1
|
Rauch M, Lachner K, Frickel L, Lauer M, Adenauer SJ, Neuhaus E, Hattingen E, Porto L. Focally Enlarged Perivascular Spaces in Pediatric and Adolescent Patients with Polymicrogyria-an MRI Study. Clin Neuroradiol 2025; 35:87-93. [PMID: 39269662 PMCID: PMC11832560 DOI: 10.1007/s00062-024-01457-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024]
Abstract
PURPOSE Polymicrogyria (PMG) is a cortical malformation frequently associated with epilepsy. Our aim was to investigate the frequency and conspicuity of enlarged perivascular spaces (EPVS) underneath dysplastic cortex as a potentially underrecognized feature of PMG in pediatric and adolescent patients undergoing clinical magnetic resonance imaging (MRI). METHODS We analyzed data from 28 pediatric and adolescent patients with PMG and a matched control group, ranging in age from 2 days to 21 years, who underwent MRI at 1.5T or 3T. T2-weighted MR images were examined for the presence of EPVS underneath the dysplastic cortex. The quantity of EPVS was graded from 0 to 4 (0: none, 1: < 10, 2: 11-20, 3: 21-40, 4: > 40 EPVS). We then compared the presence and quantity of EPVS to the matched controls in terms of total EPVS scores, and EPVS scores underneath the dysplastsic cortex depending on the age groups, the localization of PMG, and the MRI field strength. RESULTS In 23/28 (82%) PMG patients, EPVS spatially related to the dysplastic cortex were identified. EPVS scores were significantly higher in PMG patients compared to controls, independent from age or PMG location. No significant differences were observed in EPVS scores in patients examined at 1.5T compared to those examined at 3T. CONCLUSION EPVS underneath the dysplastic cortex were identified in 82% of patients. EPVS may serve as an important clue for PMG and a marker for cortical malformation.
Collapse
Affiliation(s)
- Maximilian Rauch
- Institute for Neuroradiology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany.
| | - Karsten Lachner
- Institute for Neuroradiology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Lea Frickel
- Institute for Neuroradiology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Monika Lauer
- Institute for Neuroradiology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Simon Jonas Adenauer
- Department of Radiology, Helios Klinikum Bonn/Rhein-Sieg, Von-Hompesch-Straße 1, 53123, Bonn, Germany
| | - Elisabeth Neuhaus
- Institute for Neuroradiology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Elke Hattingen
- Institute for Neuroradiology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Luciana Porto
- Institute for Neuroradiology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| |
Collapse
|
2
|
Kong Y, Cheng N, Qiu FJ, Yao L, Gao M, Chen AQ, Kong QX, Zhang GQ. Application value of multimodal MRI combined with PET metabolic parameters in temporal lobe epilepsy with dual pathology. Eur J Radiol 2023; 169:111171. [PMID: 38250750 DOI: 10.1016/j.ejrad.2023.111171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/03/2023] [Accepted: 10/24/2023] [Indexed: 01/23/2024]
Abstract
OBJECTIVES To investigate the application value of multimodal MRI combined with PET metabolic parameters in detecting temporal lobe epilepsy (TLE) with dual pathology (DP) and the prediction effect of post-surgical outcomes in these patients. METHODS We retrospectively reviewed 50 patients with TLE-DP who underwent surgery at our hospital between January 2016 and December 2021 and collected the demographics, clinical characteristics, video-electroencephalography (v-EEG), neuroimaging, and surgical data. Seizure outcome data were collected during a regular follow-up of at least 12 months and were graded using Engel scores. Fisher's exact test was used to compare the differences in DP detection rates of various diagnostic modalities. Univariate and multivariate analyses were performed to explore the prognostic factors for predicting seizure outcomes post-surgery. RESULTS Of the 50 patients, 20 were males. The median age was 30, the median age at first seizure was 14, and the median duration was ten years. Voxel-based morphometry-PET statistical parametric mapping-PET/MRI (VBM-PSPM-PET/MRI) had the highest detection rate, followed by PET/MRI, VBM analysis, and PET-SPM. Regardless of follow-up duration, v-EEG, PET, image post-processing methods, and VBM-PSPM-PET/MRI statistically correlated with seizure outcomes using the log-rank test in the Kaplan-Meier analysis. Multivariate analysis showed that VBM-PSPM-PET/MRI was an independent predictor of TLE-DP (hazard ratio (HR) = 15.674, 95 % CI = 0.002-0.122, P < 0.00 1). CONCLUSIONS Our study illustrates that VBM-PSPM-PET/MRI has the highest detection value in patients with TLE-DP and can provide independent prognostic information for patients who undergo surgery. This approach has the most substantial potential for the selection of candidates for patients who undergo surgical treatment and for prognostic stratification.
