1
|
Kharkova A, Kuznetsova L, Perchikov R, Gertsen M, Melnikov P, Zaitsev N, Zhang J, Arlyapov V. Bionanocomposite Four-Channel Biosensor for Rapid and Convenient Monitoring of Glucose, Lactate, Ethanol and Starch. Gels 2025; 11:355. [PMID: 40422375 DOI: 10.3390/gels11050355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/02/2025] [Accepted: 05/06/2025] [Indexed: 05/28/2025] Open
Abstract
A biosensor for the determination of glucose, lactate, ethanol and starch in beverages has been developed using enzymes immobilized by a redox-active gel on a screen-printed electrode. A significant improvement proposed for multichannel biosensors, overcoming stability and sensitivity issues by covalently binding phenazine mediators to a biocompatible protein hydrogel, enhancing the packaging of the enzyme. Glucose oxidase (GOx), alcohol oxidase (AOx) and lactate oxidase (LOx) were used as biological materials, as well as a mixture of GOx with γ-amylase (Am). Redox gels were synthesized from bovine serum albumin (BSA) and phenazine derivatives. It was shown that a neutral red-based redox gel combined with single-walled carbon nanotubes is more promising than other substrates for enzyme immobilization. The lower limit of quantification for glucose, ethanol, lactate and starch using these systems is 0.035 mM, 2.3 mM, 15 mM and 2 mg/L, respectively. Biosensors were used to analyze the content of these substances in alcoholic, kvass and fermentation mass. Statistical analysis of the results showed that the values of glucose, ethanol, lactic acid and starch determined using biosensors and obtained by reference methods differ insignificantly. A set of biosensors developed on the basis of specifically selected enzymes is effective for controlling biotechnological processes and can be used as an alternative to classical analytical methods.
Collapse
Affiliation(s)
- Anna Kharkova
- The Research Center «BioChemTech», Tula State University, 300012 Tula, Russia
| | - Lyubov Kuznetsova
- The Research Center «BioChemTech», Tula State University, 300012 Tula, Russia
| | - Roman Perchikov
- The Research Center «BioChemTech», Tula State University, 300012 Tula, Russia
| | - Maria Gertsen
- Laboratory of Soil Chemistry and Ecology, Tula State Lev Tolstoy Pedagogical University, 300026 Tula, Russia
| | - Pavel Melnikov
- M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 119571 Moscow, Russia
| | - Nikolay Zaitsev
- Econics-Expert Ltd., Akademika Bakuleva St., 6, 117513 Moscow, Russia
| | - Jun Zhang
- National Key Laboratory of Urban and Rural Water Resources and Water Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Vyacheslav Arlyapov
- The Research Center «BioChemTech», Tula State University, 300012 Tula, Russia
| |
Collapse
|
2
|
García-Guzmán JJ, Jiménez Heras JM, López-Iglesias D, González-Álvarez RJ, Cubillana-Aguilera L, González Macías C, Fernández Alba JJ, Palacios-Santander JM. New spin coated multilayer lactate biosensor for acidosis monitoring in continuous flow assisted with an electrochemical pH probe. Mikrochim Acta 2024; 191:526. [PMID: 39120744 PMCID: PMC11315777 DOI: 10.1007/s00604-024-06602-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
A LOx-based electrochemical biosensor for high-level lactate determination was developed. For the construction of the biosensor, chitosan and Nafion layers were integrated by using a spin coating procedure, leading to less porous surfaces in comparison with those recorded after a drop casting procedure. The analytical performance of the resulting biosensor for lactate determination was evaluated in batch and flow regime, displaying satisfactory results in both modes ranging from 0.5 to 20 mM concentration range for assessing the lactic acidosis. Finally, the lactate levels in raw serum samples were estimated using the biosensor developed and verified with a blood gas analyzer. Based on these results, the biosensor developed is promising for its use in healthcare environment, after its proper miniaturization. A pH probe based on common polyaniline-based electrochemical sensor was also developed to assist the biosensor for the lactic acidosis monitoring, leading to excellent results in stock solutions ranging from 6.0 to 8.0 mM and raw plasma samples. The results were confirmed by using two different approaches, blood gas analyzer and pH-meter. Consequently, the lactic acidosis monitoring could be achieved in continuous flow regime using both (bio)sensors.
