1
|
Chen K, Park E, Abd-Elrahman KS. Enhancing remyelination in multiple sclerosis via M1 muscarinic acetylcholine receptor. Mol Pharmacol 2025; 107:100027. [PMID: 40158341 DOI: 10.1016/j.molpha.2025.100027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 02/11/2025] [Accepted: 02/20/2025] [Indexed: 04/02/2025] Open
Abstract
Multiple sclerosis (MS) is growing in prevalence; yet, treatments that can reverse the progression of the disease are still needed. One strategy that has shown promise for reversing MS is remyelination by inhibiting the M1 receptor, a member of the muscarinic acetylcholine receptor (mAChR) family. Antagonizing the M1 mAChR is believed to be the mechanism by which clemastine, a developing drug that has been observed to enhance myelination in animal studies and phase II clinical trials, elicits its myelination-promoting effects. Recent studies have indicated that blocking M1 mAChR may promote oligodendrocyte differentiation via the extracellular signal-regulated kinase pathway, modulating Ca2+ concentration oscillations, and cross-talking with N-methyl-d-aspartate and Notch-1 receptors. However, clemastine has recently been found to accelerate disability in patients with MS, discouraging further progress in its clinical trials. Nevertheless, the underlying mechanisms following M1 mAChR antagonism by clemastine may still be targeted using alternative antimuscarinic drugs. This review consolidates recent advancements in our understanding of the mechanisms by which antagonizing M1 mAChR promotes remyelination and summarizes alternative antimuscarinic drugs that could be leveraged to treat MS in the future. SIGNIFICANCE STATEMENT: Current treatments for multiple sclerosis are limited to disease management, and there is a need for restorative treatments that can reverse progressive forms of the disease. This review aims to summarize the potential mechanisms by which antagonizing the M1 muscarinic acetylcholine receptor could promote remyelination and elaborate on a collection of promising antimuscarinic drugs, consolidating the knowledge needed to target these mechanisms and develop therapeutics that could reverse the progress of demyelinating diseases like multiple sclerosis.
Collapse
Affiliation(s)
- Keren Chen
- Department of Anaesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Eunyoung Park
- Department of Anaesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Khaled S Abd-Elrahman
- Department of Anaesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, British Columbia, Canada; Department of Medical Sciences, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
2
|
Neili NE, AbdelKafi-Koubaa Z, Jebali J, Kaidi K, Sahraoui G, Ahmed MB, Srairi-Abid N, Marrakchi N, Doghri R, ELBini I. Modulation of αv integrins by lebecetin, a viper venom-derived molecule, in experimental neuroinflammation and demyelination models. Sci Rep 2024; 14:22398. [PMID: 39333683 PMCID: PMC11436777 DOI: 10.1038/s41598-024-73259-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
Several neurodegenerative diseases, such as multiple sclerosis and Parkinson's disease, are linked to alterations in myelin content or structure. Transmembrane receptors such as integrins could be involved in these alterations. In the present study, we investigated the role of αv-integrins in experimental models of neuroinflammation and demyelination with the use of lebecetin (LCT), a C-lectin protein purified from Macrovipera lebetina viper venom, as an αv-integrin modulator. In a model of neuroinflammation, LCT inhibited the upregulation of αv, β3, β5, α5, and β1 integrins, as well as the associated release of pro-inflammatory factor IL-6 and chemokine CXCL-10, and decreased the expression of phosphorylated NfκB. The subsequent "indirect culture" between reactive astrocytes and oligodendrocytes showed a down-regulation of αv and β3 integrins versus upregulation of β1 one, accompanied by a reduced expression of myelin basic protein (MBP). Treatment of oligodendrocytes with LCT rectified the changes in integrin and MBP expression. Through Western blot quantification, LCT was shown to upregulate the expression levels of PI3K and p-mTOR while downregulating expression levels of p-AKT in oligodendrocytes, suggesting the neuroprotective and pro-myelinating effects of LCT may be related to the PI3K/mTor/AKT pathway. Concomitantly, we found that LCT promoted remyelination by tracking the increased expression of MBP in the brains of cuprizone-intoxicated mice. These results point to an involvement of integrins in not only neuroinflammation but demyelination as well. Thus, targeting αv integrins could offer potential therapeutic avenues for the treatment of demyelinating diseases.
