1
|
Zhang T, Zhou W, Fan T, Yuan Y, Tang X, Zhang Q, Zou J, Li Y. Lactic acid metabolism: gynecological cancer's Achilles' heel. Discov Oncol 2025; 16:657. [PMID: 40314877 DOI: 10.1007/s12672-025-02364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/10/2025] [Indexed: 05/03/2025] Open
Abstract
Lactic acid is significantly expressed in many cancers, including gynecological cancer, and has become a key regulator of the proliferation, development, metastasis and invasion of these cancers. In clinical and experimental studies, the level of lactic acid in gynecological cancer is closely related to metastasis and invasion, tumor recurrence and poor prognosis. Lactic acid can regulate the internal metabolic pathway of gynecological cancer cells and drive the autonomous role of non-cancer cells in gynecological cancer. In addition to being used as a source of energy metabolism by gynecological cancer cells, lactic acid can also be transported from cancer cells to neighboring cancer cells, stroma and vascular endothelial cells (ECs) to further guide metabolic reprogramming. Lactic acid is also involved in promoting inflammation and angiogenesis in gynecologic tumors. Therefore, we reviewed the mechanisms and recent advances in the production and transport of lactic acid in gynecological cancer. These advances and evidence suggest that targeted lactic acid metabolism is a promising cancer treatment.
Collapse
Affiliation(s)
- Ting Zhang
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China
| | - Wenchao Zhou
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China
| | - Tingyu Fan
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Yuwei Yuan
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China
| | - Xing Tang
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Qunfeng Zhang
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China.
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
| | - Juan Zou
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China.
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
| | - Yukun Li
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China.
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
| |
Collapse
|
2
|
Huang X, Ali A, Yachioui DEI, Le Dévédec SE, Hankemeier T. Lipid dysregulation in triple negative breast cancer: Insights from mass spectrometry-based approaches. Prog Lipid Res 2025; 98:101330. [PMID: 39914749 DOI: 10.1016/j.plipres.2025.101330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Triple negative breast cancer (TNBC) has the worst prognosis among breast cancers due to its aggressive nature and the absence of targeted treatments. Development of novel anti-cancer drugs for TNBC faces challenges stemming from its heterogeneity and high potential for metastasis. Metabolomics can be a useful technology in finding novel therapeutic targets and probing the heterogeneity of TNBC. Metabolomics has been enabled by advancements in mass spectrometry (MS)-based platforms that facilitated comprehensive profiling of TNBC metabolism. This review provides an overview of metabolomic changes in TNBC with emphasis on lipid alterations, and describes the key MS analytical techniques, providing the necessary background for examining the role of lipids in TNBC development.
Collapse
Affiliation(s)
- Xiaoyue Huang
- Metabolomics and Analytics Center, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Ahmed Ali
- Metabolomics and Analytics Center, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands.
| | - Dounia E I Yachioui
- Metabolomics and Analytics Center, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Sylvia E Le Dévédec
- Division of Cell Systems and Drug Safety, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands.
| | - Thomas Hankemeier
- Metabolomics and Analytics Center, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| |
Collapse
|
3
|
Zhang S, Liu Y, Dong J, Jiao M, Gu Y, Chen L, Yuan N, Wang J, Yang D, Meng F. Proteome differences of dental stem cells between permanent and deciduous teeth by data-independent acquisition proteomics. Open Life Sci 2025; 20:20220998. [PMID: 39886483 PMCID: PMC11780257 DOI: 10.1515/biol-2022-0998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/29/2024] [Accepted: 10/10/2024] [Indexed: 02/01/2025] Open
Abstract
Dental pulp stem cells hold significant prospects for tooth regeneration and repair. However, a comprehensive understanding of the molecular differences between dental pulp stem cells (DPSC, from permanent teeth) and stem cells from human exfoliated deciduous teeth (SHED, from deciduous teeth) remains elusive, which is crucial for optimizing their therapeutic potential. To address this gap, we employed a novel data-independent acquisition (DIA) proteomics approach to compare the protein expression profiles of DPSC and SHED. Based on nano-LC-MS/MS DIA proteomics, we identified over 7,000 proteins in both cell types. By comparing their expression levels, 209 differentially expressed proteins were identified. Subsequent Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses, along with protein-protein interaction network construction, revealed significant metabolic differences and key regulatory nodes. DPSC exhibited significantly higher expression of proteins belonging to the NDUFB family, SMARC family, RPTOR and TLR3. These proteins are known to be involved in critical cellular processes such as mitochondrial energy metabolism, mTOR-related autophagy pathway, and innate immune response. Conversely, SHED displayed elevated expression of AKR1B family, which participated in glycerolipid metabolism and adipogenic differentiation, PRKG1, MGLL and UQCRB proteins associated with thermogenesis. These findings highlight the specific proteomic landscape of DPSC and SHED, suggesting their distinct biological roles and potential applications.