Collapse
Affiliation(s)
- Juan José García-Guzmán
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario 'Puerta del Mar', Universidad de Cádiz, 11009, Cádiz, Spain
| | - José Manuel Jiménez Heras
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario 'Puerta del Mar', Universidad de Cádiz, 11009, Cádiz, Spain
| | - David López-Iglesias
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario 'Puerta del Mar', Universidad de Cádiz, 11009, Cádiz, Spain
| | - Rafael Jesús González-Álvarez
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario 'Puerta del Mar', Universidad de Cádiz, 11009, Cádiz, Spain
| | - Laura Cubillana-Aguilera
- Institute of Research on Electron Microscopy and Materials (IMEYMAT), Department of Analytical Chemistry, Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), Universidad de Cádiz, República Saharaui, S/N. 11510, Puerto Real, Cádiz, Spain.
| | - Carmen González Macías
- Departamento de Obstetricia y Ginecología, Hospital Universitario de Puerto Real, 11510, Puerto Real, Cádiz, Spain
| | - Juan Jesús Fernández Alba
- Departamento de Obstetricia y Ginecología, Hospital Universitario de Puerto Real, 11510, Puerto Real, Cádiz, Spain.
| | - José María Palacios-Santander
- Institute of Research on Electron Microscopy and Materials (IMEYMAT), Department of Analytical Chemistry, Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), Universidad de Cádiz, República Saharaui, S/N. 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
3
|
Igwe CL, Pauk JN, Müller DF, Jaeger M, Deuschitz D, Hartmann T, Spadiut O. Comprehensive evaluation of recombinant lactate dehydrogenase production from inclusion bodies. J Biotechnol 2024; 379:65-77. [PMID: 38036002 DOI: 10.1016/j.jbiotec.2023.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
A broad application spectrum ranging from clinical diagnostics to biosensors in a variety of sectors, makes the enzyme Lactate dehydrogenase (LDH) highly interesting for recombinant protein production. Expression of recombinant LDH is currently mainly carried out in uncontrolled shake-flask cultivations leading to protein that is mostly produced in its soluble form, however in rather low yields. Inclusion body (IB) processes have gathered a lot of attention due to several benefits like increased space-time yields and high purity of the target product. Thus, to investigate the suitability of this processing strategy for ldhL1 production, a fed-batch fermentation steering the production of IBs rather than soluble product formation was developed. It was shown that the space-time-yield of the fermentation could be increased almost 3-fold by increasing qs to 0.25 g g-1 h-1 which corresponds to 21% of qs,max, and keeping the temperature at 37°C after induction. Solubilization and refolding unit operations were developed to regain full bioactivity of the ldhL1. The systematic approach in screening for solubilization and refolding conditions revealed buffer compositions and processing strategies that ultimately resulted in 50% product recovery in the refolding step, revealing major optimization potential in the downstream processing chain. The recovered ldhL1 showed an optimal activity at pH 5.5 and 30∘C with a high catalytic activity and KM values of 0.46 mM and 0.18 mM for pyruvate and NADH, respectively. These features, show that the here produced LDH is a valuable source for various commercial applications, especially considering low pH-environments.
Collapse
Affiliation(s)
- Chika Linda Igwe
- Competence Center CHASE GmbH, Hafenstraße 47-51, Linz 4020, Austria; Institute of Chemical, Getreidemarkt 9, Vienna 1060, Austria
| | - Jan Niklas Pauk
- Competence Center CHASE GmbH, Hafenstraße 47-51, Linz 4020, Austria; Institute of Chemical, Getreidemarkt 9, Vienna 1060, Austria
| | | | - Mira Jaeger
- Institute of Chemical, Getreidemarkt 9, Vienna 1060, Austria
| | | | - Thomas Hartmann
- Institute of Chemical, Getreidemarkt 9, Vienna 1060, Austria
| | - Oliver Spadiut
- Institute of Chemical, Getreidemarkt 9, Vienna 1060, Austria.
