two dangerous Gram-positive ESKAPE bacteria. Our findings support the idea that PPIases should be further investigated as vaccine targets in the frame of pan-vaccinomics strategy.
Collapse
Affiliation(s)
- Océane Sadones
- Division of pediatric infectious disease, Hauner children's hospital, LMU, Munich, Germany.
| | - Eliza Kramarska
- Institute of Biostructures and Bioimaging, Italian Research Council (CNR), Naples, Italy
| | - Diana Laverde
- Division of pediatric infectious disease, Hauner children's hospital, LMU, Munich, Germany
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, Italian Research Council (CNR), Naples, Italy
| | - Johannes Huebner
- Division of pediatric infectious disease, Hauner children's hospital, LMU, Munich, Germany.
| | - Felipe Romero-Saavedra
- Division of pediatric infectious disease, Hauner children's hospital, LMU, Munich, Germany
| |
Collapse
|
9
|
Mikaeel S, Doosti A, Sharifzadeh A. Putative new combination vaccine candidates identified by reverse vaccinology and genomic approaches to control enteric pathogens. BMC Immunol 2024; 25:46. [PMID: 39034396 PMCID: PMC11265179 DOI: 10.1186/s12865-024-00626-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/07/2024] [Indexed: 07/23/2024] Open
Abstract
OBJECTIVES The pathogenic microorganisms that cause intestinal diseases can significantly jeopardize people's health. Currently, there are no authorized treatments or vaccinations available to combat the germs responsible for intestinal disease. METHODS Using immunoinformatics, we developed a potent multi-epitope Combination (combo) vaccine versus Salmonella and enterohemorrhagic E. coli. The B and T cell epitopes were identified by performing a conservancy assessment, population coverage analysis, physicochemical attributes assessment, and secondary and tertiary structure assessment of the chosen antigenic polypeptide. The selection process for vaccine development included using several bioinformatics tools and approaches to finally choose two linear B-cell epitopes, five CTL epitopes, and two HTL epitopes. RESULTS The vaccine had strong immunogenicity, cytokine production, immunological properties, non-toxicity, non-allergenicity, stability, and potential efficacy against infections. Disulfide bonding, codon modification, and computational cloning were also used to enhance the stability and efficacy of expression in the host E. coli. The vaccine's structure has a strong affinity for the TLR4 ligand and is very durable, as shown by molecular docking and molecular modeling. The results of the immunological simulation demonstrated that both B and T cells had a heightened response to the vaccination component. CONCLUSIONS The comprehensive in silico analysis reveals that the proposed vaccine will likely elicit a robust immune response against pathogenic bacteria that cause intestinal diseases. Therefore, it is a promising option for further experimental testing.
Collapse
Affiliation(s)
- Saeed Mikaeel
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Ali Sharifzadeh
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Department of Microbiology, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
10
|
Zhu L, Yang X, Fu X, Yang P, Lin X, Wang F, Shen Z, Wang J, Sun F, Qiu Z. Pheromone cCF10 inhibits the antibiotic persistence of Enterococcus faecalis by modulating energy metabolism. Front Microbiol 2024; 15:1408701. [PMID: 39040910 PMCID: PMC11260814 DOI: 10.3389/fmicb.2024.1408701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction Bacterial resistance presents a major challenge to both the ecological environment and human well-being, with persistence playing a key role. Multiple studies were recently undertaken to examine the factors influencing the formation of persisters and the underlying process, with a primary focus on Gram-negative bacteria and Staphylococcus aureus (Gram-positive bacteria). Enterococcus faecalis (E. faecalis) is capable of causing a variety of infectious diseases, but there have been few studies of E. faecalis persisters. Previous studies have shown that the sex pheromone cCF10 secreted by E. faecalis induces conjugative plasmid transfer. However, whether the pheromone cCF10 regulates the persistence of E. faecalis has not been investigated. Methods As a result, we investigated the effect and potential molecular mechanism of pheromone cCF10 in regulating the formation of persisters in E. faecalis OG1RF using a persistent bacteria model. Results and discussion The metabolically active E. faecalis OG1RF reached a persistence state and temporarily tolerated lethal antibiotic concentrations after 8 h of levofloxacin hydrochloride (20 mg/mL) exposure, exhibiting a persistence rate of 0.109 %. During the growth of E. faecalis OG1RF, biofilm formation was a critical factor contributing to antibiotic persistence, whereas 10 ng/mL cCF10 blocked persister cell formation. Notably, cCF10 mediated the antibiotic persistence of E. faecalis OG1RF via regulating metabolic activity rather than suppressing biofilm formation. The addition of cCF10 stimulated the Opp system and entered bacterial cells, inhibiting (p)ppGpp accumulation, thus maintaining the metabolically active state of bacteria and reducing persister cell generation. These findings offer valuable insights into the formation, as well as the control mechanism of E. faecalis persisters.
