1
|
Biller AM, Fatima N, Hamberger C, Hainke L, Plankl V, Nadeem A, Kramer A, Hecht M, Spitschan M. The Ecology of Human Sleep (EcoSleep) Cohort Study: Protocol for a longitudinal repeated measurement burst design study to assess the relationship between sleep determinants and outcomes under real-world conditions across time of year. J Sleep Res 2025; 34:e14225. [PMID: 39039613 PMCID: PMC11911042 DOI: 10.1111/jsr.14225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 07/24/2024]
Abstract
The interplay of daily life factors, including mood, physical activity, or light exposure, influences sleep architecture and quality. Laboratory-based studies often isolate these determinants to establish causality, thereby sacrificing ecological validity. Furthermore, little is known about time-of-year changes in sleep and circadian-related variables at high resolution, including the magnitude of individual change across time of year under real-world conditions. The Ecology of Human Sleep (EcoSleep) cohort study will investigate the combined impact of sleep determinants on individuals' daily sleep episodes to elucidate which waking events modify sleep patterns. A second goal is to describe high-resolution individual sleep and circadian-related changes across the year to understand intra- and inter-individual variability. This study is a prospective cohort study with a measurement-burst design. Healthy adults aged 18-35 years (N = 12) will be enrolled for 12 months. Participants will continuously wear actimeters and pendant-attached light loggers. A subgroup will also measure interstitial fluid glucose levels (six paticipants). Every 4 weeks, all participants will undergo three consecutive measurement days of four ecological momentary assessments each day ('bursts') to sample sleep determinants during wake. Participants will also continuously wear temperature loggers (iButtons) during the bursts. Body weight will be captured before and after the bursts in the laboratory. The bursts will be separated by two at-home electroencephalogram recordings each night. Circadian phase and amplitude will be estimated during the bursts from hair follicles, and habitual melatonin onset will be derived through saliva sampling. Environmental parameters (bedroom temperature, humidity, and air pressure) will be recorded continuously.
Collapse
Affiliation(s)
- Anna M. Biller
- Department Health and Sport Sciences, Chronobiology and HealthTechnical University of Munich, TUM School of Medicine and HealthMunichGermany
- Max Planck Institute for Biological CyberneticsResearch Group Translational Sensory and Circadian NeuroscienceTübingenGermany
| | - Nayab Fatima
- Department Health and Sport Sciences, Chronobiology and HealthTechnical University of Munich, TUM School of Medicine and HealthMunichGermany
| | - Chrysanth Hamberger
- Department Health and Sport Sciences, Chronobiology and HealthTechnical University of Munich, TUM School of Medicine and HealthMunichGermany
| | - Laura Hainke
- Department Health and Sport Sciences, Chronobiology and HealthTechnical University of Munich, TUM School of Medicine and HealthMunichGermany
- Department of Psychiatry and PsychotherapyTechnical University of Munich, TUM School of Medicine and HealthMunichGermany
- Department of PsychologyLudwig Maximilian UniversityMunichGermany
| | - Verena Plankl
- Department Health and Sport Sciences, Chronobiology and HealthTechnical University of Munich, TUM School of Medicine and HealthMunichGermany
| | - Amna Nadeem
- Department Health and Sport Sciences, Chronobiology and HealthTechnical University of Munich, TUM School of Medicine and HealthMunichGermany
| | - Achim Kramer
- Laboratory of ChronobiologyCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Martin Hecht
- Department of PsychologyHelmut Schmidt UniversityHamburgGermany
| | - Manuel Spitschan
- Department Health and Sport Sciences, Chronobiology and HealthTechnical University of Munich, TUM School of Medicine and HealthMunichGermany
- Max Planck Institute for Biological CyberneticsResearch Group Translational Sensory and Circadian NeuroscienceTübingenGermany
- TUM Institute for Advanced Study (TUM‐IAS)Technical University of MunichGarchingGermany
| |
Collapse
|
2
|
Bafaloukou M, Schalkamp AK, Fletcher-Lloyd N, Capstick A, Walsh C, Sandor C, Kouchaki S, Nilforooshan R, Barnaghi P. An interpretable machine learning tool for in-home monitoring of agitation episodes in people living with dementia: a proof-of-concept study. EClinicalMedicine 2025; 80:103032. [PMID: 39896868 PMCID: PMC11787694 DOI: 10.1016/j.eclinm.2024.103032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 02/04/2025] Open
Abstract
Background Agitation affects around 30% of people living with dementia (PLwD), increasing carer burden and straining care services. Agitation identification typically relies on subjective clinical scales and direct patient observation, which are resource-intensive and challenging to incorporate into routine care. Clinical applicability of data-driven methods for agitation monitoring is limited by constraints such as short observational periods, data granularity, and lack of interpretability and generalisation. Current interventions for agitation are primarily medication-based, which may lead to severe side effects and lack personalisation. Understanding how real-world factors interact with agitation within home settings offers a promising avenue towards identifying potential personalised non-pharmacological interventions. Methods We used longitudinal data (32,896 person-days from n = 63 PLwD) collected using in-home monitoring devices between December 2020 and March 2023. Employing machine learning techniques, we developed a monitoring tool to identify the presence of agitation during the week. We incorporated a traffic-light system to stratify agitation probability estimates supporting clinical decision-making, and employed the SHapley Additive exPlanations (SHAP) framework to enhance interpretability. We designed an interactive tool that enables the exploration of personalised non-pharmacological interventions, such as modifying ambient light and temperature. Findings Light Gradient-boosting Machine (LightGBM) achieved the highest performance in identifying agitation over an 8-day period with a sensitivity of 71.32% ± 7.38 and specificity of 75.28% ± 7.38. Implementing the traffic-light system for stratification increased specificity to 90.3% ± 7.55 and improved all metrics. Key features for identifying agitation included low nocturnal respiratory rate, heightened alertness during sleep, and increased indoor illuminance, as revealed by statistical and feature importance analysis. Using our interactive tool, we identified indoor lighting and temperature adjustments as the most promising and feasible intervention options within our cohort. Interpretation Our interpretable framework for agitation monitoring, developed using data from a dementia care study, showcases significant clinical value. The accompanying interactive interface allows for the in-silico simulation of non-pharmacological interventions, facilitating the design of personalised interventions that can improve in-home dementia care. Funding This study is funded by the UK Dementia Research Institute [award number UK DRI-7002] through UK DRI Ltd, principally funded by the Medical Research Council (MRC), and the UKRI Engineering and Physical Sciences Research Council (EPSRC) PROTECT Project (grant number: EP/W031892/1). Infrastructure support for this research was provided by the NIHR Imperial Biomedical Research Centre (BRC) and the UKRI Medical Research Council (MRC). P.B. is also funded by the Great Ormond Street Hospital and the Royal Academy of Engineering. C.S. is supported by the UK Dementia Research Institute [award number UK DRI-5209], a UKRI Future Leaders Fellowship [MR/MR/X032892/1] and the Edmond J. Safra Foundation. R.N. is funded by UK Dementia Research Institute [award number UK DRI-7002] and the UKRI Engineering and Physical Sciences Research Council (EPSRC) PROTECT Project (grant number: EP/W031892/1). M.B. and A.K.S. are funded by the UK Dementia Research Institute [award number UKDRI-7002 and UKDRI-5209]. N.F.L., A.C., C.W. and S.K. are funded by the UK Dementia Research Institute [award number UK DRI-7002].