| |
Collapse
|
4
|
Khosravi H, Carreras-Gallo O, Casals-Terré J. Mill Scale-Derived Magnetite Nanoparticles: A Novel Substrate for Lactate Oxidase-Based Biosensors. BIOSENSORS 2023; 13:957. [PMID: 37998132 PMCID: PMC10669300 DOI: 10.3390/bios13110957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
Recycling and revalorization of waste are currently essential for sustainable growth. Mill scale, a waste product from steel production industries, which contains high levels of iron and minimal impurities, is proposed in this study as the source to synthesize magnetite nanoparticles (Fe3O4) for an enhancement of a lactate biosensor range. The synthesized Fe3O4 nanoparticles were coated with polydopamine (PDA) to prevent aggregation and degradation, creating a stable platform for immobilizing lactate oxidase enzyme (LOx) on their surfaces. The characterization of the Fe3O4@PDA material was carried out using transmission electron microscopy (TEM), dynamic light scattering (DLS), and measurement of the polydispersity index (PdI). The Fe3O4@PDA-LOx material was then deposited on a screen-printed carbon electrode modified with Prussian blue (SPCE-PB) for lactate detection. The biosensor exhibited a broad, dual linear concentration-response range, one from 0.1 to 4.62 mM with a limit of detection of 0.32 mM and sensitivity of 1.54 μAmM-1cm-2, and another one from 4.62 to 149.21 mM with a limit of detection of 6.31 mM and sensitivity of 0.08 μAmM-1cm-2. The dual-range concentration response of the biosensor makes it an ideal tool for lactate determination in various applications, including sports medicine, clinical diagnosis, and industrial bioprocessing.
Collapse
Affiliation(s)
- Hamid Khosravi
- Department of Mechanical Engineering, Polytechnic University of Catalonia-BarcelonaTech (UPC), 08222 Terrassa, Barcelona, Spain;
| | - Oscar Carreras-Gallo
- Department of Innovation, Barnasteel S.A., 08755 Castellbisbal, Barcelona, Spain;
| | - Jasmina Casals-Terré
- Department of Mechanical Engineering, Polytechnic University of Catalonia-BarcelonaTech (UPC), 08222 Terrassa, Barcelona, Spain;
| |
Collapse
|
5
|
Sun G, Wei X, Zhang D, Huang L, Liu H, Fang H. Immobilization of Enzyme Electrochemical Biosensors and Their Application to Food Bioprocess Monitoring. BIOSENSORS 2023; 13:886. [PMID: 37754120 PMCID: PMC10526424 DOI: 10.3390/bios13090886] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Electrochemical biosensors based on immobilized enzymes are among the most popular and commercially successful biosensors. The literature in this field suggests that modification of electrodes with nanomaterials is an excellent method for enzyme immobilization, which can greatly improve the stability and sensitivity of the sensor. However, the poor stability, weak reproducibility, and limited lifetime of the enzyme itself still limit the requirements for the development of enzyme electrochemical biosensors for food production process monitoring. Therefore, constructing sensing technologies based on enzyme electrochemical biosensors remains a great challenge. This article outlines the construction principles of four generations of enzyme electrochemical biosensors and discusses the applications of single-enzyme systems, multi-enzyme systems, and nano-enzyme systems developed based on these principles. The article further describes methods to improve enzyme immobilization by combining different types of nanomaterials such as metals and their oxides, graphene-related materials, metal-organic frameworks, carbon nanotubes, and conducting polymers. In addition, the article highlights the challenges and future trends of enzyme electrochemical biosensors, providing theoretical support and future perspectives for further research and development of high-performance enzyme chemical biosensors.
Collapse
Affiliation(s)
- Ganchao Sun
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China; (G.S.); (X.W.)
| | - Xiaobo Wei
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China; (G.S.); (X.W.)
| | - Dianping Zhang
- School of Mechanical Engineering, Ningxia University, Yinchuan 750021, China;
| | - Liben Huang
- Huichuan Technology (Zhuhai) Co., Ltd., Zhuhai 519060, China;
| | - Huiyan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China; (G.S.); (X.W.)
| | - Haitian Fang
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China; (G.S.); (X.W.)
| |
Collapse
|
6
|
Wijayanti SD, Tsvik L, Haltrich D. Recent Advances in Electrochemical Enzyme-Based Biosensors for Food and Beverage Analysis. Foods 2023; 12:3355. [PMID: 37761066 PMCID: PMC10529900 DOI: 10.3390/foods12183355] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Food analysis and control are crucial aspects in food research and production in order to ensure quality and safety of food products. Electrochemical biosensors based on enzymes as the bioreceptors are emerging as promising tools for food analysis because of their high selectivity and sensitivity, short analysis time, and high-cost effectiveness in comparison to conventional methods. This review provides the readers with an overview of various electrochemical enzyme-based biosensors in food analysis, focusing on enzymes used for different applications in the analysis of sugars, alcohols, amino acids and amines, and organic acids, as well as mycotoxins and chemical contaminants. In addition, strategies to improve the performance of enzyme-based biosensors that have been reported over the last five years will be discussed. The challenges and future outlooks for the food sector are also presented.