Collapse
Affiliation(s)
- Nour-Elhouda Neili
- Laboratory of Biomolecules, Venoms and Theranostic Applications (LR20IPT01), Pasteur Institute of Tunis, University of Tunis, El Manar, Tunis, Tunisia
| | - Zaineb AbdelKafi-Koubaa
- Laboratory of Biomolecules, Venoms and Theranostic Applications (LR20IPT01), Pasteur Institute of Tunis, University of Tunis, El Manar, Tunis, Tunisia
- Research Laboratory of Precision Medicine/Personalized Medicine and Oncology Investigation (LR21SP01), Saleh Azaiez Institute, Tunis, Tunisia
| | - Jed Jebali
- Laboratory of Biomolecules, Venoms and Theranostic Applications (LR20IPT01), Pasteur Institute of Tunis, University of Tunis, El Manar, Tunis, Tunisia
| | - Khouloud Kaidi
- Laboratory of Biomolecules, Venoms and Theranostic Applications (LR20IPT01), Pasteur Institute of Tunis, University of Tunis, El Manar, Tunis, Tunisia
| | - Ghada Sahraoui
- Research Laboratory of Precision Medicine/Personalized Medicine and Oncology Investigation (LR21SP01), Saleh Azaiez Institute, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis, El Manar, Tunis, Tunisia
| | - Melika Ben Ahmed
- Faculty of Medicine of Tunis, University of Tunis, El Manar, Tunis, Tunisia
- Laboratory of Transmission, Control and Immunobiology of Infections (LR16IPT02), Pasteur Institute of Tunis, University of Tunis, El Manar, Tunis, Tunisia
| | - Najet Srairi-Abid
- Laboratory of Biomolecules, Venoms and Theranostic Applications (LR20IPT01), Pasteur Institute of Tunis, University of Tunis, El Manar, Tunis, Tunisia
| | - Naziha Marrakchi
- Laboratory of Biomolecules, Venoms and Theranostic Applications (LR20IPT01), Pasteur Institute of Tunis, University of Tunis, El Manar, Tunis, Tunisia
| | - Raoudha Doghri
- Research Laboratory of Precision Medicine/Personalized Medicine and Oncology Investigation (LR21SP01), Saleh Azaiez Institute, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis, El Manar, Tunis, Tunisia
| | - Ines ELBini
- Laboratory of Biomolecules, Venoms and Theranostic Applications (LR20IPT01), Pasteur Institute of Tunis, University of Tunis, El Manar, Tunis, Tunisia.
| |
Collapse
|
3
|
Ghorbani S, Li C, Lozinski BM, Moezzi D, D’Mello C, Dong Y, Visser F, Li H, Silva C, Khakpour M, Murray CJ, Tremblay MÈ, Xue M, Yong VW. Fibulin-2 is an extracellular matrix inhibitor of oligodendrocytes relevant to multiple sclerosis. J Clin Invest 2024; 134:e176910. [PMID: 38743490 PMCID: PMC11213512 DOI: 10.1172/jci176910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Impairment of oligodendrocytes and myelin contributes to neurological disorders including multiple sclerosis (MS), stroke, and Alzheimer's disease. Regeneration of myelin (remyelination) decreases the vulnerability of demyelinated axons, but this repair process commonly fails with disease progression. A contributor to inefficient remyelination is the altered extracellular matrix (ECM) in lesions, which remains to be better defined. We have identified fibulin-2 (FBLN2) as a highly upregulated ECM component in lesions of MS and stroke and in proteome databases of Alzheimer's disease and traumatic brain injury. Focusing on MS, the inhibitory role of FBLN2 was suggested in the experimental autoimmune encephalomyelitis (EAE) model, in which genetic FBLN2 deficiency improved behavioral recovery by promoting the maturation of oligodendrocytes and enhancing remyelination. Mechanistically, when oligodendrocyte progenitors were cultured in differentiation medium, FBLN2 impeded their maturation into oligodendrocytes by engaging the Notch pathway, leading to cell death. Adeno-associated virus deletion of FBLN2 in astrocytes improved oligodendrocyte numbers and functional recovery in EAE and generated new myelin profiles after lysolecithin-induced demyelination. Collectively, our findings implicate FBLN2 as a hitherto unrecognized injury-elevated ECM, and a therapeutic target, that impairs oligodendrocyte maturation and myelin repair.