Collapse
Affiliation(s)
- Suping Zhang
- Infectious Disease Prevention and Control Department, Suzhou Center for Disease Control and Prevention,
Suzhou215131, China
- Cyrus Tang Medical Institute, Soochow University School of Medicine,
Suzhou215123, China
- Oral Implantology Department, Suzhou Stomatological Hospital,
Suzhou215005, China
| | - Yuqing Liu
- Cyrus Tang Medical Institute, Soochow University School of Medicine,
Suzhou215123, China
| | - Jin Dong
- Cyrus Tang Medical Institute, Soochow University School of Medicine,
Suzhou215123, China
| | - Min Jiao
- Respiratory Disease Research Institute, Suzhou First Hospital affiliated to Soochow University,
Suzhou215003, China
| | - Yongchun Gu
- Department of Stomatology, Suzhou Ninth Hospital affiliated to Soochow University,
Suzhou215200, China
| | - Liling Chen
- Infectious Disease Prevention and Control Department, Suzhou Center for Disease Control and Prevention,
Suzhou215131, China
| | - Na Yuan
- Cyrus Tang Medical Institute, Soochow University School of Medicine,
Suzhou215123, China
| | - Jianrong Wang
- Cyrus Tang Medical Institute, Soochow University School of Medicine,
Suzhou215123, China
| | - Dezhao Yang
- Oral Implantology Department, Suzhou Stomatological Hospital,
Suzhou215005, China
| | - Fanwen Meng
- Oral Implantology Department, Suzhou Stomatological Hospital,
Suzhou215005, China
| |
Collapse
|
4
|
Quan Y, Zhang H, Wang M, Ping H. UQCRB and LBH are correlated with Gleason score progression in prostate cancer: Spatial transcriptomics and experimental validation. Comput Struct Biotechnol J 2024; 23:3315-3326. [PMID: 39310280 PMCID: PMC11414276 DOI: 10.1016/j.csbj.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/09/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Prostate cancer (PCa) is a multifocal disease characterized by genomic and phenotypic heterogeneity within a single gland. In this study, Visium spatial transcriptomics (ST) analysis was applied to PCa tissues with different histological structures to infer the molecular events involved in Gleason score (GS) progression. The spots in tissue sections were classified into various groups using Principal Component Analysis (PCA) and Louvain clustering analysis based on transcriptome data. Anotation of the spots according to GS revealed notable similarities between transcriptomic profiles and histologically identifiable structures. The accuracy of macroscopic GS determination was bioinformatically verified through malignancy-related feature analysis, specifically inferred copy number variation (inferCNV), as well as developmental trajectory analyses, such as diffusion pseudotime (DPT) and partition-based graph abstraction (PAGA). Genes related to GS progression were identified from the differentially expressed genes (DEGs) through pairwise comparisons of groups along a GS gradient. The proteins encoded by the representative oncogenes UQCRB and LBH were found to be highly expressed in advanced-stage PCa tissues. Knockdown of their mRNAs significantly suppressed PCa cell proliferation and invasion. These findings were validated using The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD) dataset, as well as through histological and cytological experiments. The results presented here establish a foundation for ST-based evaluation of GS progression and provide valuable insights into the GS progression-related genes UQCRB and LBH.