Collapse
Affiliation(s)
- Sudarma Dita Wijayanti
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190 Wien, Austria; (S.D.W.)
- Department of Food Science and Biotechnology, Brawijaya University, Malang 65145, Indonesia
| | - Lidiia Tsvik
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190 Wien, Austria; (S.D.W.)
| | - Dietmar Haltrich
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190 Wien, Austria; (S.D.W.)
| |
Collapse
|
7
|
Ozoglu O, Uzunoglu A, Unal MA, Gumustas M, Ozkan SA, Korukluoglu M, Gunes Altuntas E. Electrochemical detection of lactate produced by foodborne presumptive lactic acid bacteria. J Biosci Bioeng 2023; 135:313-320. [PMID: 36828687 DOI: 10.1016/j.jbiosc.2022.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/21/2022] [Accepted: 12/30/2022] [Indexed: 02/25/2023]
Abstract
The detection of lactate is an important indicator of the freshness, stability, and storage stability of products as well as the degree of fermentation in the food industry. In addition, it can be used as a diagnostic tool in patients' healthcare since it is known that the lactate level in blood increases in some pathological conditions. Thus, the determination of lactate level plays an important role in not only the food industry but also in health fields. As a result, biosensor technologies, which are quick, cheap, and easy to use, have become important for lactate detection. In the current study, amperometric lactate biosensors based on lactate oxidase immobilization (with Nafion 5% wt) were designed and the limit of detection, linear range, and sensitivity values were determined to be 31 μM, 50-350 μM, and 0.04 μA μM-1 cm-2, respectively. Then, it was used for the measurement of lactic acid that produced by six different and morphologically identified presumptive lactic acid bacteria (LAB) which are isolated from different naturally fermented cheese samples. The biosensors were then used to successfully perform lactate measurements within 3 min for each sample, even though a few of them were out of the limit of detection. Thus, electrochemical biosensors should be used as an alternative and quick solutions for the measurement of lactate metabolites rather than the traditional methods which require long working hours. This is the first study to use a biosensor to measure lactate produced by foodborne LAB in a real sample.
Collapse
Affiliation(s)
- Ozum Ozoglu
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludağ University, 16059 Bursa, Turkey.
| | - Aytekin Uzunoglu
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, Necmettin Erbakan University, Konya 42090, Turkey
| | - Mehmet Altay Unal
- Stem Cell Institute, Ankara University, Balgat, Ankara 06520, Turkey
| | - Mehmet Gumustas
- Institute of Forensic Sciences, Department of Forensic Toxicology, Ankara University, Ankara 06590, Turkey
| | - Sibel Aysıl Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara 06590, Turkey
| | - Mihriban Korukluoglu
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludağ University, 16059 Bursa, Turkey
| | - Evrim Gunes Altuntas
- Ankara University, Biotechnology Institute, Gumusdere Campus, 06135 Ankara, Turkey
| |
Collapse
|
8
|
Pal M, Muinao T, Parihar A, Roy DK, Boruah HPD, Mahindroo N, Khan R. Biosensors based detection of novel biomarkers associated with COVID-19: Current progress and future promise. BIOSENSORS & BIOELECTRONICS: X 2022; 12:100281. [PMID: 36405494 PMCID: PMC9661549 DOI: 10.1016/j.biosx.2022.100281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022]
Abstract
The pandemic situation of COVID-19 has caused global alarm in health care, devastating loss of lives, strangled economy, and paralysis of normal livelihood. The high inter-individual transmission rate created havoc in the global community. Although tremendous efforts are pitching in from across the globe to understand this disease, the clinical features seemed to have a wide range including fever, cough, and fatigue are the prominent features. Congestion, rhinorrhea, sore throat, and diarrhea are other less common features observed. The challenge of this disease lies in the difficulty in maneuvering the clinical course causing severe complications. One of the major causative factors for multi-organ failure in patients with severe COVID-19 complications is systemic vasculitis and cytokine-mediated coagulation disorders. Hence, effective markers trailing the disease severity and disease prognosis are urgently required for prompt medical treatment. In this review article, we have emphasized currently identified inflammatory, hematological, immunological, and biochemical biomarkers of COVID-19. We also discussed currently available biosensors for the detection of COVID-19-associated biomarkers & risk factors and the detection methods as well as their performances. These could be effective tools for rapid and more promising diagnoses in the current pandemic situation. Effective biomarkers and their rapid, scalable, & sensitive detection might be beneficial for the prevention of serious complications and the clinical management of the disease.