Collapse
Affiliation(s)
- Li Zhu
- School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an, China
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiaobo Yang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xinyue Fu
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Panpan Yang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Xiaoli Lin
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- Key Laboratory of Karst Geological Resources and Environment, Guizhou University, Guizhou, China
| | - Feng Wang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Zhiqiang Shen
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Jingfeng Wang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Feilong Sun
- School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an, China
| | - Zhigang Qiu
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
11
|
Sangiorgio G, Calvo M, Migliorisi G, Campanile F, Stefani S. The Impact of Enterococcus spp. in the Immunocompromised Host: A Comprehensive Review. Pathogens 2024; 13:409. [PMID: 38787261 PMCID: PMC11124283 DOI: 10.3390/pathogens13050409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
The immunocompromised host is usually vulnerable to infectious diseases due to broad-spectrum treatments and immunological dysregulation. The Enterococcus genus consists of normal gut commensals, which acquire a leading role in infective processes among individuals with compromised immune systems. These microorganisms may express a potential virulence and resistance spectrum, enabling their function as severe pathogens. The Enterococcus spp. infections in immunocompromised hosts appear to be difficult to resolve due to the immunological response impairment and the possibility of facing antimicrobial-resistant strains. As regards the related risk factors, several data demonstrated that prior antibiotic exposure, medical device insertion, prolonged hospitalization and surgical interventions may lead to Enterococcus overgrowth, antibiotic resistance and spread among critical healthcare settings. Herein, we present a comprehensive review of Enterococcus spp. in the immunocompromised host, summarizing the available knowledge about virulence factors, antimicrobial-resistance mechanisms and host-pathogen interaction. The review ultimately yearns for more substantial support to further investigations about enterococcal infections and immunocompromised host response.
Collapse
Affiliation(s)
- Giuseppe Sangiorgio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (F.C.); (S.S.)
| | - Maddalena Calvo
- U.O.C. Laboratory Analysis Unit, University Hospital Policlinico-San Marco, Via Santa Sofia 78, 95123 Catania, Italy; (M.C.); (G.M.)
| | - Giuseppe Migliorisi
- U.O.C. Laboratory Analysis Unit, University Hospital Policlinico-San Marco, Via Santa Sofia 78, 95123 Catania, Italy; (M.C.); (G.M.)
| | - Floriana Campanile
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (F.C.); (S.S.)
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (F.C.); (S.S.)
- U.O.C. Laboratory Analysis Unit, University Hospital Policlinico-San Marco, Via Santa Sofia 78, 95123 Catania, Italy; (M.C.); (G.M.)
| |
Collapse
|
12
|
Wagner TM, Romero-Saavedra F, Laverde D, Johannessen M, Hübner J, Hegstad K. Enterococcal Membrane Vesicles as Vaccine Candidates. Int J Mol Sci 2023; 24:16051. [PMID: 38003243 PMCID: PMC10671723 DOI: 10.3390/ijms242216051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Enterococcus faecium is a leading cause of nosocomial infections, particularly in immunocompromised patients. The rise of multidrug-resistant E. faecium, including Vancomycin-Resistant Enterococci (VRE), is a major concern. Vaccines are promising alternatives to antibiotics, but there is currently no vaccine available against enterococci. In a previous study, we identified six protein vaccine candidates associated with extracellular membrane vesicles (MVs) produced by nosocomial E. faecium. In this study, we immunized rabbits with two different VRE-derived MV preparations and characterized the resulting immune sera. Both anti-MV sera exhibited high immunoreactivity towards the homologous strain, three additional VRE strains, and eight different unrelated E. faecium strains representing different sequence types (STs). Additionally, we demonstrated that the two anti-MV sera were able to mediate opsonophagocytic killing of not only the homologous strain but also three unrelated heterologous VRE strains. Altogether, our results indicate that E. faecium MVs, regardless of the purification method for obtaining them, are promising vaccine candidates against multidrug-resistant E. faecium and suggest that these naturally occurring MVs can be used as a multi-antigen platform to elicit protective immune responses against enterococcal infections.
