1
|
Xue T, Lu X, Wen Y, Maleh HK, Duan X, Xu J. Recent progress of black phosphorene from preparation to diversified bio-/chemo-nanosensors and their challenges and opportunities for comprehensive health. Mikrochim Acta 2024; 191:771. [PMID: 39609277 DOI: 10.1007/s00604-024-06828-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024]
Abstract
The introduction of comprehensive health, related to human living environment and mental state, helps people to improve human health literacy and accept scientific health guidance. The unique structure and properties of black phosphorene (BP) provide potential opportunities for rapid development and versatile applications of high-performance sensors serving comprehensive health. The review begins with the preparation from bulk black phosphorous crystals via transforming requirements of phosphorous allotropes and BP nanosheets via preparative strategies using both "top-down" and "bottom-up" methods. Then the diversified modification of BP and versatile fabrication of diversified bio-/chemo-nanosensors for sensitive detection of analytes are discussed. Besides, the challenges including the preparation of BP, diversified modification, devices for improving performance defects and chemo-/bio-nanosensors for enhancing performance are outlined together with potential opportunities for the BP preparation and applications in comprehensive health from agricultural environments, food safety, personal life, physical and mental life, and finally to medical care.
Collapse
Affiliation(s)
- Ting Xue
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Material, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Xinyu Lu
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Material, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| | - Yangping Wen
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Material, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| | - Hassan Karimi Maleh
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Institute of Functional Materials and Agricultural Applied Chemistry, College of Chemistry and Material, Jiangxi Agricultural University, Nanchang, 330045, PR China
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Xuemin Duan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, PR China
| | - Jingkun Xu
- Jiangxi Key Laboratory of Flexible Electronics, Jiangxi Science & Technology Normal University, Nanchang, 330013, PR China
- College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, PR China
| |
Collapse
|
2
|
Gamella M, Ballesteros MI, Ruiz-Valdepeñas Montiel V, Sánchiz A, Cuadrado C, Pingarrón JM, Linacero R, Campuzano S. Disposable amperometric biotool for peanut detection in processed foods by targeting a chloroplast DNA marker. Talanta 2024; 277:126350. [PMID: 38843772 DOI: 10.1016/j.talanta.2024.126350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 07/19/2024]
Abstract
This work reports the development and application of a disposable amperometric sensor built on magnetic microcarriers coupled to an Express PCR strategy to amplify a specific DNA fragment of the chloroplast trnH-psbA. The procedure involves the selective capture of a 68-mer synthetic target DNA (or unmodified PCR products) through sandwich hybridization with RNA capture probe-modified streptavidin MBs and RNA signaling probes, labeled using antibodies specific to the heteroduplexes and secondary antibodies tagged with horseradish peroxidase. Amperometric measurements were performed on screen-printed electrodes using the H2O2/hydroquinone system. Achieving a LOD of 3 pM for the synthetic target, it was possible to detect 2.5 pg of peanut DNA and around 10 mg kg-1 of peanut in binary mixtures (defatted peanut flours prepared in spelt wheat). However, the detectability decreased between 10 and 1000 times in processed samples depending on the treatment. The Express PCR-bioplatform was applied to the detection of peanut traces in foodstuff.
Collapse
Affiliation(s)
- Maria Gamella
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - María Isabel Ballesteros
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | | | - Africa Sánchiz
- Departamento de Tecnología de los Alimentos, CSIC-INIA, 28040, Madrid, Spain
| | - Carmen Cuadrado
- Departamento de Tecnología de los Alimentos, CSIC-INIA, 28040, Madrid, Spain
| | - José M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Rosario Linacero
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
3
|
Wanniarachchi PC, Upul Kumarasinghe KG, Jayathilake C. Recent advancements in chemosensors for the detection of food spoilage. Food Chem 2024; 436:137733. [PMID: 37862988 DOI: 10.1016/j.foodchem.2023.137733] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 07/10/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023]
Abstract
The need for reliable sensors has become a major requirement to confirm the quality and safety of food commodities. Chemosensors are promising sensing tools to identify contaminants and food spoilage to ensure food safety. Chemosensing materials are evolving and becoming potential mechanisms to enable onsite and real-time monitoring of food safety. This review summarizes the information about the basic four types of chemosensors (colorimetric, optical, electrochemical, and piezoelectric) employed in the food sector, the latest advancements in the development of chemo-sensing mechanisms, and their food applications, with special emphasis on the future outlook of them. In this review, we discuss the novel chemosensors developed from the year 2018 to 2022 to detect spoilage in some common types of food like fish, meat, milk, cheese and soy sauce. This work will provide a fundamental step toward further development and innovations of chemosensors targeting different arenas in the food industry.