Collapse
Affiliation(s)
- Samira Ghorbani
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Cenxiao Li
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Brian M. Lozinski
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Dorsa Moezzi
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Charlotte D’Mello
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Yifei Dong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry, Microbiology, and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Frank Visser
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Hongmin Li
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Claudia Silva
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Mohammadparsa Khakpour
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Colin J. Murray
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - V. Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Fernández EC, Tomassoni L, Zhang X, Wang J, Obradovic A, Laise P, Griffin AT, Vlahos L, Minns HE, Morales DV, Simmons C, Gallitto M, Wei HJ, Martins TJ, Becker PS, Crawford JR, Tzaridis T, Wechsler-Reya RJ, Garvin J, Gartrell RD, Szalontay L, Zacharoulis S, Wu CC, Zhang Z, Califano A, Pavisic J. Elucidation and Pharmacologic Targeting of Master Regulator Dependencies in Coexisting Diffuse Midline Glioma Subpopulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.17.585370. [PMID: 38559080 PMCID: PMC10979998 DOI: 10.1101/2024.03.17.585370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Diffuse Midline Gliomas (DMGs) are universally fatal, primarily pediatric malignancies affecting the midline structures of the central nervous system. Despite decades of clinical trials, treatment remains limited to palliative radiation therapy. A major challenge is the coexistence of molecularly distinct malignant cell states with potentially orthogonal drug sensitivities. To address this challenge, we leveraged established network-based methodologies to elucidate Master Regulator (MR) proteins representing mechanistic, non-oncogene dependencies of seven coexisting subpopulations identified by single-cell analysis-whose enrichment in essential genes was validated by pooled CRISPR/Cas9 screens. Perturbational profiles of 372 clinically relevant drugs helped identify those able to invert the activity of subpopulation-specific MRs for follow-up in vivo validation. While individual drugs predicted to target individual subpopulations-including avapritinib, larotrectinib, and ruxolitinib-produced only modest tumor growth reduction in orthotopic models, systemic co-administration induced significant survival extension, making this approach a valuable contribution to the rational design of combination therapy.
Collapse
|
5
|
Yao S, Mo X, Luo C, Qu C. MYRF-related mild encephalopathy with reversible myelin vacuolization: a case report and literature review. Front Genet 2023; 14:1284060. [PMID: 38155716 PMCID: PMC10753760 DOI: 10.3389/fgene.2023.1284060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/13/2023] [Indexed: 12/30/2023] Open
Abstract
Background: MYRF-related mild encephalopathy with reversible myelin vacuolization (MMERV) is an inherited neurological disorder characterized by dysfunction in the central nervous system and widespread reversible leukoencephalopathy. This paper presents a confirmed case of familial MMERV and summarizes pertinent features to offer guidance for future diagnosis and treatment of MMERV. Case Introduction: We have diagnosed a case of MMERV based on a history of seizures during early childhood and recurrent speech fluency issues in adulthood, reversible abnormal intensities in bilateral white matter in the centrum semiovale and corpus callosum, and the identification of myelin regulatory factor (MYRF) heterozygous variants. Conclusion: MYRF-related mild encephalopathy with reversible myelin vacuolization is a rare autosomal dominant genetic disease, with early clinical manifestations often being seizures. The definitive diagnosis of MMERV can be confirmed through genetic analysis. Minimizing infections can help reduce disease recurrence. However, future research should explore the impact of MYRF heterozygous variants in the wider MMERV population.