Collapse
Affiliation(s)
- Theresa Maria Wagner
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, N-9037 Tromsø, Norway; (T.M.W.); (M.J.)
| | - Felipe Romero-Saavedra
- Division of Pediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University, 80337 Munich, Germany; (F.R.-S.); (D.L.); (J.H.)
| | - Diana Laverde
- Division of Pediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University, 80337 Munich, Germany; (F.R.-S.); (D.L.); (J.H.)
| | - Mona Johannessen
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, N-9037 Tromsø, Norway; (T.M.W.); (M.J.)
| | - Johannes Hübner
- Division of Pediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University, 80337 Munich, Germany; (F.R.-S.); (D.L.); (J.H.)
| | - Kristin Hegstad
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, N-9037 Tromsø, Norway; (T.M.W.); (M.J.)
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, N-9038 Tromsø, Norway
| |
Collapse
|
13
|
Li G, Walker MJ, De Oliveira DMP. Vancomycin Resistance in Enterococcus and Staphylococcus aureus. Microorganisms 2022; 11:microorganisms11010024. [PMID: 36677316 PMCID: PMC9866002 DOI: 10.3390/microorganisms11010024] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus are both common commensals and major opportunistic human pathogens. In recent decades, these bacteria have acquired broad resistance to several major classes of antibiotics, including commonly employed glycopeptides. Exemplified by resistance to vancomycin, glycopeptide resistance is mediated through intrinsic gene mutations, and/or transferrable van resistance gene cassette-carrying mobile genetic elements. Here, this review will discuss the epidemiology of vancomycin-resistant Enterococcus and S. aureus in healthcare, community, and agricultural settings, explore vancomycin resistance in the context of van and non-van mediated resistance development and provide insights into alternative therapeutic approaches aimed at treating drug-resistant Enterococcus and S. aureus infections.
Collapse
|
14
|
Berisio R. Molecular Immunology in Bacterial Vaccine Discovery. Cells 2022; 11:cells11233803. [PMID: 36497063 PMCID: PMC9736273 DOI: 10.3390/cells11233803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The global threat of antimicrobial resistance (AMR) poses a difficult challenge, as underscored by the World Health Organization (WHO), which identifies AMR as one of the three greatest threats to human health [...].
Collapse
Affiliation(s)
- Rita Berisio
- Institute of Biostructures and Bioimaging, IBB, CNR, Via Pietri Castellino 111, I-80131 Napoli, Italy
| |
Collapse
|
15
|
Dey J, Mahapatra SR, Raj TK, Kaur T, Jain P, Tiwari A, Patro S, Misra N, Suar M. Designing a novel multi-epitope vaccine to evoke a robust immune response against pathogenic multidrug-resistant Enterococcus faecium bacterium. Gut Pathog 2022; 14:21. [PMID: 35624464 PMCID: PMC9137449 DOI: 10.1186/s13099-022-00495-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/26/2022] [Indexed: 12/26/2022] Open
Abstract
Enterococcus faecium is an emerging ESKAPE bacterium that is capable of causing severe public health complications in humans. There are currently no licensed treatments or vaccinations to combat the deadly pathogen. We aimed to design a potent and novel prophylactic chimeric vaccine against E. faecium through an immunoinformatics approach The antigenic Penicillin-binding protein 5 (PBP 5) protein was selected to identify B and T cell epitopes, followed by conservancy analysis, population coverage, physiochemical assessment, secondary and tertiary structural analysis. Using various immunoinformatics methods and tools, two linear B-cell epitopes, five CTL epitopes, and two HTL epitopes were finally selected for vaccine development. The constructed vaccine was determined to be highly immunogenic, cytokine-producing, antigenic, non-toxic, non-allergenic, and stable, as well as potentially effective against E. faecium. In addition, disulfide engineering, codon adaptation, and in silico cloning, were used to improve stability and expression efficiency in the host E. coli. Molecular docking and molecular dynamics simulations indicated that the structure of the vaccine is stable and has a high affinity for the TLR4 receptor. The immune simulation results revealed that both B and T cells had an increased response to the vaccination component. Conclusively, the in-depth in silico analysis suggests, the proposed vaccine to elicit a robust immune response against E. faecium infection and hence a promising target for further experimental trials.