Collapse
Affiliation(s)
| | - K G Upul Kumarasinghe
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
| | - Chathuni Jayathilake
- School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.
| |
Collapse
|
4
|
Fernández H, Zon MA, Maccio SA, Alaníz RD, Di Tocco A, Carrillo Palomino RA, Cabas Rodríguez JA, Granero AM, Arévalo FJ, Robledo SN, Pierini GD. Multivariate Optimization of Electrochemical Biosensors for the Determination of Compounds Related to Food Safety-A Review. BIOSENSORS 2023; 13:694. [PMID: 37504093 PMCID: PMC10377565 DOI: 10.3390/bios13070694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023]
Abstract
We summarize the application of multivariate optimization for the construction of electrochemical biosensors. The introduction provides an overview of electrochemical biosensing, which is classified into catalytic-based and affinity-based biosensors, and discusses the most recent published works in each category. We then explore the relevance of electrochemical biosensors for food safety analysis, taking into account analytes of different natures. Then, we describe the chemometrics tools used in the construction of electrochemical sensors/biosensors and provide examples from the literature. Finally, we carefully discuss the construction of electrochemical biosensors based on design of experiments, including the advantages, disadvantages, and future perspectives of using multivariate optimization in this field. The discussion section offers a comprehensive analysis of these topics.
Collapse
Affiliation(s)
- Héctor Fernández
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - María Alicia Zon
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Sabrina Antonella Maccio
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Rubén Darío Alaníz
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Aylen Di Tocco
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Roodney Alberto Carrillo Palomino
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Jose Alberto Cabas Rodríguez
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Adrian Marcelo Granero
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Fernando J Arévalo
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Sebastian Noel Robledo
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
- Departamento de Tecnología Química (IDAS), Facultad de Ingeniería, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Gastón Darío Pierini
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| |
Collapse
|
5
|
Zhang T, Han J, Zhang H. Rapid saline-alkali sensitivity testing using hydrogel/gold nanoparticles-modified screen-printed electrodes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160814. [PMID: 36509274 DOI: 10.1016/j.scitotenv.2022.160814] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Rapid screening of microorganisms with good saline-alkali tolerance is of great significance for the improvement of saline-alkali land. In this study, a novel electrochemical method was developed for the rapid screening of saline-alkali-tolerant bacteria using a hydrogel/gold nanoparticles-modified screen-printed electrode. Monitoring bacterial growth using electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) yielded a new method to measure saline-alkali sensitivity. The strains were deposited on agarose hydrogel-AuNPs composite-modified electrodes with saline-alkali treatment control at a concentration of 50 mM. The electrochemical-derived growth curve of each bacterial strain was established to monitor the effect of saline-alkaline conditions on bacterial growth. The results showed that E. coli could grow on the hydrogel-AuNPs composite-modified electrodes without saline and alkali, while the growth of E. coli was inhibited after adding saline and alkali to the modified electrodes. In contrast, Paenibacillus lautus (HC_A) and Lysinibacillus fusiformis (HC_B) were able to grow on electrodes containing saline-alkali hydrogel-AuNPs composite modification. This fast growth curves of the strains derived from electrochemical analysis indicate that the possible time for salinity sensitivity results is <45 min. Compared to the traditional bacterial culture method lasting at least 1-2 days, this method has the clear advantages of rapidity, high efficiency, and low cost.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China
| | - Juan Han
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China
| | - Houjin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China.