Collapse
Affiliation(s)
- Marirena Bafaloukou
- Department of Brain Sciences, Imperial College London, UK
- UK Dementia Research Institute at Care Research and Technology Centre, UK
- UK Dementia Research Institute at Imperial College London, UK
| | - Ann-Kathrin Schalkamp
- Department of Brain Sciences, Imperial College London, UK
- UK Dementia Research Institute at Care Research and Technology Centre, UK
- UK Dementia Research Institute at Imperial College London, UK
| | - Nan Fletcher-Lloyd
- Department of Brain Sciences, Imperial College London, UK
- UK Dementia Research Institute at Care Research and Technology Centre, UK
| | - Alex Capstick
- Department of Brain Sciences, Imperial College London, UK
- UK Dementia Research Institute at Care Research and Technology Centre, UK
| | - Chloe Walsh
- Department of Brain Sciences, Imperial College London, UK
- UK Dementia Research Institute at Care Research and Technology Centre, UK
- Surrey and Borders Partnership NHS Foundation Trust, Leatherhead, UK
| | - Cynthia Sandor
- Department of Brain Sciences, Imperial College London, UK
- UK Dementia Research Institute at Imperial College London, UK
| | - Samaneh Kouchaki
- Department of Brain Sciences, Imperial College London, UK
- UK Dementia Research Institute at Care Research and Technology Centre, UK
- University of Surrey, UK
| | - CR&T Group
- Department of Brain Sciences, Imperial College London, UK
- UK Dementia Research Institute at Care Research and Technology Centre, UK
| | - Ramin Nilforooshan
- Department of Brain Sciences, Imperial College London, UK
- UK Dementia Research Institute at Care Research and Technology Centre, UK
- Surrey and Borders Partnership NHS Foundation Trust, Leatherhead, UK
- University of Surrey, UK
| | - Payam Barnaghi
- Department of Brain Sciences, Imperial College London, UK
- UK Dementia Research Institute at Care Research and Technology Centre, UK
- Great Ormond Street Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
3
|
Postnova S, Sanz-Leon P. Sleep and circadian rhythms modeling: From hypothalamic regulatory networks to cortical dynamics and behavior. HANDBOOK OF CLINICAL NEUROLOGY 2025; 206:37-58. [PMID: 39864931 DOI: 10.1016/b978-0-323-90918-1.00013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Sleep and circadian rhythms are regulated by dynamic physiologic processes that operate across multiple spatial and temporal scales. These include, but are not limited to, genetic oscillators, clearance of waste products from the brain, dynamic interplay among brain regions, and propagation of local dynamics across the cortex. The combination of these processes, modulated by environmental cues, such as light-dark cycles and work schedules, represents a complex multiscale system that regulates sleep-wake cycles and brain dynamics. Physiology-based mathematical models have successfully explained the mechanisms underpinning dynamics at specific scales and are a useful tool to investigate interactions across multiple scales. They can help answer questions such as how do electroencephalographic (EEG) features relate to subthalamic neuron activity? Or how are local cortical dynamics regulated by the homeostatic and circadian mechanisms? In this chapter, we review two types of models that are well-positioned to consider such interactions. Part I of the chapter focuses on the subthalamic sleep regulatory networks and a model of arousal dynamics capable of predicting sleep, circadian rhythms, and cognitive outputs. Part II presents a model of corticothalamic circuits, capable of predicting spatial and temporal EEG features. We then discuss existing approaches and unsolved challenges in developing unified multiscale models.
Collapse
Affiliation(s)
- Svetlana Postnova
- School of Physics, Faculty of Science, University of Sydney, Camperdown, NSW, Australia; Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie Park, NSW, Australia; Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia.
| | - Paula Sanz-Leon
- School of Physics, Faculty of Science, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
4
|
Spitschan M. Selecting, implementing and evaluating control and placebo conditions in light therapy and light-based interventions. Ann Med 2024; 56:2298875. [PMID: 38329797 PMCID: PMC10854444 DOI: 10.1080/07853890.2023.2298875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/20/2023] [Indexed: 02/09/2024] Open
Abstract
Introduction: Light profoundly influences human physiology, behaviour and cognition by affecting various functions through light-sensitive cells in the retina. Light therapy has proven effective in treating seasonal depression and other disorders. However, designing appropriate control conditions for light-based interventions remains a challenge.Materials and methods: This article presents a novel framework for selecting, implementing and evaluating control conditions in light studies, offering theoretical foundations and practical guidance. It reviews the fundamentals of photoreception and discusses control strategies such as dim light, darkness, different wavelengths, spectral composition and metameric conditions. Special cases like dynamic lighting, simulated dawn and dusk, complex interventions and studies involving blind or visually impaired patients are also considered.Results: The practical guide outlines steps for selection, implementation, evaluation and reporting, emphasizing the importance of α-opic calculations and physiological validation.Conclusion: In conclusion, constructing effective control conditions is crucial for demonstrating the efficacy of light interventions in various research scenarios.
Collapse
Affiliation(s)
- Manuel Spitschan
- Max Planck Institute for Biological Cybernetics, Translational Sensory & Circadian Neuroscience, Tübingen, Germany
- Technical University of Munich, TUM School of Medicine and Health, Chronobiology & Health, Munich, Germany
- Technical University of Munich, TUM Institute for Advanced Study (TUM-IAS), Garching, Germany
| |
Collapse
|
5
|
Stefani O, Schöllhorn I, Münch M. Towards an evidence-based integrative lighting score: a proposed multi-level approach. Ann Med 2024; 56:2381220. [PMID: 39049780 PMCID: PMC11275531 DOI: 10.1080/07853890.2024.2381220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 07/27/2024] Open
Abstract
Background: Human circadian clocks are synchronized daily with the external light-dark cycle and entrained to the 24-hour day. There is increasing evidence that a lack of synchronization and circadian entrainment can lead to adverse health effects. Beyond vision, light plays a critical role in modulating many so-called non-visual functions, including sleep-wake cycles, alertness, mood and endocrine functions. To assess (and potentially optimize) the impact of light on non-visual functions, it is necessary to know the exact 'dose' (i.e. spectral irradiance and exposure duration at eye level) of 24-hour light exposures, but also to include metadata about the lighting environment, individual needs and resources. Problem statement: To address this problem, a new assessment tool is needed that uses existing metrics to provide metadata and information about light quality and quantity from all sources. In this commentary, we discuss the need to develop an evidence-based integrative lighting score that is tailored to specific audiences and lighting environments. We will summarize the most compelling evidence from the literature and outline a future plan for developing such a lighting score using internationally accepted metrics, stakeholder and user feedback. Conclusion: We propose a weighting system that combines light qualities with physiological and behavioral effects, and the use of mathematical modelling for an output score. Such a scoring system will facilitate a holistic assessment of a lighting environment, integrating all available light sources.
