1
|
Goethe EA, Srinivasan S, Kumar S, Prabhu SS, Gubbiotti MA, Ferguson SD. High-grade astrocytoma with piloid features: a single-institution case series and literature review. Acta Neuropathol Commun 2025; 13:82. [PMID: 40270074 PMCID: PMC12020207 DOI: 10.1186/s40478-025-01987-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
High-grade astrocytoma with piloid features (HGAP) is a recently described primary brain tumor and the first requiring a specific methylation pattern for diagnosis, as its histologic features are often compatible with other tumors such as glioblastoma (GBM). Characterized by molecular alterations in CDKN2A/B, NF1, BRAF, FGFR1, and ATRX, they may be located anywhere in the CNS but show a predilection for the posterior fossa. Reports are limited to retrospective case series, and the standard of care is not yet established. We performed a retrospective review of electronic medical records of all patients with HGAP at our institution. Records were queried for demographic, radiographic, clinical, surgical, pathologic, and outcome data. Eighteen patients were included with a median 17.1 months follow-up. Of these, 12 (63.2%) were women with a mean age of 43 years (range 24-67). The most common tumor locations were the cerebellum (8 patients, 42.1%) and thalamus (6 patients, 31.6%). On imaging, tumors were most commonly homogeneously contrast-enhancing (10 patients, 52.6%) or rim enhancing with central necrosis (5 patients, 26.3%). Ten patients (52.6%) underwent biopsy, while nine (47.4%) underwent resection, of which four (44.4%) underwent gross total resection. Adjuvant therapy included radiation in 16 patients (88.9%) and systemic treatment in 16 patients (88.9%). The initial systemic treatment was temozolomide in 14 patients (77.8%). One patient received upfront trametinib (a MEK1 inhibitor), and one patient received upfront dabrafenib (a BRAF inhibitor). At last follow up, 11 patients (57.9%) had progressive disease. Median progression-free survival (PFS) was 5.4 months (range 1.6-28.2 months), and median overall survival (OS) had not been reached. HGAP is a newly described rare glial tumor without an established standard of care. Its aggressive behavior and targetable mutations warrant further investigation regarding predictors of outcome for this entity.
Collapse
Affiliation(s)
- Eric A Goethe
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Subhiksha Srinivasan
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Neurosurgery, McGovern Medical School, Houston, TX, 77030, USA
| | - Swaminathan Kumar
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Sujit S Prabhu
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Maria A Gubbiotti
- Division of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sherise D Ferguson
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Xu JX, Ma LJ, Tu LY, Tang QS, Wu B, Jiang LH. The Effect of Cuproptosis-Related Proteins on Macrophage Polarization in Mesothelioma is Revealed by scRNA-seq. Biol Trace Elem Res 2025; 203:1898-1908. [PMID: 39177724 PMCID: PMC11920352 DOI: 10.1007/s12011-024-04333-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024]
Abstract
High invasiveness mesothelioma is a malignant tumor of the peritoneum or pleura. The effect of cuproptosis on mesothelioma (MESO) is still unknown, though. The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) datasets were used to identify differential genes linked to cuproptosis in mesothelioma. Multigene features were then created to assess the course of the disease. Use single-cell data and in vitro validation to uncover crucial gene regulation mechanisms. In MESO, we found nine differentially expressed genes linked to cuproptosis. Using univariate Cox and LASSO regression techniques, a 3-gene feature (P < 0.05) was created, showing a good predictive potential for survival time. According to the risk score, patients in the low-risk subset had a considerably greater survival rate than those in the high-risk subset (P = 0). The similar survival pattern and prediction performance are also seen in the validation queue. The findings of the drug sensitivity research indicate that in high-risk patients, vinblastine, paclitaxel, gefitinib, and erlotinib are sensitive medications (P < 0.05). Classical monocytes were identified as core cells connected to cuproptosis by the CellChat results. SLC31A1 is implicated in the positive regulation of M2 macrophage polarization, according to cell subtype analysis and in vitro confirmation. Genes linked to cuproptosis have a major influence on tumor immunity and can predict how MESO will progress.
Collapse
Affiliation(s)
- Jia-Xin Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong District, Kunming, 400042, China
- Department of General Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Li-Jing Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong District, Kunming, 400042, China
| | - Li-Ying Tu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong District, Kunming, 400042, China
| | - Qi-Sheng Tang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong District, Kunming, 400042, China
| | - Bian Wu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong District, Kunming, 400042, China.