| |
Collapse
|
6
|
Gawrońska M, Kowalik M, Makowski M. Recent advances in medicinal chemistry of ampicillin: Derivatives, metal complexes, and sensing approaches. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
A DNA functionalized advanced electrochemical biosensor for identification of the foodborne pathogen Salmonella enterica serovar Typhi in real samples. Anal Chim Acta 2022; 1192:339332. [DOI: 10.1016/j.aca.2021.339332] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 11/20/2022]
|
8
|
Bakhshandeh B, Sorboni SG, Haghighi DM, Ahmadi F, Dehghani Z, Badiei A. New analytical methods using carbon-based nanomaterials for detection of Salmonella species as a major food poisoning organism in water and soil resources. CHEMOSPHERE 2022; 287:132243. [PMID: 34537453 DOI: 10.1016/j.chemosphere.2021.132243] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/21/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Salmonella is one of the most prevalent causing agents of food- and water-borne illnesses, posing an ongoing public health threat. These food-poisoning bacteria contaminate the resources at different stages such as production, aggregation, processing, distribution, as well as marketing. According to the high incidence of salmonellosis, effective strategies for early-stage detection are required at the highest priority. Since traditional culture-dependent methods and polymerase chain reaction are labor-intensive and time-taking, identification of early and accurate detection of Salmonella in food and water samples can prevent significant health economic burden and lessen the costs. The immense potentiality of biosensors in diagnosis, such as simplicity in operation, the ability of multiplex analysis, high sensitivity, and specificity, have driven research in the evolution of nanotechnology, innovating newer biosensors. Carbon nanomaterials enhance the detection sensitivity of biosensors while obtaining low levels of detection limits due to their possibility to immobilize huge amounts of bioreceptor units at insignificant volume. Moreover, conjugation and functionalization of carbon nanomaterials with metallic nanoparticles or organic molecules enables surface functional groups. According to these remarkable properties, carbon nanomaterials are widely exploited in the development of novel biosensors. To be specific, carbon nanomaterials such as carbon nanotubes, graphene and fullerenes function as transducers in the analyte recognition process or surface immobilizers for biomolecules. Herein the potential application of carbon nanomaterials in the development of novel Salmonella biosensors platforms is reviewed comprehensively. In addition, the current problems and critical analyses of the future perspectives of Salmonella biosensors are discussed.
Collapse
Affiliation(s)
- Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran; Department of Microbiology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran.
| | | | - Dorrin Mohtadi Haghighi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ahmadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Zahra Dehghani
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
9
|
Rodríguez-Herrera J, Cabado AG, Bodelón G, Cunha SC, Pinto V, Fernandes JO, Lago J, Muñoz S, Pastoriza-Santos I, Sousa P, Gonçalves L, López-Cabo M, Pérez-Juste J, Santos J, Minas G. Methodological Approaches for Monitoring Five Major Food Safety Hazards Affecting Food Production in the Galicia-Northern Portugal Euroregion. Foods 2021; 11:84. [PMID: 35010210 PMCID: PMC8750003 DOI: 10.3390/foods11010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
The agri-food industry has historically determined the socioeconomic characteristics of Galicia and Northern Portugal, and it was recently identified as an area for collaboration in the Euroregion. In particular, there is a need for action to help to ensure the provision of safe and healthy foods by taking advantage of key enabling technologies. The goals of the FOODSENS project are aligned with this major objective, specifically with the development of biosensors able to monitor hazards relevant to the safety of food produced in the Euroregion. The present review addresses the state of the art of analytical methodologies and techniques-whether commercially available or in various stages of development-for monitoring food hazards, such as harmful algal blooms, mycotoxins, Listeria monocytogenes, allergens, and polycyclic aromatic hydrocarbons. We discuss the pros and cons of these methodologies and techniques and address lines of research for point-of-care detection. Accordingly, the development of miniaturized automated monitoring strategies is considered a priority in terms of health and economic interest, with a significant impact in several areas, such as food safety, water quality, pollution control, and public health. Finally, we present potential market opportunities that could result from the availability of rapid and reliable commercial methodologies.
Collapse
Affiliation(s)
- Juan Rodríguez-Herrera
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), 36208 Vigo, Spain; (S.M.); (M.L.-C.)
| | - Ana G. Cabado
- ANFACO-CECOPESCA, Ctra. Colexio Universitario, 16, 36310 Vigo, Spain; (A.G.C.); (J.L.)
| | - Gustavo Bodelón
- CINBIO, Campus Universitario As Lagoas, Universidade de Vigo, 36310 Vigo, Spain; (G.B.); (I.P.-S.); (J.P.-J.)