Collapse
Affiliation(s)
- Mintu Pal
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (NEIST), Academy of Scientific & Innovative Research (AcSIR), CSIR-NEIST Campus, Jorhat, Assam, 785006, India
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bathinda, Punjab, 151001, India
| | - Thingreila Muinao
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (NEIST), Academy of Scientific & Innovative Research (AcSIR), CSIR-NEIST Campus, Jorhat, Assam, 785006, India
| | - Arpana Parihar
- CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, MP, India
| | - Dilip Kumar Roy
- Department of Pharmaceutical Technology, JIS University, Kolkata, 700109, India
| | - Hari Prasanna Deka Boruah
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (NEIST), Academy of Scientific & Innovative Research (AcSIR), CSIR-NEIST Campus, Jorhat, Assam, 785006, India
- Government Model College, Kaziranga, Golaghat, Assam, 785609, India
| | - Neeraj Mahindroo
- School of Pharmacy, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra, 411038, India
| | - Raju Khan
- CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, MP, India
| |
Collapse
|
9
|
Smutok O, Kavetskyy T, Prokopiv T, Serkiz R, Šauša O, Novák I, Švajdlenková H, Maťko I, Gonchar M, Katz E. Biosensor Based on Peroxidase-Mimetic Nanozyme and Lactate Oxidase for Accurate L-Lactate Analysis in Beverages. BIOSENSORS 2022; 12:1042. [PMID: 36421160 PMCID: PMC9688602 DOI: 10.3390/bios12111042] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Precision analysis of the key biological metabolites such as L-lactate has great practical importance for many technological processes in food technology, including beverage production. Here we describe a new, highly selective, and sensitive biosensor for accurate L-lactate assay based on a combination of peroxidase-mimetic nanozymes with microbial lactate oxidase (LOx) immobilized onto the surface of a graphite-rod electrode (GE). The peroxidase-like nanozymes were synthesized using the debris of carbon microfibers (CFs) functionalized with hemin (H) and modified with gold nanoparticles (AuNPs) or platinum microparticles (PtMPs). The nanozyme formed with PtMPs as well as corresponding bioelectrodes based on it (LOx-CF-H-PtMPs/GE) is characterized by preferable catalytic and operational characteristics, so it was selected for the analysis of L-lactate content in real samples of grape must and red wine. The results of the L-lactate analysis obtained by the developed biosensors are highly correlated with a very selective spectrophotometric approach used as a reference. The developed biosensor, due to its high selectivity and sensitivity, is very prospective not only for the beverage industry and food technology, but also for clinical diagnostics and medicine, as well as in other applications where the accurate analysis of L-lactate is highly important.
Collapse
Affiliation(s)
- Oleh Smutok
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Taras Kavetskyy
- Department of Biology and Chemistry, Drohobych Ivan Franko State Pedagogical University, 82100 Drohobych, Ukraine
- Department of Materials Engineering, The John Paul II Catholic University of Lublin, 20-950 Lublin, Poland
| | - Tetiana Prokopiv
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine
| | - Roman Serkiz
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine
| | - Ondrej Šauša
- Department of Nuclear Chemistry, Comenius University in Bratislava, 84215 Bratislava, Slovakia
- Institute of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovakia
| | - Ivan Novák
- Polymer Institute, Slovak Academy of Sciences, 84541 Bratislava, Slovakia
| | | | - Igor Maťko
- Institute of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovakia
| | - Mykhailo Gonchar
- Department of Biology and Chemistry, Drohobych Ivan Franko State Pedagogical University, 82100 Drohobych, Ukraine
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| |
Collapse
|
10
|
Bollella P. Enzyme-based amperometric biosensors: 60 years later … Quo Vadis? Anal Chim Acta 2022; 1234:340517. [DOI: 10.1016/j.aca.2022.340517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/01/2022]
|
11
|
García-Guzmán JJ, Sierra-Padilla A, Palacios-Santander JM, Fernández-Alba JJ, Macías CG, Cubillana-Aguilera L. What Is Left for Real-Life Lactate Monitoring? Current Advances in Electrochemical Lactate (Bio)Sensors for Agrifood and Biomedical Applications. BIOSENSORS 2022; 12:919. [PMID: 36354428 PMCID: PMC9688009 DOI: 10.3390/bios12110919] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Monitoring of lactate is spreading from the evident clinical environment, where its role as a biomarker is notorious, to the agrifood ambit as well. In the former, lactate concentration can serve as a useful indicator of several diseases (e.g., tumour development and lactic acidosis) and a relevant value in sports performance for athletes, among others. In the latter, the spotlight is placed on the food control, bringing to the table meaningful information such as decaying product detection and stress monitoring of species. No matter what purpose is involved, electrochemical (bio)sensors stand as a solid and suitable choice. However, for the time being, this statement seems to be true only for discrete measurements. The reality exposes that real and continuous lactate monitoring is still a troublesome goal. In this review, a critical overview of electrochemical lactate (bio)sensors for clinical and agrifood situations is performed. Additionally, the transduction possibilities and different sensor designs approaches are also discussed. The main aim is to reflect the current state of the art and to indicate relevant advances (and bottlenecks) to keep in mind for further development and the final achievement of this highly worthy objective.