Collapse
Affiliation(s)
- Oliver Stefani
- Lucerne School of Engineering and Architecture, Lucerne University of Applied Sciences and Arts, Horw, Switzerland
| | - Isabel Schöllhorn
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Mirjam Münch
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Research Cluster Molecular Cognitive Neuroscience, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
Martinsons C, Behar-Cohen F, Bergen T, Blattner P, Herf M, Gronfier C, Houser K, Jost S, Tengelin MN, Obein G, Schlangen L, Simonot L, Spitschan M, Torriglia A, Zeitzer J. Reconsidering the spectral distribution of light: Do people perceive watts or photons? LIGHTING RESEARCH & TECHNOLOGY (LONDON, ENGLAND : 2001) 2024; 56:886-899. [PMID: 39404668 PMCID: PMC7616565 DOI: 10.1177/14771535241246060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The spectral distribution is a fundamental property of non-monochromatic optical radiation. It is commonly used in research and practical applications when studying how light interacts with matter and living organisms, including humans. In the field of lighting, mis-conceptions about the spectral distribution of light are responsible for unfounded claims, which pervade the scientific and technical communities. Starting from the definition of the spectral distribution, this paper describes the ambiguities and errors associated with a purely graphical analysis of the spectral distribution. It also emphasizes the importance of considering the particle nature of light in research involving both visual and non-visual effects, which implies using the spectral distribution expressed in the photon system of units, a system that has been seldom used in lighting research for historical reasons. The authors encourage lighting engineers and researchers to determine which system is best suited to their work and then proceed with the correct use of spectral distributions and of spectral weighting functions for applications involving optical radiation.
Collapse
Affiliation(s)
- C Martinsons
- Centre Scientifique et Technique du Bâtiment, Saint Martin d'Hères, France
| | - F Behar-Cohen
- Centre de Recherche des Cordeliers, INSERM UMRS1138, Université Paris Cité, Sorbonne Université, Paris, France
- Assistance Publique - Hôpitaux de Paris, Hôpital Cochin, Ophtalmopôle, Paris, France
- Hôpital Foch, Suresnes, France
| | - T Bergen
- Australian Photometry and Radiometry Laboratory, Melbourne, VIC, Australia
| | - P Blattner
- Federal Institute of Metrology METAS, Bern-Wabern, Switzerland
| | - M Herf
- F.lux Software LLC, Los Angeles, CA, USA
| | - C Gronfier
- Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Université de Lyon, Lyon, France
| | - K Houser
- Oregon State University, Corvallis, OR, USA
| | - S Jost
- ENTPE, Ecole Centrale de Lyon, LTDS, CNRS UMR5513, Vaulx-en-Velin, France
| | | | - G Obein
- Laboratoire National de Métrologie et d'Essais, Paris, France
| | - L Schlangen
- Eindhoven University of Technology, Eindhoven, The Netherlands
| | - L Simonot
- Institut Pprime, CNRS UPR3346, Université de Poitiers, Chasseneuil Futuroscope, France
| | - M Spitschan
- Technical University of Munich, Munich, Germany
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - A Torriglia
- Centre de Recherche des Cordeliers, INSERM UMRS1138, Université Paris Cité, Sorbonne Université, Paris, France
| | - J Zeitzer
- Center for Sleep and Circadian Sciences, Stanford University, Stanford, CA, USA
| |
Collapse
|
7
|
Biller AM, Balakrishnan P, Spitschan M. Behavioural determinants of physiologically-relevant light exposure. COMMUNICATIONS PSYCHOLOGY 2024; 2:114. [PMID: 39614105 DOI: 10.1038/s44271-024-00159-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/08/2024] [Indexed: 12/01/2024]
Abstract
Light exposure triggers a range of physiological and behavioural responses that can improve and challenge health and well-being. Insights from laboratory studies have recently culminated in standards and guidelines for measuring and assessing healthy light exposure, and recommendations for healthy light levels. Implicit to laboratory paradigms is a simplistic input-output relationship between light and its effects on physiology. This simplified approach ignores that humans actively shape their light exposure through behaviour. This article presents a novel framework that conceptualises light exposure as an individual behaviour to meet specific, person-based needs. Key to healthy light exposure is shaping behaviour, beyond shaping technology.
Collapse
Affiliation(s)
- Anna M Biller
- Department Health and Sport Sciences, Chronobiology & Health, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany.
- Translational Sensory & Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
| | - Priji Balakrishnan
- Laboratory of Architecture and Intelligent Living (AIL), Karlsruhe Institute of Technology, Karlsruhe, Germany
- Chair of Lighting Technology, Technische Universität Berlin, Berlin, Germany
| | - Manuel Spitschan
- Department Health and Sport Sciences, Chronobiology & Health, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Translational Sensory & Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- TUM Institute for Advanced Study (TUM-IAS), Technical University of Munich, Garching, Germany
| |
Collapse
|
8
|
Mazurek KA, Li L, Klein RJ, Rong S, Mullan AF, Jones DT, St Louis EK, Worrell GA, Chen CY. Investigating the effects of indoor lighting on measures of brain health in older adults: protocol for a cross-over randomized controlled trial. BMC Geriatr 2024; 24:816. [PMID: 39394603 PMCID: PMC11468298 DOI: 10.1186/s12877-023-04594-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/13/2023] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND The worldwide number of adults aged 60 years and older is expected to double from 1 billion in 2019 to 2.1 billion by 2050. As the population lives longer, the rising incidence of chronic diseases, cognitive disorders, and behavioral health issues threaten older adults' health span. Exercising, getting sufficient sleep, and staying mentally and socially active can improve quality of life, increase independence, and potentially lower the risk for Alzheimer's disease or other dementias. Nonpharmacological approaches might help promote such behaviors. Indoor lighting may impact sleep quality, physical activity, and cognitive function. Dynamically changing indoor lighting brightness and color throughout the day has positive effects on sleep, cognitive function, and physical activity of its occupants. The aim of this study is to investigate how different indoor lighting conditions affect such health measures to promote healthier aging. METHODS This protocol is a randomized, cross-over, single-site trial followed by an exploratory third intervention. Up to 70 older adults in independent living residences at a senior living facility will be recruited. During this 16-week study, participants will experience three lighting conditions. Two cohorts will first experience a static and a dynamic lighting condition in a cluster-randomized cross-over design. The static condition lighting will have fixed brightness and color to match lighting typically provided in the facility. For the dynamic condition, brightness and color will change throughout the day with increased brightness in the morning. After the cross-over, both cohorts will experience another dynamic lighting condition with increased morning brightness to determine if there is a saturation effect between light exposure and health-related measures. Light intake, sleep quality, and physical activity will be measured using wearable devices. Sleep, cognitive function, mood, and social engagement will be assessed using surveys and cognitive assessments. DISCUSSION We hypothesize participants will have better sleep quality and greater physical activity during the dynamic lighting compared to the static lighting condition. Additionally, we hypothesize there is a maximal threshold at which health-outcomes improve based on light exposure. Study findings may identify optimal indoor lighting solutions to promote healthy aging for older adults. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT05978934.
Collapse
Affiliation(s)
- Kevin A Mazurek
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Department of Neuroscience, University of Rochester, Rochester, NY, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Linhao Li
- Well Living Lab, Rochester, MN, USA.