Collapse
Affiliation(s)
- Shumei Yao
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Xiufeng Mo
- Department of Neurology, Jinan Shizhong District People’s Hospital, Jinan, China
| | - Changjiang Luo
- Department of Neurology, Jinan Shizhong District People’s Hospital, Jinan, China
| | - Chuanqiang Qu
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
6
|
Wang Y, Zhang Y, Wang Y, Chen H, Pan L, Liao X, Wang S. A Novel Form of Neuregulin 1 Type III Caused by N-Terminal Processing. Biomolecules 2023; 13:1756. [PMID: 38136627 PMCID: PMC10741733 DOI: 10.3390/biom13121756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Nrg1 (Neuregulin 1) type III, a susceptible gene of schizophrenia, exhibits a critical role in the central nervous system and is essential at each stage of Schwann's cell development. Nrg1 type III comprises double-pass transmembrane domains, with the N-terminal and C-terminal localizing inside the cells. The N-terminal transmembrane helix partially overlaps with the cysteine-rich domain (CRD). In this study, Nrg1 type III constructs with different tags were transformed into cultured cells to verify whether CRD destroyed the transmembrane helix formation. We took advantage of immunofluorescent and immunoprecipitation assays on whole cells and analyzed the N-terminal distribution. Astonishingly, we found that a novel form of Nrg1 type III, about 10% of Nrg1 type III, omitted the N-terminal transmembrane helix, with the N-terminal positioning outside the membrane. The results indicated that the novel single-pass transmembrane status was a minor form of Nrg1 type III caused by N-terminal processing, while the major form was a double-pass transmembrane status.
Collapse
Affiliation(s)
- Yukai Wang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Yu Zhang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Yingxing Wang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Hong Chen
- School of Life Sciences, Nanchang University, Nanchang 330031, China
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Liangjing Pan
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Xufeng Liao
- School of Life Sciences, Nanchang University, Nanchang 330031, China
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Shunqi Wang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
7
|
Chitu V, Biundo F, Oppong-Asare J, Gökhan Ş, Aguilan JT, Dulski J, Wszolek ZK, Sidoli S, Stanley ER. Prophylactic effect of chronic immunosuppression in a mouse model of CSF-1 receptor-related leukoencephalopathy. Glia 2023; 71:2664-2678. [PMID: 37519044 PMCID: PMC10529087 DOI: 10.1002/glia.24446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
Mutations leading to colony-stimulating factor-1 receptor (CSF-1R) loss-of-function or haploinsufficiency cause CSF1R-related leukoencephalopathy (CRL), an adult-onset disease characterized by loss of myelin and neurodegeneration, for which there is no effective therapy. Symptom onset usually occurs in the fourth decade of life and the penetrance of disease in carriers is high. However, familial studies have identified a few carriers of pathogenic CSF1R mutations that remain asymptomatic even in their seventh decade of life, raising the possibility that the development and severity of disease might be influenced by environmental factors. Here we report new cases in which long-term glucocorticoid treatment is associated with asymptomatic status in elder carriers of pathogenic CSF-1R mutations. The main objective of the present study was to investigate the link between chronic immunosuppression initiated pre-symptomatically and resistance to the development of symptomatic CRL, in the Csf1r+/- mouse model. We show that chronic prednisone administration prevents the development of memory, motor coordination and social interaction deficits, as well as the demyelination, neurodegeneration and microgliosis associated with these deficits. These findings are in agreement with the preliminary clinical observations and support the concept that pre-symptomatic immunosuppression is protective in patients carrying pathogenic CSF1R variants associated with CRL. Proteomic analysis of microglia and oligodendrocytes indicates that prednisone suppresses processes involved in microglial activation and alleviates senescence and improves fitness of oligodendrocytes. This analysis also identifies new potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jude Oppong-Asare
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Şölen Gökhan
- Institute for Brain Disorders and Neural Regeneration, Department of Neurology, Albert Einstein College of Medicine, Bronx, New York
| | - Jennifer T. Aguilan
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jaroslaw Dulski
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
- Division of Neurological and Psychiatric Nursing, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
- Neurology Department, St Adalbert Hospital, Copernicus PL Ltd., Gdansk, Poland
| | | | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - E. Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
8
|
Liao X, Wang Y, Lai X, Wang S. The role of Rapsyn in neuromuscular junction and congenital myasthenic syndrome. BIOMOLECULES & BIOMEDICINE 2023; 23:772-784. [PMID: 36815443 PMCID: PMC10494853 DOI: 10.17305/bb.2022.8641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/02/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023]
Abstract
Rapsyn, an intracellular scaffolding protein associated with the postsynaptic membranes in the neuromuscular junction (NMJ), is critical for nicotinic acetylcholine receptor clustering and maintenance. Therefore, Rapsyn is essential to the NMJ formation and maintenance, and Rapsyn mutant is one of the reasons causing the pathogenies of congenital myasthenic syndrome (CMS). In addition, there is little research on Rapsyn in the central nervous system (CNS). In this review, the role of Rapsyn in the NMJ formation and the mutation of Rapsyn leading to CMS will be reviewed separately and sequentially. Finally, the potential function of Rapsyn is prospected.