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain
| | - Sara C. Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hidrology, Department of Chemical Sciences, Facultaty of Pharmacy, University of Porto, Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; (S.C.C.); (J.O.F.); (J.S.)
| | - Vânia Pinto
- Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, 4800-058 Guimarães, Portugal; (V.P.); (P.S.); (L.G.); (G.M.)
| | - José O. Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hidrology, Department of Chemical Sciences, Facultaty of Pharmacy, University of Porto, Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; (S.C.C.); (J.O.F.); (J.S.)
| | - Jorge Lago
- ANFACO-CECOPESCA, Ctra. Colexio Universitario, 16, 36310 Vigo, Spain; (A.G.C.); (J.L.)
| | - Silvia Muñoz
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), 36208 Vigo, Spain; (S.M.); (M.L.-C.)
| | - Isabel Pastoriza-Santos
- CINBIO, Campus Universitario As Lagoas, Universidade de Vigo, 36310 Vigo, Spain; (G.B.); (I.P.-S.); (J.P.-J.)
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain
| | - Paulo Sousa
- Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, 4800-058 Guimarães, Portugal; (V.P.); (P.S.); (L.G.); (G.M.)
| | - Luís Gonçalves
- Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, 4800-058 Guimarães, Portugal; (V.P.); (P.S.); (L.G.); (G.M.)
| | - Marta López-Cabo
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), 36208 Vigo, Spain; (S.M.); (M.L.-C.)
| | - Jorge Pérez-Juste
- CINBIO, Campus Universitario As Lagoas, Universidade de Vigo, 36310 Vigo, Spain; (G.B.); (I.P.-S.); (J.P.-J.)
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain
| | - João Santos
- LAQV-REQUIMTE, Laboratory of Bromatology and Hidrology, Department of Chemical Sciences, Facultaty of Pharmacy, University of Porto, Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; (S.C.C.); (J.O.F.); (J.S.)
| | - Graça Minas
- Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, 4800-058 Guimarães, Portugal; (V.P.); (P.S.); (L.G.); (G.M.)
| |
Collapse
|
10
|
Fu L, Zheng Y, Wang A, Zhang P, Ding S, Wu W, Zhou Q, Chen F, Zhao S. Identification of medicinal herbs in Asteraceae and Polygonaceae using an electrochemical fingerprint recorded using screen-printed electrode. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Krissanaprasit A, Key CM, Pontula S, LaBean TH. Self-Assembling Nucleic Acid Nanostructures Functionalized with Aptamers. Chem Rev 2021; 121:13797-13868. [PMID: 34157230 DOI: 10.1021/acs.chemrev.0c01332] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Researchers have worked for many decades to master the rules of biomolecular design that would allow artificial biopolymer complexes to self-assemble and function similarly to the diverse biochemical constructs displayed in natural biological systems. The rules of nucleic acid assembly (dominated by Watson-Crick base-pairing) have been less difficult to understand and manipulate than the more complicated rules of protein folding. Therefore, nucleic acid nanotechnology has advanced more quickly than de novo protein design, and recent years have seen amazing progress in DNA and RNA design. By combining structural motifs with aptamers that act as affinity handles and add powerful molecular recognition capabilities, nucleic acid-based self-assemblies represent a diverse toolbox for use by bioengineers to create molecules with potentially revolutionary biological activities. In this review, we focus on the development of self-assembling nucleic acid nanostructures that are functionalized with nucleic acid aptamers and their great potential in wide ranging application areas.
Collapse
Affiliation(s)
- Abhichart Krissanaprasit
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Carson M Key
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Sahil Pontula
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Thomas H LaBean
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
12
|
Recent Advances in Electrochemical Chitosan-Based Chemosensors and Biosensors: Applications in Food Safety. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9090254] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chitosan is a biopolymer derived from chitin. It is a non-toxic, biocompatible, bioactive, and biodegradable polymer. Due to its properties, chitosan has found applications in several and different fields such as agriculture, food industry, medicine, paper fabrication, textile industry, and water treatment. In addition to these properties, chitosan has a good film-forming ability which allows it to be widely used for the development of sensors and biosensors. This review is focused on the use of chitosan for the formulation of electrochemical chemosensors. It also aims to provide an overview of the advantages of using chitosan as an immobilization platform for biomolecules by highlighting its applications in electrochemical biosensors. Finally, applications of chitosan-based electrochemical chemosensors and biosensors in food safety are illustrated.