- Delos Living LLC, New York, NY, USA.
| | - Robert J Klein
- Well Living Lab, Rochester, MN, USA
- Delos Living LLC, New York, NY, USA
| | | | - Aidan F Mullan
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Erik K St Louis
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Center for Sleep Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Gregory A Worrell
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Christina Y Chen
- Department of Community Internal Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
9
|
Murray JM, Stone JE, Abbott SM, Bjorvatn B, Burgess HJ, Cajochen C, Dekker JJ, Duffy JF, Epstein LJ, Garbazza C, Harsh J, Klerman EB, Lane JM, Lockley SW, Pavlova MK, Quan SF, Reid KJ, Scheer FAJL, Sletten TL, Wright KP, Zee PC, Phillips AJK, Czeisler CA, Rajaratnam SMW. A Protocol to Determine Circadian Phase by At-Home Salivary Dim Light Melatonin Onset Assessment. J Pineal Res 2024; 76:e12994. [PMID: 39158010 DOI: 10.1111/jpi.12994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 08/20/2024]
Abstract
Internal circadian phase assessment is increasingly acknowledged as a critical clinical tool for the diagnosis, monitoring, and treatment of circadian rhythm sleep-wake disorders and for investigating circadian timing in other medical disorders. The widespread use of in-laboratory circadian phase assessments in routine practice has been limited, most likely because circadian phase assessment is not required by formal diagnostic nosologies, and is not generally covered by insurance. At-home assessment of salivary dim light melatonin onset (DLMO, a validated circadian phase marker) is an increasingly accepted approach to assess circadian phase. This approach may help meet the increased demand for assessments and has the advantages of lower cost and greater patient convenience. We reviewed the literature describing at-home salivary DLMO assessment methods and identified factors deemed to be important to successful implementation. Here, we provide specific protocol recommendations for conducting at-home salivary DLMO assessments to facilitate a standardized approach for clinical and research purposes. Key factors include control of lighting, sampling rate, and timing, and measures of patient compliance. We include findings from implementation of an optimization algorithm to determine the most efficient number and timing of samples in patients with Delayed Sleep-Wake Phase Disorder. We also provide recommendations for assay methods and interpretation. Providing definitive criteria for each factor, along with detailed instructions for protocol implementation, will enable more widespread adoption of at-home circadian phase assessments as a standardized clinical diagnostic, monitoring, and treatment tool.
Collapse
Affiliation(s)
- Jade M Murray
- School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia
| | - Julia E Stone
- School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia
| | - Sabra M Abbott
- Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bjorn Bjorvatn
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Norwegian Competence Center for Sleep Disorders, Haukeland University Hospital, Bergen, Norway
| | - Helen J Burgess
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel (UPK), Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Jip J Dekker
- Department of Data Science and AI, Monash University, Melbourne, Victoria, Australia
| | - Jeanne F Duffy
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Lawrence J Epstein
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Corrado Garbazza
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel (UPK), Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - John Harsh
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Elizabeth B Klerman
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jacqueline M Lane
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Steven W Lockley
- School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Milena K Pavlova
- Department of Neurology, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Stuart F Quan
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Kathryn J Reid
- Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Frank A J L Scheer
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Tracey L Sletten
- School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia
| | - Kenneth P Wright
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Phyllis C Zee
- Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andrew J K Phillips
- Flinders Health and Medical Research Institute (Sleep Health), Flinders University, Bedford Park, South Australia, Australia
| | - Charles A Czeisler
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Shantha M W Rajaratnam
- School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Miller S, Cajochen C, Green A, Hanifin J, Huss A, Karipidis K, Loughran S, Oftedal G, O'Hagan J, Sliney DH, Croft R, van Rongen E, Cridland N, d'Inzeo G, Hirata A, Marino C, Röösli M, Watanabe S. ICNIRP Statement on Short Wavelength Light Exposure from Indoor Artificial Sources and Human Health. HEALTH PHYSICS 2024; 126:241-248. [PMID: 38381972 DOI: 10.1097/hp.0000000000001790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
ABSTRACT Concerns have been raised about the possibility of effects from exposure to short wavelength light (SWL), defined here as 380-550 nm, on human health. The spectral sensitivity of the human circadian timing system peaks at around 480 nm, much shorter than the peak sensitivity of daytime vision (i.e., 555 nm). Some experimental studies have demonstrated effects on the circadian timing system and on sleep from SWL exposure, especially when SWL exposure occurs in the evening or at night. The International Commission on Non-Ionizing Radiation Protection (ICNIRP) has identified a lack of consensus among public health officials regarding whether SWL from artificial sources disrupts circadian rhythm, and if so, whether SWL-disrupted circadian rhythm is associated with adverse health outcomes. Systematic reviews of studies designed to examine the effects of SWL on sleep and human health have shown conflicting results. There are many variables that can affect the outcome of these experimental studies. One of the main problems in earlier studies was the use of photometric quantities as a surrogate for SWL exposure. Additionally, the measurement of ambient light may not be an accurate measure of the amount of light impinging on the intrinsically photosensitive retinal ganglion cells, which are now known to play a major role in the human circadian timing system. Furthermore, epidemiological studies of long-term effects of chronic SWL exposure per se on human health are lacking. ICNIRP recommends that an analysis of data gaps be performed to delineate the types of studies needed, the parameters that should be addressed, and the methodology that should be applied in future studies so that a decision about the need for exposure guidelines can be made. In the meantime, ICNIRP supports some recommendations for how the quality of future studies might be improved.
Collapse
Affiliation(s)
| | - Christian Cajochen
- ICNIRP SEG and Centre for Chronobiology at the University of Basel, Switzerland
| | - Adele Green
- ICNIRP SEG and QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Anke Huss
- ICNIRP and Institute for Risk Assessment Sciences (IRAS) at Utrecht University, The Netherlands
| | - Ken Karipidis
- ICNIRP and Australian Radiation Protection and Nuclear Safety Authority (ARPANSA)
| | - Sarah Loughran
- ICNIRP SEG and Australian Radiation Protection and Nuclear Safety Authority (ARPANSA)
| | - Gunnhild Oftedal
- ICNIRP and Norwegian University of Science and Technology (NTNU)
| | - John O'Hagan
- ICNIRP SEG and Public Health England, United Kingdom
| | | | - Rodney Croft
- ICNIRP and Australian Centre for Electromagnetic Bioeffects Research, Illawarra Health & Medical Research Institute, University of Wollongong, Australia
| | | | | | | | | | - Carmela Marino
- ICNIRP and formerly Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Italy
| | - Martin Röösli
- ICNIRP and Swiss Tropical and Public Health Institute, Switzerland
| | - Soichi Watanabe
- ICNIRP and National Institute of Information and Communications Technology (NICT), Japan
| |
Collapse
|
11
|
Blume C, Cajochen C, Schöllhorn I, Slawik HC, Spitschan M. Effects of calibrated blue-yellow changes in light on the human circadian clock. Nat Hum Behav 2024; 8:590-605. [PMID: 38135734 PMCID: PMC10963261 DOI: 10.1038/s41562-023-01791-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 11/16/2023] [Indexed: 12/24/2023]
Abstract
Evening exposure to short-wavelength light can affect the circadian clock, sleep and alertness. Intrinsically photosensitive retinal ganglion cells expressing melanopsin are thought to be the primary drivers of these effects. Whether colour-sensitive cones also contribute is unclear. Here, using calibrated silent-substitution changes in light colour along the blue-yellow axis, we investigated whether mechanisms of colour vision affect the human circadian system and sleep. In a 32.5-h repeated within-subjects protocol, 16 healthy participants were exposed to three different light scenarios for 1 h starting 30 min after habitual bedtime: baseline control condition (93.5 photopic lux), intermittently flickering (1 Hz, 30 s on-off) yellow-bright light (123.5 photopic lux) and intermittently flickering blue-dim light (67.0 photopic lux), all calibrated to have equal melanopsin excitation. We did not find conclusive evidence for differences between the three lighting conditions regarding circadian melatonin phase delays, melatonin suppression, subjective sleepiness, psychomotor vigilance or sleep.The Stage 1 protocol for this Registered Report was accepted in principle on 9 September 2020. The protocol, as accepted by the journal, can be found at https://doi.org/10.6084/m9.figshare.13050215.v1 .