Collapse
Affiliation(s)
- Xufeng Liao
- Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
| | - Yingxing Wang
- Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
| | - Xinsheng Lai
- Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Shunqi Wang
- Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Xavier A, Maltby VE, Ewing E, Campagna MP, Burnard SM, Tegner JN, Slee M, Butzkueven H, Kockum I, Kular L, Jokubaitis VG, Kilpatrick T, Alfredsson L, Jagodic M, Ponsonby AL, Taylor BV, Scott RJ, Lea RA, Lechner-Scott J. DNA Methylation Signatures of Multiple Sclerosis Occur Independently of Known Genetic Risk and Are Primarily Attributed to B Cells and Monocytes. Int J Mol Sci 2023; 24:12576. [PMID: 37628757 PMCID: PMC10454485 DOI: 10.3390/ijms241612576] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Epigenetic mechanisms can regulate how DNA is expressed independently of sequence and are known to be associated with various diseases. Among those epigenetic mechanisms, DNA methylation (DNAm) is influenced by genotype and the environment, making it an important molecular interface for studying disease etiology and progression. In this study, we examined the whole blood DNA methylation profiles of a large group of people with (pw) multiple sclerosis (MS) compared to those of controls. We reveal that methylation differences in pwMS occur independently of known genetic risk loci and show that they more strongly differentiate disease (AUC = 0.85, 95% CI 0.82-0.89, p = 1.22 × 10-29) than known genetic risk loci (AUC = 0.72, 95% CI: 0.66-0.76, p = 9.07 × 10-17). We also show that methylation differences in MS occur predominantly in B cells and monocytes and indicate the involvement of cell-specific biological pathways. Overall, this study comprehensively characterizes the immune cell-specific epigenetic architecture of MS.
Collapse
Affiliation(s)
- Alexandre Xavier
- School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW 2305, Australia; (A.X.); (S.M.B.); (R.J.S.)
| | - Vicki E. Maltby
- School of Medicine and Public Health, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW 2305, Australia; (V.E.M.); (R.A.L.)
- Department of Neurology, John Hunter Hospital, New Lambton Heights, NSW 2305, Australia
| | - Ewoud Ewing
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, 17176 Stockholm, Sweden; (E.E.); (I.K.); (L.K.); (L.A.); (M.J.)
| | - Maria Pia Campagna
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; (M.P.C.); (H.B.); (V.G.J.)
| | - Sean M. Burnard
- School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW 2305, Australia; (A.X.); (S.M.B.); (R.J.S.)
| | - Jesper N. Tegner
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Unit of Computational Medicine, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, L8:05, 17176 Stockholm, Sweden
- Science for Life Laboratory, Tomtebodavagen 23A, 17165 Solna, Sweden
| | - Mark Slee
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia;
| | - Helmut Butzkueven
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; (M.P.C.); (H.B.); (V.G.J.)