Collapse
|
13
|
New tools of Electrochemistry at the service of (bio)sensing: From rational designs to electrocatalytic mechanisms. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Sempionatto JR, Montiel VRV, Vargas E, Teymourian H, Wang J. Wearable and Mobile Sensors for Personalized Nutrition. ACS Sens 2021; 6:1745-1760. [PMID: 34008960 DOI: 10.1021/acssensors.1c00553] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
While wearable and mobile chemical sensors have experienced tremendous growth over the past decade, their potential for tracking and guiding nutrition has emerged only over the past three years. Currently, guidelines from doctors and dietitians represent the most common approach for maintaining optimal nutrition status. However, such recommendations rely on population averages and do not take into account individual variability in responding to nutrients. Precision nutrition has recently emerged to address the large heterogeneity in individuals' responses to diet, by tailoring nutrition based on the specific requirements of each person. It aims at preventing and managing diseases by formulating personalized dietary interventions to individuals on the basis of their metabolic profile, background, and environmental exposure. Recent advances in digital nutrition technology, including calories-counting mobile apps and wearable motion tracking devices, lack the ability of monitoring nutrition at the molecular level. The realization of effective precision nutrition requires synergy from different sensor modalities in order to make timely reliable predictions and efficient feedback. This work reviews key opportunities and challenges toward the successful realization of effective wearable and mobile nutrition monitoring platforms. Non-invasive wearable and mobile electrochemical sensors, capable of monitoring temporal chemical variations upon the intake of food and supplements, are excellent candidates to bridge the gap between digital and biochemical analyses for a successful personalized nutrition approach. By providing timely (previously unavailable) dietary information, such wearable and mobile sensors offer the guidance necessary for supporting dietary behavior change toward a managed nutritional balance. Coupling of the rapidly emerging wearable chemical sensing devices-generating enormous dynamic analytical data-with efficient data-fusion and data-mining methods that identify patterns and make predictions is expected to revolutionize dietary decision-making toward effective precision nutrition.
Collapse
Affiliation(s)
- Juliane R. Sempionatto
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | | | - Eva Vargas
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Hazhir Teymourian
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
15
|
Curulli A. Electrochemical Biosensors in Food Safety: Challenges and Perspectives. Molecules 2021; 26:2940. [PMID: 34063344 PMCID: PMC8156954 DOI: 10.3390/molecules26102940] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Safety and quality are key issues for the food industry. Consequently, there is growing demand to preserve the food chain and products against substances toxic, harmful to human health, such as contaminants, allergens, toxins, or pathogens. For this reason, it is mandatory to develop highly sensitive, reliable, rapid, and cost-effective sensing systems/devices, such as electrochemical sensors/biosensors. Generally, conventional techniques are limited by long analyses, expensive and complex procedures, and skilled personnel. Therefore, developing performant electrochemical biosensors can significantly support the screening of food chains and products. Here, we report some of the recent developments in this area and analyze the contributions produced by electrochemical biosensors in food screening and their challenges.