Collapse
Affiliation(s)
- Yu Kong
- Medical Imaging Department, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong, China; College of Materials Science and Engineering, Qingdao University, Qingdao 266071, Shandong, China
| | - Nan Cheng
- Medical Imaging Department, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong, China
| | - Feng-Juan Qiu
- Department of Pediatric Rehabilitation, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong, China
| | - Lei Yao
- Clinical Medical College, Jining Medical University, Jining 272067, Shandong, China
| | - Ming Gao
- Medical Imaging Department, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong, China
| | - An-Qiang Chen
- Medical Imaging Department, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong, China
| | - Qing-Xia Kong
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong, China.
| | - Gu-Qing Zhang
- Medical Imaging Department, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong, China.
| |
Collapse
|
3
|
Faizo NL, Alrehaili AA. Differentiation of Epileptic Brain Abnormalities among Neurological Patients at Taif Region Using MRI. Int J Clin Pract 2023; 2023:8783446. [PMID: 38020535 PMCID: PMC10657246 DOI: 10.1155/2023/8783446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 11/29/2022] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
This study was conducted to assess the prevalence of epilepsy among different age groups and gender of neurological patients in the Taif region and define the most common brain lesion, affecting epileptic patients living in the Taif city using MRI. Data from 150 patients who were clinically diagnosed with epilepsy and had brain MRIs were analyzed using SPSS. Statistical significance was considered when the p value is 0.05. The percentage of epilepsy was generally higher in males than in females in the Taif city, and seizures were different between the studied age groups. However, epilepsy was more pronounced in females than in males at certain age groups. Moreover, white matter lesions were most commonly found in the studied group (27.7%), followed by focal lesions, edema, and stroke with equal percentages (16.9%) and less commonly with congenital diseases (12%) and atrophic changes (9.6%). Epilepsy was more pronounced in females than in males at certain age groups. White matter lesions were identified as the most common lesion, presenting in epilepsy patients in the Taif city.
Collapse
Affiliation(s)
- Nahla L. Faizo
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amani A. Alrehaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
4
|
Li Y, Qin B, Chen Q, Chen J. Impaired Functional Homotopy and Topological Properties Within the Default Mode Network of Children With Generalized Tonic-Clonic Seizures: A Resting-State fMRI Study. Front Neurosci 2022; 16:833837. [PMID: 35720710 PMCID: PMC9201640 DOI: 10.3389/fnins.2022.833837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/27/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction The aim of the present study was to examine interhemispheric functional connectivity (FC) and topological organization within the default-mode network (DMN) in children with generalized tonic-clonic seizures (GTCS). Methods Resting-state functional MRI was collected in 24 children with GTCS and 34 age-matched typically developing children (TDC). Between-group differences in interhemispheric FC were examined by an automated voxel-mirrored homotopic connectivity (VMHC) method. The topological properties within the DMN were also analyzed using graph theoretical approaches. Consistent results were detected and the VMHC values were extracted as features in machine learning for subject classification. Results Children with GTCS showed a significant decrease in VMHC in the DMN, including the hippocampal formation (HF), lateral temporal cortex (LTC), and angular and middle frontal gyrus. Although the patients exhibited efficient small-world properties of the DMN similar to the TDC, significant changes in regional topological organization were found in the patients, involving the areas of the bilateral temporal parietal junction, bilateral LTC, left temporal pole, and HF. Within the DMN, disrupted interhemispheric FC was found between the bilateral HF and LTC, which was consistent with the VMHC results. The VMHC values in bilateral HF and LTC were significantly correlated with clinical information in patients. Support vector machine analysis using average VMHC information in the bilateral HF and LTC as features achieved a correct classification rate of 89.34% for the classification. Conclusion These results indicate that decreased homotopic coordination in the DMN can be used as an effective biomarker to reflect seizure effects and to distinguish children with GTCSs from TDC.