Collapse
Affiliation(s)
- Yongjun Quan
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, China
| | - Hong Zhang
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, China
| | - Mingdong Wang
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, China
| | - Hao Ping
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, China
| |
Collapse
|
5
|
Masciale V, Banchelli F, Grisendi G, Samarelli AV, Raineri G, Rossi T, Zanoni M, Cortesi M, Bandini S, Ulivi P, Martinelli G, Stella F, Dominici M, Aramini B. The molecular features of lung cancer stem cells in dedifferentiation process-driven epigenetic alterations. J Biol Chem 2024; 300:107994. [PMID: 39547513 PMCID: PMC11714729 DOI: 10.1016/j.jbc.2024.107994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Cancer stem cells (CSCs) may be dedifferentiated somatic cells following oncogenic processes, representing a subpopulation of cells able to promote tumor growth with their capacities for proliferation and self-renewal, inducing lineage heterogeneity, which may be a main cause of resistance to therapies. It has been shown that the "less differentiated process" may have an impact on tumor plasticity, particularly when non-CSCs may dedifferentiate and become CSC-like. Bidirectional interconversion between CSCs and non-CSCs has been reported in other solid tumors, where the inflammatory stroma promotes cell reprogramming by enhancing Wnt signaling through nuclear factor kappa B activation in association with intracellular signaling, which may induce cells' pluripotency, the oncogenic transformation can be considered another important aspect in the acquisition of "new" development programs with oncogenic features. During cell reprogramming, mutations represent an initial step toward dedifferentiation, in which tumor cells switch from a partially or terminally differentiated stage to a less differentiated stage that is mainly manifested by re-entry into the cell cycle, acquisition of a stem cell-like phenotype, and expression of stem cell markers. This phenomenon typically shows up as a change in the form, function, and pattern of gene and protein expression, and more specifically, in CSCs. This review would highlight the main epigenetic alterations, major signaling pathways and driver mutations in which CSCs, in tumors and specifically, in lung cancer, could be involved, acting as key elements in the differentiation/dedifferentiation process. This would highlight the main molecular mechanisms which need to be considered for more tailored therapies.
Collapse
Affiliation(s)
- Valentina Masciale
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Federico Banchelli
- Department of Statistical Sciences "Paolo Fortunati", Alma Mater Studiorum- University of Bologna, Bologna, Italy
| | - Giulia Grisendi
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Anna Valeria Samarelli
- Laboratory of and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Giulia Raineri
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Tania Rossi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michele Zanoni
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michela Cortesi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Sara Bandini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Martinelli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Franco Stella
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy; Division of Oncology, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena, Italy
| | - Beatrice Aramini
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy.
| |
Collapse
|
6
|
Li J, Liu Y, Zheng R, Qu C, Li J. Molecular mechanisms of TACE refractoriness: Directions for improvement of the TACE procedure. Life Sci 2024; 342:122540. [PMID: 38428568 DOI: 10.1016/j.lfs.2024.122540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Transcatheter arterial chemoembolisation (TACE) is the standard of care for intermediate-stage hepatocellular carcinoma and selected patients with advanced hepatocellular carcinoma. However, TACE does not achieve a satisfactory objective response rate, and the concept of TACE refractoriness has been proposed to identify patients who do not fully benefit from TACE. Moreover, repeated TACE is necessary to obtain an optimal and sustained anti-tumour response, which may damage the patient's liver function. Therefore, studies have recently been performed to improve the effectiveness of TACE. In this review, we summarise the detailed molecular mechanisms associated with TACE responsiveness and relapse after this treatment to provide more effective targets for adjuvant therapy while helping to improve TACE regimens.
Collapse
Affiliation(s)
- Jiahao Li
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China; The Public Laboratory Platform of the First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Yingnan Liu
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Ruipeng Zheng
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Chao Qu
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China; The Public Laboratory Platform of the First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Jiarui Li
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China.