Collapse
Affiliation(s)
- Christine Blume
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland.
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland.
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Isabel Schöllhorn
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Helen C Slawik
- Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Manuel Spitschan
- Translational Sensory and Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
- TUM Department Health and Sport Sciences, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany.
- TUM Institute for Advanced Study (TUM-IAS), Technical University of Munich, Garching, Germany.
| |
Collapse
|
12
|
Najjar RP, Prayag AS, Gronfier C. Melatonin suppression by light involves different retinal photoreceptors in young and older adults. J Pineal Res 2024; 76:e12930. [PMID: 38241677 DOI: 10.1111/jpi.12930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/31/2023] [Accepted: 11/29/2023] [Indexed: 01/21/2024]
Abstract
Age-related sleep and circadian rhythm disturbances may be due to altered nonvisual photoreception. Here, we investigated the temporal dynamics of light-induced melatonin suppression in young and older individuals. In a within-subject design study, young and older participants were exposed for 60 min (0030-0130 at night) to nine narrow-band lights (range: 420-620 nm). Plasma melatonin suppression was calculated at 15, 30, 45, and 60 min time intervals. Individual spectral sensitivity of melatonin suppression and photoreceptor contribution were predicted for each interval and age group. In young participants, melanopsin solely drove melatonin suppression at all time intervals, with a peak sensitivity at 485.3 nm established only after 15 min of light exposure. Conversely, in older participants, spectral light-driven melatonin suppression was best explained by a more complex model combining melanopsin, S-cone, and M-cone functions, with a stable peak (~500 nm) at 30, 45, and 60 min of light exposure. Aging is associated with a distinct photoreceptor contribution to melatonin suppression by light. While in young adults melanopsin-only photoreception is a reliable predictor of melatonin suppression, in older individuals this process is jointly driven by melanopsin, S-cone, and M-cone functions. These findings offer new prospects for customizing light therapy for older individuals.
Collapse
Affiliation(s)
- Raymond P Najjar
- Department of Ophthalmology, Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
- Visual Neurosciences Group, ASPIRE Research Program, Singapore Eye Research Institute, Singapore, Singapore
- Visual Sciences and Ophthalmology Program, Duke-NUS Medical School, Singapore, Singapore
- Center for Innovation & Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Abhishek S Prayag
- Lyon Neuroscience Research Center, Waking Team, Inserm UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Claude Gronfier
- Lyon Neuroscience Research Center, Waking Team, Inserm UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
13
|
Oliveira MAB, de Abreu ACOV, Constantino DB, Tonon AC, Díez-Noguera A, Amaral FG, Hidalgo MP. Taking biological rhythms into account: From study design to results reporting. Physiol Behav 2024; 273:114387. [PMID: 37884108 DOI: 10.1016/j.physbeh.2023.114387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/22/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Numerous physiological and behavioral processes in living organisms exhibit strong rhythmicity and are regulated within a 24-hour cycle. These include locomotor activity and sleep patterns, feeding-fasting cycles, hormone synthesis, body temperature, and even mood and cognitive abilities, all of which are segregated into different phases throughout the day. These processes are governed by the internal timing system, a hierarchical multi-oscillator structure conserved across all organisms, from bacteria to humans. Circadian rhythms have been seen across multiple taxonomic kingdoms. In mammals, a hierarchical internal timing system is comprised of so-called central and periphereal clocks. Although these rhythms are intrinsic, they are under environmental influences, such as seasonal temperature changes, photoperiod variations, and day-night cycles. Recognizing the existence of biological rhythms and their primary external influences is crucial when designing and reporting experiments. Neglecting these physiological variations may result in inconsistent findings and misinterpretations. Thus, here we propose to incorporate biological rhythms into all stages of human and animal research, including experiment design, analysis, and reporting of findings. We also provide a flowchart to support decision-making during the design process, considering biological rhythmicity, along with a checklist outlining key factors that should be considered and documented throughout the study. This comprehensive approach not only benefits the field of chronobiology but also holds value for various other research disciplines. The insights gained from this study have the potential to enhance the validity, reproducibility, and overall quality of scientific investigations, providing valuable guidance for planning, developing, and communicating scientific studies.
Collapse
Affiliation(s)
- Melissa Alves Braga Oliveira
- Laboratório de Cronobiologia e Sono do Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Psychiatry and Behavioral Sciences, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Carolina Odebrecht Vergne de Abreu
- Laboratório de Cronobiologia e Sono do Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - André C Tonon
- Laboratório de Cronobiologia e Sono do Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Psychiatry and Behavioral Sciences, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Antoni Díez-Noguera
- Department de Bioquimica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | | | - Maria Paz Hidalgo
- Laboratório de Cronobiologia e Sono do Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Psychiatry and Behavioral Sciences, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
14
|
Siraji MA, Rahman M. Primer on Reproducible Research in R: Enhancing Transparency and Scientific Rigor. Clocks Sleep 2023; 6:1-10. [PMID: 38534796 PMCID: PMC10969410 DOI: 10.3390/clockssleep6010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 03/28/2024] Open
Abstract
Achieving research reproducibility is a precarious aspect of scientific practice. However, many studies across disciplines fail to be fully reproduced due to inadequate dissemination methods. Traditional publication practices often fail to provide a comprehensive description of the research context and procedures, hindering reproducibility. To address these challenges, this article presents a tutorial on reproducible research using the R programming language. The tutorial aims to equip researchers, including those with limited coding knowledge, with the necessary skills to enhance reproducibility in their work. It covers three essential components: version control using Git, dynamic document creation using rmarkdown, and managing R package dependencies with renv. The tutorial also provides insights into sharing reproducible research and offers specific considerations for the field of sleep and chronobiology research. By following the tutorial, researchers can adopt practices that enhance the transparency, rigor, and replicability of their work, contributing to a culture of reproducible research and advancing scientific knowledge.