Collapse
Affiliation(s)
- Yongxin Li
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- *Correspondence: Yongxin Li,
| | - Bing Qin
- Department of Neurosurgery, Epilepsy Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Qian Chen
- Department of Pediatric Neurosurgery, Shenzhen Children’s Hospital, Shenzhen, China
- Qian Chen,
| | - Jiaxu Chen
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- Jiaxu Chen,
| |
Collapse
|
5
|
Polyanskaya M, Demushkina A, Kostylev F, Vasilyev I, Kholin A, Zavadenko N, Alikhanov A. The presurgical evaluation of patients with drug-resistant epilepsy. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:12-20. [DOI: 10.17116/jnevro202212208112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Wehner T, Weckesser P, Schulz S, Kowoll A, Fischer S, Bosch J, Weinhold L, Fimmers R, Schmid M, Wellmer J. Factors influencing the detection of treatable epileptogenic lesions on MRI. A randomized prospective study. Neurol Res Pract 2021; 3:41. [PMID: 34365971 PMCID: PMC8351149 DOI: 10.1186/s42466-021-00142-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022] Open
Abstract
Background To prospectively analyze factors associated with detecting epileptogenic lesions on MRI within the work-sharing process of neurologists, epileptologists, radiologists and neuroradiologists. Methods We assembled four sets of six MRI scans, each set representing five typical epileptogenic lesions (hippocampal sclerosis or limbic encephalitis; focal cortical dysplasias; periventricular nodular or other heterotopias; long-term epilepsy associated tumors; gliotic scar, hemosiderin or cavernoma), and non - lesional epilepsy. At professional conferences, we invited neurologists, epileptologists, radiologists, and neuroradiologists to read two out of four MRI sets, one of which was presented with a clinical focus hypothesis. Participants were randomly assigned to MRI sets. Effects of examiners’ specialty, duration of training and professional experience on detection rate of epileptogenic lesions were investigated. Results Fourty-eight neurologists, 22 epileptologists, 20 radiologists and 21 neuroradiologists read 1323 MRI scans. Overall, 613 of 1101 (55.7%) epileptogenic lesions were detected. Long-term epilepsy associated tumors (182/221, 82.4%) were found more frequently than gliotic scar, hemosiderin or cavernoma (157/220, 71.4%), hippocampal sclerosis or limbic encephalitis (141/220, 64.1%), nodular heterotopia (68/220, 30.9%) and focal cortical dysplasias (65/220, 29.5%, p < 0.001). Provision of a focus hypothesis improved the detection of hippocampal sclerosis or limbic encephalitis (86/110, 78.2% vs 55/110, 50%, p < 0.001) and focal cortical dysplasias (40/110, 36.4% vs 25/110, 22.7%, p = 0.037). Neuroradiologists and epileptologists were more likely than radiologists and neurologists to be amongst the most successful readers. In multivariable analysis, type of epileptogenic lesion, specialty of MRI reader, and provision of focus hypothesis predicted correct identification of epileptogenic lesions. Conclusions Epileptogenic lesions are often not recognized on MRI even by expert readers. Their detection can be improved by providing a focus hypothesis. These results stress the need for training in the MRI characteristics of epilepsy - specific pathology, and, most importantly, interdisciplinary communication between neurologists/epileptologists and (neuro)radiologists to improve detection of epileptogenic lesions. Supplementary Information The online version contains supplementary material available at 10.1186/s42466-021-00142-z.