- Department of General Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.
| | - Li-Hong Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong District, Kunming, 400042, China.
- Department of General Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.
| |
Collapse
|
3
|
Handsaker RE, Kashin S, Reed NM, Tan S, Lee WS, McDonald TM, Morris K, Kamitaki N, Mullally CD, Morakabati NR, Goldman M, Lind G, Kohli R, Lawton E, Hogan M, Ichihara K, Berretta S, McCarroll SA. Long somatic DNA-repeat expansion drives neurodegeneration in Huntington's disease. Cell 2025; 188:623-639.e19. [PMID: 39824182 PMCID: PMC11822645 DOI: 10.1016/j.cell.2024.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/15/2024] [Accepted: 11/29/2024] [Indexed: 01/20/2025]
Abstract
In Huntington's disease (HD), striatal projection neurons (SPNs) degenerate during midlife; the core biological question involves how the disease-causing DNA repeat (CAG)n in the huntingtin (HTT) gene leads to neurodegeneration after decades of biological latency. We developed a single-cell method for measuring this repeat's length alongside genome-wide RNA expression. We found that the HTT CAG repeat expands somatically from 40-45 to 100-500+ CAGs in SPNs. Somatic expansion from 40 to 150 CAGs had no apparent cell-autonomous effect, but SPNs with 150-500+ CAGs lost positive and then negative features of neuronal identity, de-repressed senescence/apoptosis genes, and were lost. Our results suggest that somatic repeat expansion beyond 150 CAGs causes SPNs to degenerate quickly and asynchronously. We conclude that in HD, at any one time, most neurons have an innocuous but unstable HTT gene and that HD pathogenesis is a DNA process for almost all of a neuron's life.
Collapse
Affiliation(s)
- Robert E Handsaker
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | - Seva Kashin
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | - Nora M Reed
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Steven Tan
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Won-Seok Lee
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Tara M McDonald
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Nolan Kamitaki
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher D Mullally
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Melissa Goldman
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Gabriel Lind
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Rhea Kohli
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Marina Hogan
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Kiku Ichihara
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sabina Berretta
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02215, USA.
| | - Steven A McCarroll
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02215, USA; Howard Hughes Medical Institute, Boston, MA 02215, USA.
| |
Collapse
|
4
|
Hermelo I, Haapala I, Mäkelä M, Jacome Sanz D, Kontunen A, Karjalainen M, Müller P, Lehtimäki K, Nykter M, Frösén J, Haapasalo H, Roine A, Oksala N, Nordfors K, Vehkaoja A, Haapasalo J. Patient-derived glioma organoids real time identification of IDH mutation, 1p/19q-codeletion and CDKN2A/B homozygous deletion with differential ion mobility spectrometry. J Neurooncol 2025; 171:691-703. [PMID: 39578301 PMCID: PMC11729090 DOI: 10.1007/s11060-024-04891-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024]
Abstract
PURPOSE Extent of brain tumor resection continues to be one of the central decisions taken during standard of care in glioma patients. Here, we aimed to evaluate the most essential molecular factors, such as IDH (isocitrate dehydrogenase) mutation in gliomas classification with patient-derived glioma organoids (PGOs) using differential mobility spectrometry (DMS). METHODS we prospectively recruited 12 glioma patients, 6 IDH-mutated and 6 IDH wild-type tumors, from which PGOs were generated ex-vivo. Altogether, 320 PGOs DMS spectra were analyzed with a classifier algorithm based on linear discriminant analysis (LDA). RESULTS LDA model classification accuracy (CA) obtained between IDH-mutant and IDH wild-type PGOs was 90% (91% sensitivity and 89% specificity). Furthermore, 1p/19q codeletion classification within IDH mutant PGOs reached 98% CA (93% sensitivity and 99% specificity), while CDKN2A/B homozygous loss status had 86% CA (63% sensitivity 93% specificity). CONCLUSION DMS suitability to differentiate IDH-mutated PGOs was thus validated in ex vivo cultured samples, PGOs. Preliminary results regarding 1p/19q codeleted PGOs and CDKN2A/B loss PGOs identification endorse testing in a prospective intraoperative glioma patient cohort. Our results reveal a sample classification set-up that is compatible with real-time intraoperative surgery guidance.
Collapse
Affiliation(s)
- Ismaïl Hermelo
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland.
- Department of Neurosurgery and Tays Cancer Center, Tampere University Hospital and Tampere University, Tampere, Finland.