Collapse
Affiliation(s)
- Mushfiqul Anwar Siraji
- Department of Psychology, Jeffery Cheah School of Medicine and Health Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
- Department of History and Psychology, School of Humanities and Social Sciences, North South University, Dhaka 1229, Bangladesh
| | - Munia Rahman
- Department of Psychology, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
15
|
Spitschan M, Kervezee L, Lok R, McGlashan E, Najjar RP. ENLIGHT: A consensus checklist for reporting laboratory-based studies on the non-visual effects of light in humans. EBioMedicine 2023; 98:104889. [PMID: 38043137 PMCID: PMC10704221 DOI: 10.1016/j.ebiom.2023.104889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 10/19/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND There is no consensus on reporting light characteristics in studies investigating non-visual responses to light. This project aimed to develop a reporting checklist for laboratory-based investigations on the impact of light on non-visual physiology. METHODS A four-step modified Delphi process (three questionnaire-based feedback rounds and one face-to-face group discussion) involving international experts was conducted to reach consensus on the items to be included in the checklist. Following the consensus process, the resulting checklist was tested in a pilot phase with independent experts. FINDINGS An initial list of 61 items related to reporting light-based interventions was condensed to a final checklist containing 25 items, based upon consensus among experts (final n = 60). Nine items were deemed necessary to report regardless of research question or context. A description of each item is provided in the accompanying Explanation and Elaboration (E&E) document. The independent pilot testing phase led to minor textual clarifications in the checklist and E&E document. INTERPRETATION The ENLIGHT Checklist is the first consensus-based checklist for documenting and reporting ocular light-based interventions for human studies. The implementation of the checklist will enhance the impact of light-based research by ensuring comprehensive documentation, enhancing reproducibility, and enabling data aggregation across studies. FUNDING Network of European Institutes for Advanced Study (NETIAS) Constructive Advanced Thinking (CAT) programme; Sir Henry Wellcome Postdoctoral Fellowship (Wellcome Trust, 204686/Z/16/Z); Netherlands Organisation for Health Research and Development VENI fellowship (2020-09150161910128); U.S. Department of Defense Grant (W81XWH-16-1-0223); National University of Singapore (NUHSRO/2022/038/Startup/08); and National Research Foundation Singapore (NRF2022-THE004-0002).
Collapse
Affiliation(s)
- Manuel Spitschan
- TUM School of Medicine & Health, Department of Health and Sport Sciences, Technical University of Munich, Munich, Germany; TUM Institute for Advanced Study (TUM-IAS), Technical University of Munich, Garching, Germany; Max Planck Institute for Biological Cybernetics, Max Planck Research Group Translational Sensory & Circadian Neuroscience, Tübingen, Germany; TUMCREATE, Singapore, Singapore.
| | - Laura Kervezee
- Laboratory for Neurophysiology, Department of Cellular and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands.
| | - Renske Lok
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, USA.
| | - Elise McGlashan
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Victoria, Australia; School of Psychological Science and Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia.
| | - Raymond P Najjar
- Department of Ophthalmology and Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore; Center for Innovation & Precision Eye Health, National University of Singapore, Singapore, Singapore; Singapore Eye Research Institute, Singapore, Singapore; Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
16
|
Beute F, Aries MB. The importance of residential dusk and dawn light exposure for sleep quality, health, and well-being. Sleep Med Rev 2023; 72:101865. [PMID: 37864914 DOI: 10.1016/j.smrv.2023.101865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023]
Abstract
Light exposure during twilight plays a critical role in the entrainment of the human circadian system. People are most often at home during dusk and dawn, and light exposure at home - either natural or from electric light - may therefore contribute substantially to sleep and well-being. However, very little research has focused on the effects of home lighting on sleep and well-being, and even less research has investigated the effects of light exposure during twilight. Therefore, a literature study was performed to collect studies on light exposure at home during dusk and dawn. Studies looking at light exposure during dusk and dawn have focused on either electric light intervention (i.e., dusk and dawn simulation) at home or in the laboratory or daylight exposure in the bedroom (i.e., the presence and type of curtains in the bedroom). Most research has focused on dawn simulation during the darker months of the year, often using sunrise alarms. In general, study results pointed to the importance of twilight light exposure at home for sleep and well-being. These results may depend on the characteristics of the user, such as age or chronotype.
Collapse
Affiliation(s)
| | - Myriam Bc Aries
- Jönköping University, School of Engineering, Jönköping, Sweden.
| |
Collapse
|
17
|
Schöllhorn I, Stefani O, Blume C, Cajochen C. Seasonal Variation in the Responsiveness of the Melanopsin System to Evening Light: Why We Should Report Season When Collecting Data in Human Sleep and Circadian Studies. Clocks Sleep 2023; 5:651-666. [PMID: 37987395 PMCID: PMC10660855 DOI: 10.3390/clockssleep5040044] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/07/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023] Open
Abstract
It is well known that variations in light exposure during the day affect light sensitivity in the evening. More daylight reduces sensitivity, and less daylight increases it. On average days, we spend less time outdoors in winter and receive far less light than in summer. Therefore, it could be relevant when collecting research data on the non-image forming (NIF) effects of light on circadian rhythms and sleep. In fact, studies conducted only in winter may result in more pronounced NIF effects than in summer. Here, we systematically collected information on the extent to which studies on the NIF effects of evening light include information on season and/or light history. We found that more studies were conducted in winter than in summer and that reporting when a study was conducted or measuring individual light history is not currently a standard in sleep and circadian research. In addition, we sought to evaluate seasonal variations in a previously published dataset of 72 participants investigating circadian and sleep effects of evening light exposure in a laboratory protocol where daytime light history was not controlled. In this study, we selectively modulated melanopic irradiance at four different light levels (<90 lx). Here, we aimed to retrospectively evaluate seasonal variations in the responsiveness of the melanopsin system by combining all data sets in an exploratory manner. Our analyses suggest that light sensitivity is indeed reduced in summer compared to winter. Thus, to increase the reproducibility of NIF effects on sleep and circadian measures, we recommend an assessment of the light history and encourage standardization of reporting guidelines on the seasonal distribution of measurements.
Collapse
Affiliation(s)
- Isabel Schöllhorn
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4002 Basel, Switzerland; (I.S.); (O.S.)
- Research Cluster Molecular and Cognitive Neurosciences (MCN), University of Basel, 4001 Basel, Switzerland
| | - Oliver Stefani
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4002 Basel, Switzerland; (I.S.); (O.S.)
- Research Cluster Molecular and Cognitive Neurosciences (MCN), University of Basel, 4001 Basel, Switzerland
- Lucerne University of Applied Sciences and Arts, Engineering and Architecture, Technikumstrasse 21, 6048 Horw, Switzerland
| | - Christine Blume
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4002 Basel, Switzerland; (I.S.); (O.S.)
- Research Cluster Molecular and Cognitive Neurosciences (MCN), University of Basel, 4001 Basel, Switzerland
- Department of Biomedicine, University of Basel, 4001 Basel, Switzerland
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4002 Basel, Switzerland; (I.S.); (O.S.)