| |
Collapse
|
7
|
Kanlaya R, Subkod C, Nanthawuttiphan S, Thongboonkerd V. The protective effect of caffeine against oxalate-induced epithelial-mesenchymal transition in renal tubular cells via mitochondrial preservation. Biomed Pharmacother 2024; 171:116144. [PMID: 38198962 DOI: 10.1016/j.biopha.2024.116144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/12/2024] Open
Abstract
Mitochondrial dysfunction is one of the key mechanisms for developing chronic kidney disease (CKD). Hyperoxaluria and nephrolithiasis are also associated with mitochondrial dysfunction. Increasing evidence has shown that caffeine, the main bioactive compound in coffee, exerts both anti-fibrotic and anti-lithogenic properties but with unclear mechanisms. Herein, we address the protective effect of caffeine against mitochondrial dysfunction during oxalate-induced epithelial-mesenchymal transition (EMT) in renal cells. Analyses revealed that oxalate successfully induced EMT in MDCK renal cells as evidenced by the increased expression of several EMT-related genes (i.e., Snai1, Fn1 and Acta2). Oxalate also suppressed cellular metabolic activity and intracellular ATP level, but increased reactive oxygen species (ROS). Additionally, oxalate reduced abundance of active mitochondria and induced mitochondrial fragmentation (fission). Furthermore, oxalate decreased mitochondrial biogenesis and content as evidenced by decreased expression of sirtuin-1 (SIRT1), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), cytochrome c oxidase subunit 4 (COX4), and total mitochondrial proteins. Nonetheless, these oxalate-induced deteriorations in MDCK cells and their mitochondria were successfully hampered by caffeine. Knockdown of Snai1 gene by small interfering RNA (siRNA) completely abolished the effects of oxalate on suppression of cellular metabolic activity, intracellular ATP and abundance of active mitochondria, indicating that these oxalate-induced renal cell deteriorations were mediated through the Snai1 EMT-related gene. These data, at least in part, unveil the anti-fibrotic mechanism of caffeine during oxalate-induced EMT in renal cells by preserving mitochondrial biogenesis and function.
Collapse
Affiliation(s)
- Rattiyaporn Kanlaya
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chonnicha Subkod
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Supanan Nanthawuttiphan
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
8
|
Pontifex MG, Connell E, Le Gall G, Lang L, Pourtau L, Gaudout D, Angeloni C, Zallocco L, Ronci M, Giusti L, Müller M, Vauzour D. A novel Mediterranean diet-inspired supplement ameliorates cognitive, microbial, and metabolic deficits in a mouse model of low-grade inflammation. Gut Microbes 2024; 16:2363011. [PMID: 38835220 PMCID: PMC11155709 DOI: 10.1080/19490976.2024.2363011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024] Open
Abstract
The Mediterranean diet (MD) and its bioactive constituents have been advocated for their neuroprotective properties along with their capacity to affect gut microbiota speciation and metabolism. Mediated through the gut brain axis, this modulation of the microbiota may partly contribute to the neuroprotective properties of the MD. To explore this potential interaction, we evaluated the neuroprotective properties of a novel bioactive blend (Neurosyn240) resembling the Mediterranean diet in a rodent model of chronic low-grade inflammation. Behavioral tests of cognition, brain proteomic analysis, 16S rRNA sequencing, and 1H NMR metabolomic analyses were employed to develop an understanding of the gut-brain axis interactions involved. Recognition memory, as assessed by the novel object recognition task (NOR), decreased in response to LPS insult and was restored with Neurosyn240 supplementation. Although the open field task performance did not reach significance, it correlated with NOR performance indicating an element of anxiety related to this cognitive change. Behavioral changes associated with Neurosyn240 were accompanied by a shift in the microbiota composition which included the restoration of the Firmicutes: Bacteroidota ratio and an increase in Muribaculum, Rikenellaceae Alloprevotella, and most notably Akkermansia which significantly correlated with NOR performance. Akkermansia also correlated with the metabolites 5-aminovalerate, threonine, valine, uridine monophosphate, and adenosine monophosphate, which in turn significantly correlated with NOR performance. The proteomic profile within the brain was dramatically influenced by both interventions, with KEGG analysis highlighting oxidative phosphorylation and neurodegenerative disease-related pathways to be modulated. Intriguingly, a subset of these proteomic changes simultaneously correlated with Akkermansia abundance and predominantly related to oxidative phosphorylation, perhaps alluding to a protective gut-brain axis interaction. Collectively, our results suggest that the bioactive blend Neurosyn240 conferred cognitive and microbiota resilience in response to the deleterious effects of low-grade inflammation.
Collapse
Affiliation(s)
- Matthew G. Pontifex
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - Emily Connell
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - Gwenaelle Le Gall
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - Leonie Lang
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | | | | | - Cristina Angeloni
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Alma, Italy
| | - Lorenzo Zallocco
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Maurizio Ronci
- Department of Pharmacy, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Laura Giusti
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Michael Müller
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - David Vauzour
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
9
|
Molecules at Play in Cancer. Curr Issues Mol Biol 2023; 45:2182-2185. [PMID: 36975510 PMCID: PMC10047071 DOI: 10.3390/cimb45030140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Despite its wide range of incidence, cancer can spontaneously occur in any part of the body and invade regions other than the originally affected tissue [...]
Collapse
|