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Ilkka Haapala
- Department of Neurosurgery and Tays Cancer Center, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Meri Mäkelä
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Olfactomics Ltd., Tampere, Finland
| | - Dafne Jacome Sanz
- Department of Neurosurgery and Tays Cancer Center, Tampere University Hospital and Tampere University, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anton Kontunen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Olfactomics Ltd., Tampere, Finland
| | - Markus Karjalainen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Olfactomics Ltd., Tampere, Finland
| | - Philipp Müller
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kai Lehtimäki
- Department of Neurosurgery and Tays Cancer Center, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Juhana Frösén
- Department of Neurosurgery and Tays Cancer Center, Tampere University Hospital and Tampere University, Tampere, Finland
| | | | - Antti Roine
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Olfactomics Ltd., Tampere, Finland
| | - Niku Oksala
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Olfactomics Ltd., Tampere, Finland
- Centre for Vascular Surgery and Interventional Radiology, Tampere University Hospital, Tampere, Finland
| | - Kristiina Nordfors
- Department of Pediatric Hematology and Oncology and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Tampere Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Antti Vehkaoja
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Joonas Haapasalo
- Department of Neurosurgery and Tays Cancer Center, Tampere University Hospital and Tampere University, Tampere, Finland.
- Fimlab Laboratories Ltd., Tampere, Finland.
| |
Collapse
|
5
|
Nakasu S, Deguchi S, Nakasu Y. Frequency and Prognostic Impact of CDKN2A/B Alteration in Oligodendrogliomas: Systematic Review and Meta-analysis. Neurol Med Chir (Tokyo) 2024; 64:442-450. [PMID: 39443123 PMCID: PMC11729257 DOI: 10.2176/jns-nmc.2024-0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/14/2024] [Indexed: 10/25/2024] Open
Abstract
Isocitrate dehydrogenase (IDH) -mutant astrocytomas with homozygous deletion of cyclin-dependent kinase 2A/B (CDKN2A/B-HomoD) are categorized to grade 4 in the new World Health Organization (WHO) classification. However, the clinical implications of CDKN2A/B-HomoD in oligodendrogliomas remain unclear. This study systematically reviewed and meta-analyzed the literature on molecularly defined oligodendrogliomas (mOlig) to find the frequency and prognostic significance of CDKN2A/B gene alterations. Overall survival was worse in patients with CDKN2A/B-HomoD [pooled hazard ratio (pHR) 2.44; 95% confidential interval (CI), 1.59-3.76; P < 0.0001; 7 studies, 1,012 patients] than in those without CDKN2A/B-HomoD. Although the frequency (95% CI) was very low in grade 2 tumors (0.31%; 0.02-0.4) than in grade 3 tumors (9.4%; 6.2-14.0; I2 = 52.0%), pHR of multivariate analyses with covariates of WHO grade and age was still significant (P = 0.017). In contrast, the method in CDKN2A/B evaluation was a significant factor for the heterogeneity in frequency. The pooled frequency of CDKN2A/B-HomoD in grade 3 mOlig by fluorescence in situ hybridization (FISH) (20.3%) was higher than that by other methods (7.3%; P < 0.0006), probably due to the lower threshold for CDKN2A/B-HomoD in FISH studies that was used in this analysis. The frequency (95% CI) of other alterations of the CDKN2A/B gene, i.e., mutation, hemizygous deletion, and promoter methylation, was estimated as 1.48% (0.6-3.5), 15.9% (9.8-24.7), and 20.6% (13.7-29.8), respectively. The clinical significance of these alterations remains unclear due to the immaturity of the investigations.