- Research Cluster Molecular and Cognitive Neurosciences (MCN), University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
18
|
Silva EHA, Santana NNM, Seixas NRM, Bezerra LLF, Silva MMO, Santos SF, Cavalcante JS, Leocadio-Miguel MA, Engelberth RC. Blue light exposure-dependent improvement in robustness of circadian rest-activity rhythm in aged rats. PLoS One 2023; 18:e0292342. [PMID: 37792859 PMCID: PMC10550138 DOI: 10.1371/journal.pone.0292342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023] Open
Abstract
The aging effects on circadian rhythms have diverse implications including changes in the pattern of rhythmic expressions, such as a wide fragmentation of the rhythm of rest-activity and decrease in amplitude of activity regulated by the suprachiasmatic nucleus (SCN). The study of blue light on biological aspects has received great current interest due, among some aspects, to its positive effects on psychiatric disorders in humans. This study aims to evaluate the effect of blue light therapy on the SCN functional aspects, through the evaluation of the rest-activity rhythm, in aging rats. For this, 33 sixteen-months-old male Wistar rats underwent continuous records of locomotor activity and were exposed to periods of 6 hours of blue light during the first half of the light phase (Zeitgeber times 0-6) for 14 days. After this, the rats were maintained at 12h:12h light:dark cycle to check the long-term effect of blue light for 14 days. Blue light repeated exposure showed positive effects on the rhythmic variables of locomotor activity in aged rats, particularly the increase in amplitude, elevation of rhythmic robustness, phase advance in acrophase, and greater consolidation of the resting phase. This effect depends on the presence of daily blue light exposure. In conclusion, our results indicate that blue light is a reliable therapy to reduce circadian dysfunctions in aged rats, but other studies assessing how blue light modulates the neural components to modulate this response are still needed.
Collapse
Affiliation(s)
- Eryck Holmes A. Silva
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Narita Renata M. Seixas
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Lyzandro Lucas F. Bezerra
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Maria Milena O. Silva
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Sâmarah F. Santos
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jeferson S. Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Rovena Clara Engelberth
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
19
|
Spitschan M, Joyce DS. Human-Centric Lighting Research and Policy in the Melanopsin Age. POLICY INSIGHTS FROM THE BEHAVIORAL AND BRAIN SCIENCES 2023; 10:237-246. [PMID: 38919981 PMCID: PMC7615961 DOI: 10.1177/23727322231196896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Beyond visual function, specialized light-sensitive retinal circuits involving the photopigment melanopsin drive critical aspects of human physiology and behavior, including sleep-wake rhythms, hormone production, mood, and cognition. Fundamental discoveries of visual neurobiology dating back to the 1990s have given rise to strong interest from the lighting industry in optimizing lighting to benefit health. Consequently, evidence-based recommendations, regulations, and policies need to translate current knowledge of neurobiology into practice. Here, reviewing recent advances in understanding of NIF circuits in humans leads to proposed strategies to optimize electric lighting. Highlighted knowledge gaps must be addressed urgently, as well as the challenge of developing personalized, adaptive NIF lighting interventions accounting for complex individual differences in physiology, behavior, and environment. Finally, lighting equity issues appear in the context of marginalized groups, who have traditionally been underserved in research on both fundamental visual processes and applied lighting. Biologically optimal light is a fundamental environmental right.
Collapse
Affiliation(s)
- Manuel Spitschan
- TUM School of Medicine & Health, Technical University of Munich, Munich, Germany
- TUM Institute for Advanced Study (TUM-IAS), Technical University of Munich, Garching, Germany
- Max Planck Institute for Biological Cybernetics, Max Planck Research Group Translational Sensory & Circadian Neuroscience, Tübingen, Germany
| | - Daniel S. Joyce
- Centre for Health Research, University of Southern Queensland, Ipswich, Queensland, Australia
- School of Psychology and Wellbeing, University of Southern Queensland, Ipswich, Queensland, Australia
- Department of Psychology, University of Nevada, Reno, Reno, Nevada, USA
| |
Collapse
|
20
|
Stampfli JR, Schrader B, di Battista C, Häfliger R, Schälli O, Wichmann G, Zumbühl C, Blattner P, Cajochen C, Lazar R, Spitschan M. The Light-Dosimeter: A new device to help advance research on the non-visual responses to light. LIGHTING RESEARCH & TECHNOLOGY (LONDON, ENGLAND : 2001) 2023; 55:474-486. [PMID: 37469656 PMCID: PMC10353031 DOI: 10.1177/14771535221147140] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/30/2022] [Accepted: 10/12/2022] [Indexed: 07/21/2023]
Abstract
This article describes the development of a device to investigate the non-visual responses to light: The Light-Dosimeter (lido). Its multidisciplinary team followed a user-centred approach throughout the project, that is, their design decisions focused on researchers' and participants' needs. Together with custom-made mountings and the software Lido Studio, the lidos provide researchers with a holistic solution to record participants' light exposure in the near-corneal plane in laboratory settings and under real-world conditions. Validation measurements with commercial equipment were deemed satisfying, as was the combining with data from other devices. The handling of the lidos and mountings and the use of the software Lido Studio during the trial period by various researchers and participants were successful. Despite some limitations, the lidos can help advance research on the non-visual responses to light over the coming years.
Collapse
Affiliation(s)
- JR Stampfli
- Lucerne School of Engineering and Architecture, Horw, Switzerland
| | - B Schrader
- Lucerne School of Engineering and Architecture, Horw, Switzerland
| | - C di Battista
- Lucerne School of Engineering and Architecture, Horw, Switzerland
| | - R Häfliger
- Lucerne School of Engineering and Architecture, Horw, Switzerland
| | - O Schälli
- Lucerne School of Engineering and Architecture, Horw, Switzerland
| | - G Wichmann
- Lucerne School of Engineering and Architecture, Horw, Switzerland
| | - C Zumbühl
- Lucerne School of Engineering and Architecture, Horw, Switzerland
| | - P Blattner
- Federal Institute of Metrology (METAS), Bern-Wabern, Switzerland
| | - C Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel (UPK), Basel, Switzerland
- Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - R Lazar
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel (UPK), Basel, Switzerland
- Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - M Spitschan
- Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
21
|
Liu D, Kovacs-Biro MJ, Connelly K, Abd-AlHamid F, Wu Y. Preliminary investigation on the human response to patterned chromatic glazing. BUILDING AND ENVIRONMENT 2023; 229:109901. [DOI: 10.1016/j.buildenv.2022.109901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
22
|
Vidafar P, Spitschan M. Light on Shedding: A Review of Sex and Menstrual Cycle Differences in the Physiological Effects of Light in Humans. J Biol Rhythms 2023; 38:15-33. [PMID: 36367137 PMCID: PMC9902977 DOI: 10.1177/07487304221126785] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The human circadian system responds to light as low as 30 photopic lux. Furthermore, recent evidence shows that there are huge individual differences in light sensitivity, which may help to explain why some people are more susceptible to sleep and circadian disruption than others. The biological mechanisms underlying the differences in light sensitivity remain largely unknown. A key variable of interest in understanding these individual differences in light sensitivity is biological sex. It is possible that in humans, males and females differ in their sensitivity to light, but the evidence is inconclusive. This is in part due to the historic exclusion of women in biomedical research. Hormonal fluctuations across the menstrual cycle in women has often been cited as a confound by researchers. Attitudes, however, are changing with funding and publication agencies advocating for more inclusive research frameworks and mandating that women and minorities participate in scientific research studies. In this article, we distill the existing knowledge regarding the relationship between light and the menstrual cycle. There is some evidence of a relationship between light and the menstrual cycle, but the nature of this relationship seems dependent on the timing of the light source (sunlight, moonlight, and electric light at night). Light sensitivity may be influenced by biological sex and menstrual phase but there might not be any effect at all. To better understand the relationship between light, the circadian system, and the menstrual cycle, future research needs to be designed thoughtfully, conducted rigorously, and reported transparently.