Collapse
Affiliation(s)
- Juan José García-Guzmán
- Instituto de Investigación e Innovación Biomédica de Cadiz (INiBICA), Hospital Universitario ‘Puerta del Mar’, Universidad de Cadiz, 11009 Cadiz, Spain
| | - Alfonso Sierra-Padilla
- Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, Puerto Real, 11510 Cadiz, Spain
| | - José María Palacios-Santander
- Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, Puerto Real, 11510 Cadiz, Spain
| | - Juan Jesús Fernández-Alba
- Department of Obstetrics and Gynecology, Hospital Universitario de Puerto Real, Puerto Real, 11510 Cadiz, Spain
| | - Carmen González Macías
- Department of Obstetrics and Gynecology, Hospital Universitario de Puerto Real, Puerto Real, 11510 Cadiz, Spain
| | - Laura Cubillana-Aguilera
- Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, Puerto Real, 11510 Cadiz, Spain
| |
Collapse
|
12
|
Apushkinskaya N, Zolotukhina E, Butyrskaya E, Silina Y. In situ modulation of enzyme activity via heterogeneous catalysis utilizing solid electroplated cofactors. Comput Struct Biotechnol J 2022; 20:3824-3832. [PMID: 35891780 PMCID: PMC9307585 DOI: 10.1016/j.csbj.2022.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022] Open
Abstract
During product isolation the received bioreceptors often do not exhibit a sufficient biochemical activity due to multistep dissociation and loss of cofactors. However, for bioelectrochemical applications the presence of cofactors is necessary for a successful oxidative or reductive conversion of the substrates to the products. Herein, we show how the immobilization of the required electroplated cofactors in a design of amperometric electrodes can in situ assist the activity of apo-enzymes. Compared to conventional approaches used in enzyme engineering this tailored nanoengineering methodology is superior from economic point of view, labor and time costs, storage conditions, reduced amount of waste and can fill the gap in the development of tuned bioelectrocatalysts.
Collapse
Affiliation(s)
- N. Apushkinskaya
- Institute of Biochemistry, Saarland University, 66123, Saarbrücken, Campus B 2.2, Germany
| | - E.V. Zolotukhina
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region, Russia
| | - E.V. Butyrskaya
- Department of Chemistry, Voronezh State University, Universitetskaya pl. 1, 394006, Voronezh, Russia
| | - Y.E. Silina
- Institute of Biochemistry, Saarland University, 66123, Saarbrücken, Campus B 2.2, Germany
| |
Collapse
|
13
|
Tajik S, Beitollahi H. Hydrothermal synthesis of CuFe 2O 4 nanoparticles for highly sensitive electrochemical detection of sunset yellow. Food Chem Toxicol 2022; 165:113048. [PMID: 35523384 DOI: 10.1016/j.fct.2022.113048] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/10/2022] [Accepted: 04/15/2022] [Indexed: 12/27/2022]
Abstract
The sunset yellow, as a synthetic food coloring azo dye, was detected in the present work using a new sensitive and selective sensor based on the modification of screen-printed electrode surface with Copper ferrite nanoparticles (CuFe2O4/SPE). Thus, a facile hydrothermal protocol was performed to prepare the CuFe2O4 nanoparticles, followed by characterization applying valid techniques, including Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS) and field-emission scanning electron microscopy (FE-SEM). Chronoamperometry, differential pulse voltammetry (DPV) and cyclic voltammetry (CV) were employed to determine the electrochemical behavior of as-fabricated sensor. According to the electrochemical findings, a greater anodic peak current was found for the sunset yellow oxidation on the CuFe2O4/SPE than that on the unmodified SPE. The electrocatalytic response for the sunset yellow oxidation on the CuFe2O4/SPE in phosphate buffer (0.1 M, pH = 7.0) was effective, with an excellent sensitivity (0.1919 μA μM-1). There was a linear relationship between the voltammetric current and different sunset yellow concentrations (0.03-100.0 μM). The calculated limit of detection (LOD = 3Sb/m) for the sunset yellow was 0.009 μM.