Collapse
Affiliation(s)
- Tim Wehner
- Ruhr - Epileptology, Department of Neurology, University Hospital Knappschafts-krankenhaus, Ruhr - University Bochum, In der Schornau 23 - 25, 44892, Bochum, Germany
| | - Philippe Weckesser
- Ruhr - Epileptology, Department of Neurology, University Hospital Knappschafts-krankenhaus, Ruhr - University Bochum, In der Schornau 23 - 25, 44892, Bochum, Germany
| | - Steven Schulz
- Ruhr - Epileptology, Department of Neurology, University Hospital Knappschafts-krankenhaus, Ruhr - University Bochum, In der Schornau 23 - 25, 44892, Bochum, Germany
| | - Annika Kowoll
- Department of Neuroradiology, University Hospital Knappschaftskrankenhaus, Ruhr - University Bochum, In der Schornau 23 - 25, 44892, Bochum, Germany
| | - Sebastian Fischer
- Department of Neuroradiology, University Hospital Knappschaftskrankenhaus, Ruhr - University Bochum, In der Schornau 23 - 25, 44892, Bochum, Germany
| | - Jessica Bosch
- Ruhr - Epileptology, Department of Neurology, University Hospital Knappschafts-krankenhaus, Ruhr - University Bochum, In der Schornau 23 - 25, 44892, Bochum, Germany
| | - Leonie Weinhold
- Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Venusberg Campus 1, Gebäude 11, 53127, Bonn, Germany
| | - Rolf Fimmers
- Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Venusberg Campus 1, Gebäude 11, 53127, Bonn, Germany
| | - Matthias Schmid
- Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Venusberg Campus 1, Gebäude 11, 53127, Bonn, Germany
| | - Jörg Wellmer
- Ruhr - Epileptology, Department of Neurology, University Hospital Knappschafts-krankenhaus, Ruhr - University Bochum, In der Schornau 23 - 25, 44892, Bochum, Germany.
| |
Collapse
|
7
|
De Vito A, Mankad K, Pujar S, Chari A, Ippolito D, D’Arco F. Narrative review of epilepsy: getting the most out of your neuroimaging. Transl Pediatr 2021; 10:1078-1099. [PMID: 34012857 PMCID: PMC8107872 DOI: 10.21037/tp-20-261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/26/2020] [Indexed: 02/05/2023] Open
Abstract
Neuroimaging represents an important step in the evaluation of pediatric epilepsy. The crucial role of brain imaging in the diagnosis, follow-up and presurgical assessment of patients with epilepsy is noted and has to be familiar to all neuroradiologists and trainees approaching pediatric brain imaging. Morphological qualitative imaging shows the majority of cerebral lesions/alterations underlying focal epilepsy and can highlight some features which are useful in the differential diagnosis of the different types of epilepsy. Recent advances in MRI acquisitions including diffusion-weighted imaging (DWI), post-acquisition image processing techniques, and quantification of imaging data are increasing the accuracy of lesion detection during the last decades. Functional MRI (fMRI) can be really useful and helps to identify cortical eloquent areas that are essential for language, motor function, and memory, and diffusion tensor imaging (DTI) can reveal white matter tracts that are vital for these functions, thus reducing the risk of epilepsy surgery causing new morbidities. Also positron emission tomography (PET), single photon emission computed tomography (SPECT), simultaneous electroencephalogram (EEG) and fMRI, and electrical and magnetic source imaging can be used to assess the exact localization of epileptic foci and help in the design of intracranial EEG recording strategies. The main role of these "hybrid" techniques is to obtain quantitative and qualitative informations, a necessary step to evaluate and demonstrate the complex relationship between abnormal structural and functional data and to manage a "patient-tailored" surgical approach in epileptic patients.