- MSBase Foundation, Melbourne, VIC 3004, Australia
| | - Ingrid Kockum
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, 17176 Stockholm, Sweden; (E.E.); (I.K.); (L.K.); (L.A.); (M.J.)
| | - Lara Kular
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, 17176 Stockholm, Sweden; (E.E.); (I.K.); (L.K.); (L.A.); (M.J.)
| | | | - Vilija G. Jokubaitis
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; (M.P.C.); (H.B.); (V.G.J.)
| | - Trevor Kilpatrick
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC 3052, Australia; (T.K.); (A.-L.P.)
| | - Lars Alfredsson
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, 17176 Stockholm, Sweden; (E.E.); (I.K.); (L.K.); (L.A.); (M.J.)
| | - Maja Jagodic
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, 17176 Stockholm, Sweden; (E.E.); (I.K.); (L.K.); (L.A.); (M.J.)
| | - Anne-Louise Ponsonby
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC 3052, Australia; (T.K.); (A.-L.P.)
- National Centre for Epidemiology and Public Health, Australian National University, Canberra, ACT 2601, Australia
| | - Bruce V. Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia;
| | - Rodney J. Scott
- School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW 2305, Australia; (A.X.); (S.M.B.); (R.J.S.)
- Department of Molecular Genetics, Pathology North, John Hunter Hospital, New Lambton Heights, NSW 2305, Australia
| | - Rodney A. Lea
- School of Medicine and Public Health, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW 2305, Australia; (V.E.M.); (R.A.L.)
- Centre for Genomics and Personalised Health, School of Biomedical Science, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Jeannette Lechner-Scott
- School of Medicine and Public Health, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW 2305, Australia; (V.E.M.); (R.A.L.)
- Department of Neurology, John Hunter Hospital, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
10
|
Zeng CW. Macrophage–Neuroglia Interactions in Promoting Neuronal Regeneration in Zebrafish. Int J Mol Sci 2023; 24:ijms24076483. [PMID: 37047456 PMCID: PMC10094936 DOI: 10.3390/ijms24076483] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023] Open
Abstract
The human nervous system exhibits limited regenerative capabilities following damage to the central nervous system (CNS), leading to a scarcity of effective treatments for nerve function recovery. In contrast, zebrafish demonstrate remarkable regenerative abilities, making them an ideal model for studying the modulation of inflammatory processes after injury. Such research holds significant translational potential to enhance our understanding of recovery from damage and disease. Macrophages play a crucial role in tissue repair and regeneration, with their subpopulations indirectly promoting axonal regeneration through developmental signals. The AP-1 signaling pathway, mediated by TNF/Tnfrsf1a, can elevate HDAC1 expression and facilitate regeneration. Furthermore, following spinal cord injury (SCI), pMN progenitors have been observed to switch between oligodendrocyte and motor neuron fates, with macrophage-secreted TNF-α potentially regulating the differentiation of ependymal–radial glia progenitors and oligodendrocytes. Radial glial cells (RGs) are also essential for CNS regeneration in zebrafish, as they perform neurogenesis and gliogenesis, with specific RG subpopulations potentially existing for the generation of neurons and oligodendrocytes. This review article underscores the critical role of macrophages and their subpopulations in tissue repair and regeneration, focusing on their secretion of TNF-α, which promotes axonal regeneration in zebrafish. We also offer insights into the molecular mechanisms underlying TNF-α’s ability to facilitate axonal regeneration and explore the potential of pMN progenitor cells and RGs following SCI in zebrafish. The review concludes with a discussion of various unresolved questions in the field, and ideas are suggested for future research. Studying innate immune cell interactions with neuroglia following injury may lead to the development of novel strategies for treating the inflammatory processes associated with regenerative medicine, which are commonly observed in injury and disease.