Collapse
Affiliation(s)
| | - Shoichi Deguchi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine
- Division of Neurosurgery, Shizuoka Cancer Center
| | - Yoko Nakasu
- Department of Neurosurgery, Shiga University of Medical Science
- Division of Neurosurgery, Shizuoka Cancer Center
| |
Collapse
|
6
|
Noack D, Wach J, Barrantes-Freer A, Nicolay NH, Güresir E, Seidel C. Homozygous CDKN2A/B deletions in low- and high-grade glioma: a meta-analysis of individual patient data and predictive values of p16 immunohistochemistry testing. Acta Neuropathol Commun 2024; 12:180. [PMID: 39593128 PMCID: PMC11590270 DOI: 10.1186/s40478-024-01889-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
CDKN2A/B deletions are prognostically relevant in low- and high-grade gliomas. Data on this is derived from heterogeneous series, an accurate estimation of survival risk from homozygous CDKN2A/B deletion is missing. Besides genetic testing, p16-immunohistochemistry (IHC) as a less cost intensive means for indirect detection of CDKN2A/B alterations is possible but not validated in larger datasets. The present meta-analysis aimed to (1) reconstruct individual patient data (IPD) and estimate overall survival (OS) stratified by CDKN2A/B status from all literature and to (2) determine accuracy of p16 testing for CDKNA2/B detection from published studies. For survival analysis according to CDKN2A/B status 460 records were screened, four articles with 714 participants were included. In IDH-wildtype (IDH-wt) gliomas, 57.07% harbored the deletion compared to 9.76% in IDH-mutant (IDH-mut) gliomas. Median OS of patients with IDH-wt gliomas and homozygous CDKN2A/B deletion was 13.0 months compared to 18.0 months with non-deleted CDKN2A/B (p = 0.014, Log-Rank). With homozygous deletion of CDKN2A/B the risk of death was increased by 1.5 (95%-CI 1.1-2.1). Median OS in patients with IDH-mut gliomas without CDKN2A/B deletion was 92.0 months compared to 40.0 months with CDKN2A/B deletion (p < 0.001, Log-Rank). CDKN2A/B deletions were associated with a significantly shorter OS (HR = 3.2; 95%-CI 2.2-5.5). For p16 IHC analysis, 10 eligible studies with 1087 examined samples were included. The cut-off for retention differed between the studies. In 588/662 p16 retained cases CDKN2A/B deletions was not detected, implying a negative predictive value (NPV) of p16 staining of 88.8%. Conversely, 279/425 p16 absent cases showed a CDKN2A/B deletion resulting in a positive predictive value (PPV) of 65.6%. Sensitivity of p16 staining for CDKN2A/B detection was 79.0%, specificity 80.1%. Highest diagnostic accuracy of p16 IHC was reached with a cut-off of > 5% and within IDH-mut glioma.
Collapse
Affiliation(s)
- Darius Noack
- Department of Radiation Oncology, University Leipzig Medical Center, Stephanstraße 9a, 04103, Leipzig, Germany
- Comprehensive Cancer Center Central Germany (CCCG), 04103, Leipzig, Germany
| | - Johannes Wach
- Department of Neurosurgery, University Leipzig Medical Center, 04103, Leipzig, Germany
| | - Alonso Barrantes-Freer
- Paul-Flechsig Institute of Neuropathology, University Leipzig Medical Center, 04103, Leipzig, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, University Leipzig Medical Center, Stephanstraße 9a, 04103, Leipzig, Germany
- Comprehensive Cancer Center Central Germany (CCCG), 04103, Leipzig, Germany
| | - Erdem Güresir
- Department of Neurosurgery, University Leipzig Medical Center, 04103, Leipzig, Germany
| | - Clemens Seidel
- Department of Radiation Oncology, University Leipzig Medical Center, Stephanstraße 9a, 04103, Leipzig, Germany.
- Comprehensive Cancer Center Central Germany (CCCG), 04103, Leipzig, Germany.
| |
Collapse
|
7
|
Zhakula-Kostadinova N, Taylor AM. Patterns of Aneuploidy and Signaling Consequences in Cancer. Cancer Res 2024; 84:2575-2587. [PMID: 38924459 PMCID: PMC11325152 DOI: 10.1158/0008-5472.can-24-0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/29/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Aneuploidy, or a change in the number of whole chromosomes or chromosome arms, is a near-universal feature of cancer. Chromosomes affected by aneuploidy are not random, with observed cancer-specific and tissue-specific patterns. Recent advances in genome engineering methods have allowed the creation of models with targeted aneuploidy events. These models can be used to uncover the downstream effects of individual aneuploidies on cancer phenotypes including proliferation, apoptosis, metabolism, and immune signaling. Here, we review the current state of research into the patterns of aneuploidy in cancer and their impact on signaling pathways and biological processes.