Collapse
Affiliation(s)
- Andrea De Vito
- Department of Neuroradiology, H. S. Gerardo Monza, Monza, Italy
| | - Kshitij Mankad
- Department of Radiology, Great Ormond Street Hospital, London, UK
| | - Suresh Pujar
- Department of Neurology, Great Ormond Street Hospital for Children, London, UK
| | - Aswin Chari
- Department of Neurosurgery, Great Ormond Street Hospital, London, UK
| | | | - Felice D’Arco
- Department of Radiology, Great Ormond Street Hospital, London, UK
| |
Collapse
|
8
|
Use of Innovative SPECT Techniques in the Presurgical Evaluation of Patients with Nonlesional Extratemporal Drug-Resistant Epilepsy. Mol Imaging 2021; 2021:6614356. [PMID: 33746629 PMCID: PMC7953581 DOI: 10.1155/2021/6614356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/04/2021] [Accepted: 02/18/2021] [Indexed: 12/27/2022] Open
Abstract
Up to 30% of patients with epilepsy may not respond to antiepileptic drugs. Patients with drug-resistant epilepsy (DRE) should undergo evaluation for seizure onset zone (SOZ) localization to consider surgical treatment. Cases of drug-resistant nonlesional extratemporal lobe epilepsy (ETLE) pose the biggest challenge in localizing the SOZ and require multiple noninvasive diagnostic investigations before planning the intracranial monitoring (ICM) or direct resection. Ictal Single Photon Emission Computed Tomography (i-SPECT) is a unique functional diagnostic tool that assesses the SOZ using the localized hyperperfusion that occurs early in the seizure. Subtraction ictal SPECT coregistered to MRI (SISCOM), statistical ictal SPECT coregistered to MRI (STATISCOM), and PET interictal subtracted ictal SPECT coregistered with MRI (PISCOM) are innovative SPECT methods for the determination of the SOZ. This article comprehensively reviews SPECT and sheds light on its vital role in the presurgical evaluation of the nonlesional extratemporal DRE.
Collapse
|
9
|
Shkumat NA, Vali R, Shammas A. Clinical evaluation of reconstruction and acquisition time for pediatric 18F-FDG brain PET using digital PET/CT. Pediatr Radiol 2020; 50:966-972. [PMID: 32125447 DOI: 10.1007/s00247-020-04640-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/09/2019] [Accepted: 02/11/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND 18F-2-fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) plays an important role in the diagnosis, evaluation and treatment of childhood epilepsy. The selection of appropriate acquisition and reconstruction parameters, however, can be challenging with the introduction of advanced hardware and software functionalities. OBJECTIVE To quantify the diagnostic performance of a block-sequential regularized expectation maximization (BSREM) tool and reduced effective counts in brain PET/CT for pediatric epilepsy patients on a digital silicon photomultiplier system. MATERIALS AND METHODS We included 400 sets of brain PET/CT images from 25 pediatric patients (0.5-16 years old) in this retrospective study. Patient images were reconstructed with conventional iterative techniques or BSREM with varied penalization factor (β), at varied acquisition time (45 s, 90 s, 180 s, 300 s) to simulate reduced count density. Two pediatric nuclear medicine physicians reviewed images in random order - blinded to patient, reconstruction method and imaging time - and scored technical quality (noise, spatial resolution, artifacts), clinical quality (image quality of the cortex, basal ganglia and thalamus) and overall diagnostic satisfaction on a 5-point scale. RESULTS Reconstruction with BSREM improved quality and clinical scores across all count levels, with the greatest benefits in low-count conditions. Image quality scores were greatest at 300-s acquisition times with β=500 (overall; noise; artifacts; image quality of the cortex, basal ganglia and thalamus) or β=200 (spatial resolution). No statistically significant difference in the highest graded reconstruction was observed between imaging at 180 s and 300 s with an appropriately implemented penalization factor (β=350-500), indicating that a reduction in dose or acquisition time is feasible without reduction in diagnostic satisfaction. CONCLUSION Clinical evaluation of pediatric 18F-FDG brain PET image quality was shown to be diagnostic at reductions of count density by 40% using BSREM with a penalization factor of β=350-500. This can be accomplished while maintaining confidence of achieving a diagnostic-quality image.