Collapse
|
11
|
Murray CJ, Vecchiarelli HA, Tremblay MÈ. Enhancing axonal myelination in seniors: A review exploring the potential impact cannabis has on myelination in the aged brain. Front Aging Neurosci 2023; 15:1119552. [PMID: 37032821 PMCID: PMC10073480 DOI: 10.3389/fnagi.2023.1119552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/22/2023] [Indexed: 04/11/2023] Open
Abstract
Consumption of cannabis is on the rise as public opinion trends toward acceptance and its consequent legalization. Specifically, the senior population is one of the demographics increasing their use of cannabis the fastest, but research aimed at understanding cannabis' impact on the aged brain is still scarce. Aging is characterized by many brain changes that slowly alter cognitive ability. One process that is greatly impacted during aging is axonal myelination. The slow degradation and loss of myelin (i.e., demyelination) in the brain with age has been shown to associate with cognitive decline and, furthermore, is a common characteristic of numerous neurological diseases experienced in aging. It is currently not known what causes this age-dependent degradation, but it is likely due to numerous confounding factors (i.e., heightened inflammation, reduced blood flow, cellular senescence) that impact the many cells responsible for maintaining overall homeostasis and myelin integrity. Importantly, animal studies using non-human primates and rodents have also revealed demyelination with age, providing a reliable model for researchers to try and understand the cellular mechanisms at play. In rodents, cannabis was recently shown to modulate the myelination process. Furthermore, studies looking at the direct modulatory impact cannabis has on microglia, astrocytes and oligodendrocyte lineage cells hint at potential mechanisms to prevent some of the more damaging activities performed by these cells that contribute to demyelination in aging. However, research focusing on how cannabis impacts myelination in the aged brain is lacking. Therefore, this review will explore the evidence thus far accumulated to show how cannabis impacts myelination and will extrapolate what this knowledge may mean for the aged brain.
Collapse
Affiliation(s)
- Colin J. Murray
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- *Correspondence: Colin J. Murray,
| | | | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Départment de Médicine Moléculaire, Université Laval, Québec City, QC, Canada
- Axe Neurosciences, Center de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
- Marie-Ève Tremblay,
| |
Collapse
|
12
|
Baldassarro VA, Cescatti M, Rocco ML, Aloe L, Lorenzini L, Giardino L, Calzà L. Nerve growth factor promotes differentiation and protects the oligodendrocyte precursor cells from in vitro hypoxia/ischemia. Front Neurosci 2023; 17:1111170. [PMID: 36875668 PMCID: PMC9978228 DOI: 10.3389/fnins.2023.1111170] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction Nerve growth factor (NGF) is a pleiotropic molecule acting on different cell types in physiological and pathological conditions. However, the effect of NGF on the survival, differentiation and maturation of oligodendrocyte precursor cells (OPCs) and oligodendrocytes (OLs), the cells responsible for myelin formation, turnover, and repair in the central nervous system (CNS), is still poorly understood and heavily debated. Methods Here we used mixed neural stem cell (NSC)-derived OPC/astrocyte cultures to clarify the role of NGF throughout the entire process of OL differentiation and investigate its putative role in OPC protection under pathological conditions. Results We first showed that the gene expression of all the neurotrophin receptors (TrkA, TrkB, TrkC, and p75NTR ) dynamically changes during the differentiation. However, only TrkA and p75NTR expression depends on T3-differentiation induction, as Ngf gene expression induction and protein secretion in the culture medium. Moreover, in the mixed culture, astrocytes are the main producer of NGF protein, and OPCs express both TrkA and p75NTR . NGF treatment increases the percentage of mature OLs, while NGF blocking by neutralizing antibody and TRKA antagonist impairs OPC differentiation. Moreover, both NGF exposure and astrocyte-conditioned medium protect OPCs exposed to oxygenglucose deprivation (OGD) from cell death and NGF induces an increase of AKT/pAKT levels in OPCs nuclei by TRKA activation. Discussion This study demonstrated that NGF is implicated in OPC differentiation, maturation, and protection in the presence of metabolic challenges, also suggesting implications for the treatment of demyelinating lesions and diseases.
Collapse
Affiliation(s)
| | | | | | | | - Luca Lorenzini
- Department of Veterinary Medical Science, University of Bologna, Bologna, Italy
| | - Luciana Giardino
- Department of Veterinary Medical Science, University of Bologna, Bologna, Italy.,IRET Foundation, Bologna, Italy
| | - Laura Calzà
- Health Science and Technologies - Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy.,Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.,Montecatone Rehabilitation Institute, Bologna, Italy
| |
Collapse
|