Collapse
Affiliation(s)
- Antonella Curulli
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN) CNR, Via del Castro Laurenziano 7, 00161 Roma, Italy
| |
Collapse
|
16
|
Shen Y, Xu L, Li Y. Biosensors for rapid detection of Salmonella in food: A review. Compr Rev Food Sci Food Saf 2020; 20:149-197. [PMID: 33443806 DOI: 10.1111/1541-4337.12662] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/04/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
Salmonella is one of the main causes of foodborne infectious diseases, posing a serious threat to public health. It can enter the food supply chain at various stages of production, processing, distribution, and marketing. High prevalence of Salmonella necessitates efficient and effective approaches for its identification, detection, and monitoring at an early stage. Because conventional methods based on plate counting and real-time polymerase chain reaction are time-consuming and laborious, novel rapid detection methods are urgently needed for in-field and on-line applications. Biosensors provide many advantages over conventional laboratory assays in terms of sensitivity, specificity, and accuracy, and show superiority in rapid response and potential portability. They are now recognized as promising alternative tools and one of the most on-site applicable and end user-accessible methods for rapid detection. In recent years, we have witnessed a flourishing of studies in the development of robust and elaborate biosensors for detection of Salmonella in food. This review aims to provide a comprehensive overview on Salmonella biosensors by highlighting different signal-transducing mechanisms (optical, electrochemical, piezoelectric, etc.) and critically analyzing its recent trends, particularly in combination with nanomaterials, microfluidics, portable instruments, and smartphones. Furthermore, current challenges are emphasized and future perspectives are discussed.
Collapse
Affiliation(s)
- Yafang Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Lizhou Xu
- Department of Materials, Imperial College London, London, UK
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
17
|
Amor-Gutiérrez O, Selvolini G, Fernández-Abedul MT, de la Escosura-Muñiz A, Marrazza G. Folding-Based Electrochemical Aptasensor for the Determination of β-Lactoglobulin on Poly-L-Lysine Modified Graphite Electrodes. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2349. [PMID: 32326088 PMCID: PMC7219239 DOI: 10.3390/s20082349] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 02/07/2023]
Abstract
Nowadays, food allergy is a very important health issue, causing adverse reactions of the immune system when exposed to different allergens present in food. Because of this, the development of point-of-use devices using miniaturized, user-friendly, and low-cost instrumentation has become of outstanding importance. According to this, electrochemical aptasensors have been demonstrated as useful tools to quantify a broad variety of targets. In this work, we develop a simple methodology for the determination of β-lactoglobulin (β-LG) in food samples using a folding-based electrochemical aptasensor built on poly-L-lysine modified graphite screen-printed electrodes (GSPEs) and an anti-β-lactoglobulin aptamer tagged with methylene blue (MB). This aptamer changes its conformation when the sample contains β-LG, and due to this, the spacing between MB and the electrode surface (and therefore the electron transfer efficiency) also changes. The response of this biosensor was linear for concentrations of β-LG within the range 0.1-10 ng·mL-1, with a limit of detection of 0.09 ng·mL-1. The biosensor was satisfactorily employed for the determination of spiked β-LG in real food samples.
Collapse
Affiliation(s)
- Olaya Amor-Gutiérrez
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy; (O.A.-G.); (G.S.)
- NanoBioAnalysis Group, Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain;
| | - Giulia Selvolini
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy; (O.A.-G.); (G.S.)
| | - M. Teresa Fernández-Abedul
- BioNanoAnalytical Spectrometry and Electrochemistry Group, Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain;
| | - Alfredo de la Escosura-Muñiz
- NanoBioAnalysis Group, Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain;
| | - Giovanna Marrazza
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy; (O.A.-G.); (G.S.)