Collapse
Affiliation(s)
- Jyotirmayee Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Campus-11, Bhubaneswar, Odisha, 751024, India
| | - Soumya Ranjan Mahapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Campus-11, Bhubaneswar, Odisha, 751024, India
| | - T Kiran Raj
- Department of Biotechnology & Bioinformatics, School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru, India
| | - Taranjeet Kaur
- Biotechnology Industry Research Assistance Council (BIRAC), New Delhi, India
| | - Parul Jain
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Campus-11, Bhubaneswar, Odisha, 751024, India
| | - Arushi Tiwari
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Campus-11, Bhubaneswar, Odisha, 751024, India
| | - Shubhransu Patro
- Kalinga Institute of Medical Sciences, KIIT Deemed to Be University, Bhubaneswar, India
| | - Namrata Misra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Campus-11, Bhubaneswar, Odisha, 751024, India. .,KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, 751024, Bhubaneswar, Odisha, India.
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Campus-11, Bhubaneswar, Odisha, 751024, India. .,KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, 751024, Bhubaneswar, Odisha, India.
| |
Collapse
|
16
|
Alotaibi G, Khan K, Al Mouslem AK, Ahmad Khan S, Naseer Abbas M, Abbas M, Ali Shah S, Jalal K. Pan Genome Based Reverse Vaccinology Approach to Explore Enterococcus Faecium (VRE) Strains for Identification of Novel Multi-Epitopes Vaccine Candidate. Immunobiology 2022; 227:152221. [DOI: 10.1016/j.imbio.2022.152221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/24/2022] [Accepted: 04/15/2022] [Indexed: 11/05/2022]
|
17
|
Wang S, Liu H, Mao J, Peng Y, Yan Y, Li Y, Zhang N, Jiang L, Liu Y, Li J, Huang X. Pharmacodynamics of Linezolid Plus Fosfomycin Against Vancomycin-Resistant Enterococcus faecium in a Hollow Fiber Infection Model. Front Microbiol 2022; 12:779885. [PMID: 34970238 PMCID: PMC8714187 DOI: 10.3389/fmicb.2021.779885] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/17/2021] [Indexed: 12/27/2022] Open
Abstract
The optimal therapy for severe infections caused by vancomycin-resistant Enterococcus faecium (VREfm) remains unclear, but the combination of linezolid and fosfomycin may be a good choice. The 24-h static-concentration time-kill study (SCTK) was used to preliminarily explore the pharmacodynamics of linezolid combined with fosfomycin against three clinical isolates. Subsequently, a hollow-fibre infection model (HFIM) was used for the first time to further investigate the pharmacodynamic activity of the co-administration regimen against selected isolates over 72 h. To further quantify the relationship between fosfomycin resistance and bacterial virulence in VREfm, the Galleria mellonella infection model and virulence genes expression experiments were also performed. The results of SCTK showed that the combination of linezolid and fosfomycin had additive effect on all strains. In the HFIM, the dosage regimen of linezolid (12 mg/L, steady-state concentration) combined with fosfomycin (8 g administered intravenously every 8 h as a 1 h infusion) not only produced a sustained bactericidal effect of 3∼4 log10 CFU/mL over 72 h, but also completely eradicated the resistant subpopulations. The expression of virulence genes was down-regulated to at least 0.222-fold in fosfomycin-resistant strains compared with baseline isolate, while survival rates of G. mellonella was increased (G. mellonella survival ≥45% at 72 h). For severe infections caused by VREfm, neither linezolid nor fosfomycin monotherapy regimens inhibited amplification of the resistant subpopulations, and the development of fosfomycin resistance was at the expense of the virulence of VREfm. The combination of linezolid with fosfomycin produced a sustained bactericidal effect and completely eradicated the resistant subpopulations. Linezolid plus Fosfomycin is a promising combination for therapy of severe infections caused by VREfm.
Collapse
Affiliation(s)
- Shuaishuai Wang
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Huiping Liu
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Mao
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yu Peng
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yisong Yan
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yaowen Li
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Na Zhang
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Lifang Jiang
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yanyan Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiabin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaohui Huang
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
18
|
OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1228-1236. [DOI: 10.1093/jac/dkac027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/10/2022] [Indexed: 11/14/2022] Open
|
19
|
Fatoba AJ, Adeleke VT, Maharaj L, Okpeku M, Adeniyi AA, Adeleke MA. Immunoinformatics Design of Multiepitope Vaccine Against Enterococcus faecium Infection. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10245-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|