Collapse
Affiliation(s)
- Nadja Zhakula-Kostadinova
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Alison M Taylor
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|
8
|
Yang H, Zhu Z, Long C, Niu F, Zhou J, Chen S, Ye M, Peng S, Zhang X, Chen Y, Wei L, Wang H, Liu D, Yao M, Zhang X, Zhang B. Quantitative and Qualitative Parameters of DCE-MRI Predict CDKN2A/B Homozygous Deletion in Gliomas. Acad Radiol 2024; 31:3355-3365. [PMID: 38443208 DOI: 10.1016/j.acra.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 03/07/2024]
Abstract
RATIONALE AND OBJECTIVES Homozygous deletion (HD) of CDKN2A/B holds important prognostic value in gliomas. This study aimed to explore the predictive potential of conventional MRI characteristics combined with dynamic contrast-enhanced MRI parameters in predicting CDKN2A/B HD status in gliomas. MATERIALS AND METHODS Preoperative MRI data of 105 patients (69 without CDKN2A/B HD, and 36 with CDKN2A/B homozygous deletion) with gliomas were retrospectively collected. Conventional MRI features and dynamic contrast-enhanced-MRI qualitative parameter time-intensity curve type, quantitative parameters Ktrans, Kep, Ve, Vp, and iAUC were obtained. Logistic regression models for prediction of CDKN2A/B HD status were constructed in all types of gliomas and both subtypes of IDH-mutant and IDH-wild gliomas. RESULTS Multivariate analysis for all patients demonstrated that age (OR=1.103, p = 0.002) and Ktrans (OR=1.051, p < 0.001) independently predicted CDKN2A/B HD. In IDH-mutant subgroup, multivariate analysis results indicated that Ktrans (OR=1.098, p = 0.031) emerged as autonomous predictors of CDKN2A/B HD. In IDH-wild subgroup, age (OR=1.111, p = 0.002) and Ktrans (OR=1.032, p = 0.001) were independent predictors of CDKN2A/B HD according to the multivariate analysis. The areas under the receiver operating characteristic curve of the corresponding models were 0.90, 0.95 and 0.84, respectively. CONCLUSION Ktrans can serve as valuable predictive parameters for identifying CDKN2A/B HD status in all types of gliomas and both subtypes of IDH-mutant and IDH-wild gliomas. These findings provide a foundation for precise preoperative non-invasive diagnosis and personalized treatment approaches for glioma patients.
Collapse
Affiliation(s)
- Huiquan Yang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhengyang Zhu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Cong Long
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Fengnan Niu
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jianan Zhou
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Sixuan Chen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Meiping Ye
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Siqi Peng
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Xue Zhang
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ying Chen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Liangpeng Wei
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Haoyao Wang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Dongming Liu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Mei Yao
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xin Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China; Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China; Institute of brain Science, Nanjing University, Nanjing, China
| |
Collapse
|
9
|
Han C, Liu S, Ji Y, Hu Y, Zhang J. CDCA3 is a potential biomarker for glioma malignancy and targeted therapy. Medicine (Baltimore) 2024; 103:e38066. [PMID: 38728485 PMCID: PMC11081570 DOI: 10.1097/md.0000000000038066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
CDCA3, a cell cycle regulator gene that plays a catalytic role in many tumors, was initially identified as a regulator of cell cycle progression, specifically facilitating the transition from the G2 phase to mitosis. However, its role in glioma remains unknown. In this study, bioinformatics analyses (TCGA, CGGA, Rembrandt) shed light on the upregulation and prognostic value of CDCA3 in gliomas. It can also be included in a column chart as a parameter predicting 3- and 5-year survival risk (C index = 0.86). According to Gene Set Enrichment Analysis and gene ontology analysis, the biological processes of CDCA3 are mainly concentrated in the biological activities related to cell cycle such as DNA replication and nuclear division. CDCA3 is closely associated with many classic glioma biomarkers (CDK4, CDK6), and inhibitors of CDK4 and CDK6 have been shown to be effective in tumor therapy. We have demonstrated that high expression of CDCA3 indicates a higher malignancy and poorer prognosis in gliomas.
Collapse
Affiliation(s)
- Chengxi Han
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Hebei, China
| | - Shuo Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Hebei, China
| | - Yunfeng Ji
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Hebei, China
| | - Yuhua Hu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Hebei, China
| | - Jingwen Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Hebei, China
| |
Collapse
|
10
|
Hudson AL, Cho A, Colvin EK, Hayes SA, Wheeler HR, Howell VM. CA9, CYFIP2 and LGALS3BP-A Novel Biomarker Panel to Aid Prognostication in Glioma. Cancers (Basel) 2024; 16:1069. [PMID: 38473425 DOI: 10.3390/cancers16051069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Brain cancer is a devastating and life-changing disease. Biomarkers are becoming increasingly important in addressing clinical issues, including in monitoring tumour progression and assessing survival and treatment response. The goal of this study was to identify prognostic biomarkers associated with glioma progression. Discovery proteomic analysis was performed on a small cohort of astrocytomas that were diagnosed as low-grade and recurred at a higher grade. Six proteins were chosen to be validated further in a larger cohort. Three proteins, CA9, CYFIP2, and LGALS3BP, were found to be associated with glioma progression and, in univariate analysis, could be used as prognostic markers. However, according to the results of multivariate analysis, these did not remain significant. These three proteins were then combined into a three-protein panel. This panel had a specificity and sensitivity of 0.7459 for distinguishing between long and short survival. In silico data confirmed the prognostic significance of this panel.