Collapse
Affiliation(s)
- Nicholas A Shkumat
- Department of Diagnostic Imaging, The Hospital for Sick Children, 555 University Ave., Suite 2175A, Toronto, ON, M5G 1X8, Canada. .,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.
| | - Reza Vali
- Department of Diagnostic Imaging, The Hospital for Sick Children, 555 University Ave., Suite 2175A, Toronto, ON, M5G 1X8, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Amer Shammas
- Department of Diagnostic Imaging, The Hospital for Sick Children, 555 University Ave., Suite 2175A, Toronto, ON, M5G 1X8, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Reghunath A, Ghasi RG. A journey through formation and malformations of the neo-cortex. Childs Nerv Syst 2020; 36:27-38. [PMID: 31776716 DOI: 10.1007/s00381-019-04429-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE Malformations of cortical development (MCD) are a heterogeneous group of disorders characterized by abnormal structure of the cerebral cortex. MCDs are an important cause of development delay and intractable epilepsy in children. In this review, we explore the embryological stages of development of neo-cortex, the imageology of various malformations which may occur during the journey of this development, the recent advances in imaging techniques used for diagnosing these malformations, and finally a simplified radiological approach to malformations of cortical development. REVIEW We discuss the classification of MCD according to the embryologic stage of cerebral cortex at which the abnormality occurred and the unique imaging features of various malformations, including microcephaly, hemimegalencephaly, lissencephaly, focal cortical dysplasia, heterotopias, polymicrogyria, schizencephaly, and neonatal CMV infection. Also, a rare variant of hemimegalencephaly, namely posterior quadrantic dysplasia, is illustrated; the diagnosis of which is crucial for neurosurgeons to decide management. The technological advancement in the imaging of MCD has taken a leap in the recent years. Imaging now also plays an enormous role in mapping of the abnormalities, delineation of proper surgical boundaries, and quantifying risks of visual, language, and sensorimotor dysfunction. With the introduction of various motor-sparing surgeries and disconnection procedures, proper identification and delineation of these malformations have gained utmost significance. CONCLUSION Knowledge of the wide imaging spectrum of MCD, familiarity with recent advances in imaging and an optimal radiological approach is essential for the general radiologist to accurately diagnose and prognosticate MCD as well as provide the best surgical approach to the operating surgeon.
Collapse
Affiliation(s)
- Anjuna Reghunath
- Department of Radiodiagnosis, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, 110029, India
| | - Rohini Gupta Ghasi
- Department of Radiodiagnosis, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, 110029, India.
| |
Collapse
|
11
|
Shaikh Z, Torres A, Takeoka M. Neuroimaging in Pediatric Epilepsy. Brain Sci 2019; 9:E190. [PMID: 31394851 PMCID: PMC6721420 DOI: 10.3390/brainsci9080190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/18/2019] [Accepted: 08/06/2019] [Indexed: 12/27/2022] Open
Abstract
Pediatric epilepsy presents with various diagnostic challenges. Recent advances in neuroimaging play an important role in the diagnosis, management and in guiding the treatment of pediatric epilepsy. Structural neuroimaging techniques such as CT and MRI can identify underlying structural abnormalities associated with epileptic focus. Functional neuroimaging provides further information and may show abnormalities even in cases where MRI was normal, thus further helping in the localization of the epileptogenic foci and guiding the possible surgical management of intractable/refractory epilepsy when indicated. A multi-modal imaging approach helps in the diagnosis of refractory epilepsy. In this review, we will discuss various imaging techniques, as well as aspects of structural and functional neuroimaging and their application in the management of pediatric epilepsy.
Collapse
Affiliation(s)
- Zakir Shaikh
- Department of Pediatrics, Division of Pediatric Neurology, Boston Medical Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Alcy Torres
- Department of Pediatrics, Division of Pediatric Neurology, Boston Medical Center, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Masanori Takeoka
- Department of Pediatric Neurology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|