| |
Collapse
|
18
|
Valverde A, ben Hassine A, Serafín V, Muñoz‐San Martín C, Pedrero M, Garranzo‐Asensio M, Gamella M, Raouafi N, Barderas R, Yáñez‐Sedeño P, Campuzano S, Pingarrón JM. Dual Amperometric Immunosensor for Improving Cancer Metastasis Detection by the Simultaneous Determination of Extracellular and Soluble Circulating Fraction of Emerging Metastatic Biomarkers. ELECTROANAL 2019. [DOI: 10.1002/elan.201900506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alejandro Valverde
- Analytical Chemistry Dept., Faculty of ChemistryComplutense University of Madrid. E-28040 Madrid Spain
| | - Amira ben Hassine
- Analytical Chemistry Dept., Faculty of ChemistryComplutense University of Madrid. E-28040 Madrid Spain
- University of Tunis El ManarTunis Faculty of Science, Sensors and Biosensors Group, Laboratory of Analytical Chemistry and Electrochemistry 2092 Tunis El Manar Tunisia
| | - Verónica Serafín
- Analytical Chemistry Dept., Faculty of ChemistryComplutense University of Madrid. E-28040 Madrid Spain
| | - Cristina Muñoz‐San Martín
- Analytical Chemistry Dept., Faculty of ChemistryComplutense University of Madrid. E-28040 Madrid Spain
| | - María Pedrero
- Analytical Chemistry Dept., Faculty of ChemistryComplutense University of Madrid. E-28040 Madrid Spain
| | | | - Maria Gamella
- Analytical Chemistry Dept., Faculty of ChemistryComplutense University of Madrid. E-28040 Madrid Spain
| | - Noureddine Raouafi
- University of Tunis El ManarTunis Faculty of Science, Sensors and Biosensors Group, Laboratory of Analytical Chemistry and Electrochemistry 2092 Tunis El Manar Tunisia
| | - Rodrigo Barderas
- UFIECInstitute of Health Carlos III. E-28220 Majadahonda, Madrid Spain
| | - Paloma Yáñez‐Sedeño
- Analytical Chemistry Dept., Faculty of ChemistryComplutense University of Madrid. E-28040 Madrid Spain
| | - Susana Campuzano
- Analytical Chemistry Dept., Faculty of ChemistryComplutense University of Madrid. E-28040 Madrid Spain
| | - José M. Pingarrón
- Analytical Chemistry Dept., Faculty of ChemistryComplutense University of Madrid. E-28040 Madrid Spain
| |
Collapse
|
19
|
Possibilities and Prospects of Immunosensors for a Highly Sensitive Pesticide Detection in Vegetables and Fruits: a Review. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01630-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
20
|
Paclitaxel-Trastuzumab Mixed Nanovehicle to Target HER2-Overexpressing Tumors. NANOMATERIALS 2019; 9:nano9070948. [PMID: 31261957 PMCID: PMC6669497 DOI: 10.3390/nano9070948] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022]
Abstract
Paclitaxel is one of the most widely used chemotherapeutic agents thanks to its effectiveness and broad spectrum of antitumor activity. However, it has a very poor aqueous solubility and a limited specificity. To solve these handicaps, a novel paclitaxel-trastuzumab targeted transport nanosystem has been developed and characterized in this work to specifically treat cancer cells that overexpress the human epidermal growth factor receptor-2 (HER2). Methods: Alginate and piperazine nanoparticles were synthetized and conjugated with paclitaxel:β-cyclodextrins complexes and trastuzumab. Conjugated nanoparticles (300 nm) were characterized and their internalization in HER2-overexpressing tumor cells was analyzed by immunofluorescence. Its specific antitumor activity was studied in vitro using human cell lines with different levels of HER2-expression. Results: In comparison with free paclitaxel:β-cyclodextrins complexes, the developed conjugated nanovehicle presented specificity for the treatment of HER2-overpressing cells, in which it was internalized by endocytosis. Conclusions: It seems that potentially avoiding the conventional adverse effects of paclitaxel treatment could be possible with the use of the proposed mixed nanovehicle, which improves its bioavailability and targets HER2-positive cancer cells.
Collapse
|
21
|
Papadakis G, Murasova P, Hamiot A, Tsougeni K, Kaprou G, Eck M, Rabus D, Bilkova Z, Dupuy B, Jobst G, Tserepi A, Gogolides E, Gizeli E. Micro-nano-bio acoustic system for the detection of foodborne pathogens in real samples. Biosens Bioelectron 2018; 111:52-58. [DOI: 10.1016/j.bios.2018.03.056] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/21/2018] [Accepted: 03/26/2018] [Indexed: 01/30/2023]
|
22
|
Radhakrishnan R, Poltronieri P. Fluorescence-Free Biosensor Methods in Detection of Food Pathogens with a Special Focus on Listeria monocytogenes. BIOSENSORS 2017; 7:63. [PMID: 29261134 PMCID: PMC5746786 DOI: 10.3390/bios7040063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/11/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022]
Abstract
Food pathogens contaminate food products that allow their growth on the shelf and also under refrigerated conditions. Therefore, it is of utmost importance to lower the limit of detection (LOD) of the method used and to obtain the results within hours to few days. Biosensor methods exploit the available technologies to individuate and provide an approximate quantification of the bacteria present in a sample. The main bottleneck of these methods depends on the aspecific binding to the surfaces and on a change in sensitivity when bacteria are in a complex food matrix with respect to bacteria in a liquid food sample. In this review, we introduce surface plasmon resonance (SPR), new advancements in SPR techniques, and electrochemical impedance spectroscopy (EIS), as fluorescence-free biosensing technologies for detection of L. monocytogenes in foods. The application of the two methods has facilitated L. monocytogenes detection with LOD of 1 log CFU/mL. Further advancements are envisaged through the combination of biosensor methods with immunoseparation of bacteria from larger volumes, application of lab-on-chip technologies, and EIS sensing methods for multiplex pathogen detection. Validation efforts are being conducted to demonstrate the robustness of detection, reproducibility and variability in multi-site installations.