Collapse
Affiliation(s)
- Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| |
Collapse
|
14
|
Nonenzymatic Lactic Acid Detection Using Cobalt Poly-phthalocyanine/Carboxylated Multiwalled Carbon Nanotube Nanocomposites Modified Sensor. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this study, a novel cobalt polyphthalocyanine/carboxylic acid functionalized multiwalled carbon nanotube nanocomposite (CoPPc/MWCNTs-COOH) to detect lactic acid was successfully fabricated. The nanocomposite was systematically characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, ultraviolet–visible absorption spectroscopy, and X-ray photoelectron spectroscopy. The nanocomposite provided excellent conductivity for effective charge transfer and avoided the agglomeration of MWCNTs-COOH. The electrochemical surface area, diffusion coefficient and electron transfer resistance of the CoPPc/MWCNTs-COOH glassy carbon electrode (CoPPc/MWCNTs-COOH/GCE) were calculated as A = 0.49 cm2, D = 9.22 × 10−5 cm2/s, and Rct = 200 Ω, respectively. The lactic acid sensing performance of the CoPPc/MWCNTs-COOH was evaluated using cyclic voltammetry in 0.1 M PBS (pH 4). The results demonstrated that the novel electrode exhibited excellent electrochemical performance toward lactic acid reduction over a wide concentration range (10 to 240 μM), with a low detection limit (2 μM (S/N = 3)), and a reasonable selectivity against various interferents (ascorbic acid, uric acid, dopamine, sodium chloride, glucose, and hydrogen peroxide). Additionally, the electrode was also successfully applied to quantify lactic acid in rice wine samples, showing great promise for rapid monitoring applications.
Collapse
|
15
|
Current progress in organic–inorganic hetero-nano-interfaces based electrochemical biosensors for healthcare monitoring. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214282] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Villalonga A, Sánchez A, Mayol B, Reviejo J, Villalonga R. Electrochemical biosensors for food bioprocess monitoring. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
17
|
A Novel Amperometric Biosensor Based on Poly(allylamine hydrochloride) for Determination of Ethanol in Beverages. SENSORS 2021; 21:s21196510. [PMID: 34640829 PMCID: PMC8512042 DOI: 10.3390/s21196510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 11/16/2022]
Abstract
Herein, we report on a new type of ethanol biosensor based on a screen-printed electrode modified with poly(allylamine hydrochloride). The alcohol dehydrogenase was immobilized on the surface of the sensor using the sol–gel matrix. Working parameters such as applied potential, pH, NAD+ concentration, storage conditions were optimized. A response range between 0.05 and 2 mM was found with a sensitivity of 13.45 ± 0.67 µA/mM·cm2 and a detection limit of 20 µM. The developed biosensor was used to detect ethanol in commercial beverages with good accuracy.
Collapse
|
18
|
Polyelectrolyte Multilayers: An Overview on Fabrication, Properties, and Biomedical and Environmental Applications. MATERIALS 2021; 14:ma14154152. [PMID: 34361346 PMCID: PMC8348132 DOI: 10.3390/ma14154152] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022]
Abstract
Polyelectrolyte multilayers are versatile materials that are used in a large number of domains, including biomedical and environmental applications. The fabrication of polyelectrolyte multilayers using the layer-by-layer technique is one of the simplest methods to obtain composite functional materials. The properties of the final material can be easily tuned by changing the deposition conditions and the used building blocks. This review presents the main characteristics of polyelectrolyte multilayers, the fabrication methods currently used, and the factors influencing the layer-by-layer assembly of polyelectrolytes. The last section of this paper presents some of the most important applications of polyelectrolyte multilayers, with a special focus on biomedical and environmental applications.
Collapse
|