Collapse
Affiliation(s)
- Amanda L Hudson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Royal North Shore Hospital, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- The Brain Cancer Group, North Shore Private Hospital, St. Leonards, NSW 2065, Australia
| | - Angela Cho
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Royal North Shore Hospital, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- The Brain Cancer Group, North Shore Private Hospital, St. Leonards, NSW 2065, Australia
| | - Emily K Colvin
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Royal North Shore Hospital, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Sarah A Hayes
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Royal North Shore Hospital, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Helen R Wheeler
- The Brain Cancer Group, North Shore Private Hospital, St. Leonards, NSW 2065, Australia
- Department of Medical Oncology, Royal North Shore Hospital, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia
| | - Viive M Howell
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Royal North Shore Hospital, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
11
|
Wach J, Basaran AE, Arlt F, Vychopen M, Seidel C, Barrantes-Freer A, Müller W, Gaunitz F, Güresir E. CDKN2A/B deletions are strongly associated with meningioma progression: a meta-analysis of individual patient data. Acta Neuropathol Commun 2023; 11:189. [PMID: 38017560 PMCID: PMC10685484 DOI: 10.1186/s40478-023-01690-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023] Open
Abstract
Homozygous CDKN2A/B deletion has been associated with an increased risk of recurrence in meningiomas. However, the evidence is confined to a limited number of studies, and the importance of heterozygous CDKN2A/B deletions remains insufficiently investigated. Hence, the present meta-analysis reconstructs individual patient data (IPD) and reconstructs the probabilities of progression-free survival (PFS) stratified by CDKN2A/B status. IPD of PFS rates were extracted from published Kaplan-Meier plots using the R package IPDfromKM in R studio (RStudio, Boston, MA, USA). Reconstructed Kaplan-Meier Plots of the pooled IPD data were created. One-stage and two-stage meta-analyses were performed. Hazard ratios (HR) were used as effective measures. Of 181 records screened, four articles with 2521 participants were included. The prevalence of homozygous CDKN2A/B deletions in the included studies was 0.049 (95% CI 0.040-0.057), with higher tumor grades associated with a significantly greater proportion of CDKN2A/B deletions. The reconstructed PFS curves for the pooled cohort showed that the median PFS time of patients with a CDKN2A/B wild-type status, heterozygous or homozygous CDKN2A/B deletion was 180.0 (95% CI 145.7-214.3), 26.1 (95% CI 23.3-29.0), and 11.00 (95% CI 8.6-13.3) months, respectively (p < 0.0001). Both hetero- or homozygous CDKN2A/B deletions were significantly associated with shortened time to meningioma progression. One-stage meta-analysis showed that hetero- (HR: 5.5, 95% CI 4.0-7.6, p < 0.00001) and homozygous CDKN2A/B deletions (HR: 8.4, 95% CI 6.4-11.0, p < 0.00001) are significantly associated with shortened time to meningioma progression. Multivariable Cox regression analysis of progression in a subgroup with available covariates (age, sex, WHO grade, and TERT status) and also two-stage meta-analysis confirmed and validated the results of the one-stage analysis that both heterozygous and homozygous CDKN2A/B deletions are of prognostic importance. Further large-scale studies of WHO grade 2 and 3 meningiomas are needed to validate the importance of heterozygous CDKN2A/B deletions with consideration of established factors.
Collapse
Affiliation(s)
- Johannes Wach
- Department of Neurosurgery, University Hospital Leipzig, 04103, Leipzig, Germany.
| | - Alim Emre Basaran
- Department of Neurosurgery, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Felix Arlt
- Department of Neurosurgery, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Martin Vychopen
- Department of Neurosurgery, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Clemens Seidel
- Department of Radiation Oncology, University Hospital Leipzig, 04103, Leipzig, Germany
| | | | - Wolf Müller
- Department of Neuropathology, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Frank Gaunitz
- Department of Neurosurgery, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Erdem Güresir
- Department of Neurosurgery, University Hospital Leipzig, 04103, Leipzig, Germany
| |
Collapse
|