Collapse
|
23
|
Thyparambil AA, Bazin I, Guiseppi-Elie A. Molecular Modeling and Simulation Tools in the Development of Peptide-Based Biosensors for Mycotoxin Detection: Example of Ochratoxin. Toxins (Basel) 2017. [PMCID: PMC5744115 DOI: 10.3390/toxins9120395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mycotoxin contamination of food and feed is now ubiquitous. Exposures to mycotoxin via contact or ingestion can potentially induce adverse health outcomes. Affordable mycotoxin-monitoring systems are highly desired but are limited by (a) the reliance on technically challenging and costly molecular recognition by immuno-capture technologies; and (b) the lack of predictive tools for directing the optimization of alternative molecular recognition modalities. Our group has been exploring the development of ochratoxin detection and monitoring systems using the peptide NFO4 as the molecular recognition receptor in fluorescence, electrochemical and multimodal biosensors. Using ochratoxin as the model mycotoxin, we share our perspective on addressing the technical challenges involved in biosensor fabrication, namely: (a) peptide receptor design; and (b) performance evaluation. Subsequently, the scope and utility of molecular modeling and simulation (MMS) approaches to address the above challenges are described. Informed and enabled by phage display, the subsequent application of MMS approaches can rationally guide subsequent biomolecular engineering of peptide receptors, including bioconjugation and bioimmobilization approaches to be used in the fabrication of peptide biosensors. MMS approaches thus have the potential to reduce biosensor development cost, extend product life cycle, and facilitate multi-analyte detection of mycotoxins, each of which positively contributes to the overall affordability of mycotoxin biosensor monitoring systems.
Collapse
Affiliation(s)
- Aby A. Thyparambil
- Center for Bioelectronics, Biosensors and Biochips (C3B), Texas A&M University, College Station, TX 77843, USA;
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Ingrid Bazin
- Laboratoire de Génie de l’Environnement Industriel( LGEI), Institut Mines Telecom (IMT) Mines Ales, University of Montpellier, 30100 Ales, France;
| | - Anthony Guiseppi-Elie
- Center for Bioelectronics, Biosensors and Biochips (C3B), Texas A&M University, College Station, TX 77843, USA;
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
- ABTECH Scientific, Inc., Biotechnology Research Park, 800 East Leigh Street, Richmond, VA 23219, USA
- Correspondence: ; Tel.: +1-979-458-1239; Fax: +1-979-458-8219
| |
Collapse
|
24
|
Vasilescu A, Hayat A, Gáspár S, Marty JL. Advantages of Carbon Nanomaterials in Electrochemical Aptasensors for Food Analysis. ELECTROANAL 2017. [DOI: 10.1002/elan.201700578] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Alina Vasilescu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, sector 6; 060101 Bucharest Romania
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM) COMSATS Institute of Information Technology (CIIT); 54000 Lahore Pakistan
| | - Szilveszter Gáspár
- International Centre of Biodynamics, 1B Intrarea Portocalelor, sector 6; 060101 Bucharest Romania
| | - Jean-Louis Marty
- BAE Laboratory; Université de Perpignan Via Domitia; 52 Avenue Paul Alduy 66860 Perpignan France
| |
Collapse
|
25
|
Electrochemical Biosensors for the Determination of Toxic Substances Related to Food Safety Developed in South America: Mycotoxins and Herbicides. CHEMOSENSORS 2017. [DOI: 10.3390/chemosensors5030023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|