Collapse
Affiliation(s)
- Parisa Vidafar
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
- Translational Sensory and Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Manuel Spitschan
- Translational Sensory and Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- TUM Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
- TUM Institute for Advanced Study, Technical University of Munich, Garching, Germany
| |
Collapse
|
23
|
Danilenko KV. Objective Measures of Immediate “Energizing” Effect of Light: Studies Review and Data Analysis. Clocks Sleep 2022; 4:475-496. [PMID: 36278531 PMCID: PMC9589941 DOI: 10.3390/clockssleep4040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
While the energizing effect of light has been known since the early years of light therapy, its reliable detection using objective measures is still not well-established. This review aims to ascertain the immediate energizing effect of light and determine its best indicators. Sixty-four articles published before July 2022 were included in the review. The articles described 72 (sub-)studies performed in healthy individuals. Fourteen measures were analyzed. The analysis showed that light causes an energizing effect that can be best documented by measuring core (rectal) body temperature: the proportion of the studies revealing increasing, unchanging, and decreasing rectal temperature was 13/6/1. The second most suitable indicator was heart rate (10/22/1), which showed concordant changes with rectal temperature (a trend, seven mutual studies). There is no evidence from the reviewed articles that oxygen consumption, skin conductance, blood pressure, heart rate variability, non-rectal inner temperature (combined digestive, tympanic, and oral), skin temperature, or cortisol levels can provide light effect detection. Four other measures were found to be unsuitable as well but with less certainty due to the low number of studies (≤3): skin blood flow, noradrenaline, salivary alpha-amylase, and thyroid-stimulating hormone levels. On the other hand, light exposure had a noticeable effect on sympathetic nerve activity measured using microneurography; however, this measure can be accepted as a marker only tentatively as it was employed in a single study. The analysis took into account three factors—study limitation in design/analysis, use of light in day- or nighttime, and relative brightness of the light stimulus—that were found to significantly influence some of the analyzed variables. The review indicates that the energizing effect of light in humans can be reliably detected using rectal temperature and heart rate.
Collapse
|
24
|
Pun TB, Phillips CL, Marshall NS, Comas M, Hoyos CM, D’Rozario AL, Bartlett DJ, Davis W, Hu W, Naismith SL, Cain S, Postnova S, Grunstein RR, Gordon CJ. The Effect of Light Therapy on Electroencephalographic Sleep in Sleep and Circadian Rhythm Disorders: A Scoping Review. Clocks Sleep 2022; 4:358-373. [PMID: 35997384 PMCID: PMC9397048 DOI: 10.3390/clockssleep4030030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/21/2022] [Accepted: 08/02/2022] [Indexed: 01/27/2023] Open
Abstract
Light therapy is used to treat sleep and circadian rhythm disorders, yet there are limited studies on whether light therapy impacts electroencephalographic (EEG) activity during sleep. Therefore, we aimed to provide an overview of research studies that examined the effects of light therapy on sleep macro- and micro-architecture in populations with sleep and circadian rhythm disorders. We searched for randomized controlled trials that used light therapy and included EEG sleep measures using MEDLINE, PubMed, CINAHL, PsycINFO and Cochrane Central Register of Controlled Trials databases. Five articles met the inclusion criteria of patients with either insomnia or delayed sleep−wake phase disorder (DSWPD). These trials reported sleep macro-architecture outcomes using EEG or polysomnography. Three insomnia trials showed no effect of the timing or intensity of light therapy on total sleep time, wake after sleep onset, sleep efficiency and sleep stage duration compared to controls. Only one insomnia trial reported significantly higher sleep efficiency after evening light therapy (>4000 lx between 21:00−23:00 h) compared with afternoon light therapy (>4000 lx between 15:00−17:00 h). In the only DSWPD trial, six multiple sleep latency tests were conducted across the day (09:00 and 19:00 h) and bright light (2500 lx) significantly lengthened sleep latency in the morning (09:00 and 11:00 h) compared to control light (300 lx). None of the five trials reported any sleep micro-architecture measures. Overall, there was limited research about the effect of light therapy on EEG sleep measures, and studies were confined to patients with insomnia and DSWPD only. More research is needed to better understand whether lighting interventions in clinical populations affect sleep macro- and micro-architecture and objective sleep timing and quality.
Collapse
Affiliation(s)
- Teha B. Pun
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
| | - Craig L. Phillips
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Nathaniel S. Marshall
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
| | - Maria Comas
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
| | - Camilla M. Hoyos
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, NSW 2050, Australia
| | - Angela L. D’Rozario
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, NSW 2050, Australia
| | - Delwyn J. Bartlett
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
| | - Wendy Davis
- School of Architecture, Design and Planning, The University of Sydney, Sydney, NSW 2008, Australia
| | - Wenye Hu
- School of Architecture, Design and Planning, The University of Sydney, Sydney, NSW 2008, Australia
| | - Sharon L. Naismith
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, NSW 2050, Australia
| | - Sean Cain
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC 3800, Australia
| | - Svetlana Postnova
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
- School of Physics, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ron R. Grunstein
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
- Sleep and Severe Mental Illness Clinic, CPC-RPA Clinic, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Christopher J. Gordon
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
| |
Collapse
|
25
|
Spitschan M, Mead J, Roos C, Lowis C, Griffiths B, Mucur P, Herf M, Nam S, Veitch JA. luox: validated reference open-access and open-source web platform for calculating and sharing physiologically relevant quantities for light and lighting. Wellcome Open Res 2022; 6:69. [PMID: 34017925 PMCID: PMC8095192 DOI: 10.12688/wellcomeopenres.16595.3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2022] [Indexed: 11/22/2023] Open
Abstract
Light exposure has a profound impact on human physiology and behaviour. For example, light exposure at the wrong time can disrupt our circadian rhythms and acutely suppress the production of melatonin. In turn, appropriately timed light exposure can support circadian photoentrainment. Beginning with the discovery that melatonin production is acutely suppressed by bright light more than 40 years ago, understanding which aspects of light drive the 'non-visual' responses to light remains a highly active research area, with an important translational dimension and implications for "human-centric" or physiologically inspired architectural lighting design. In 2018, the International Commission on Illumination (CIE) standardised the spectral sensitivities for predicting the non-visual effects of a given spectrum of light with respect to the activation of the five photoreceptor classes in the human retina: the L, M and S cones, the rods, and the melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs). Here, we described a novel, lean, user-friendly, open-access and open-source platform for calculating quantities related to light. The platform, called luox, enables researchers and research users in vision science, lighting research, chronobiology, sleep research and adjacent fields to turn spectral measurements into reportable quantities. The luox code base, released under the GPL-3.0 License, is modular and therefore extendable to other spectrum-derived quantities. luox calculations of CIE quantities and indices have been endorsed by the CIE following black-box validation.
Collapse
Affiliation(s)
- Manuel Spitschan
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Sleep and Circadian Neuroscience Institute (SCNi), University of Oxford, Oxford, UK
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
- TUM Department of Sport and Health Sciences (TUM SG), Chronobiology & Health, Technical University of Munich, Munich, Germany
- Max Planck Institute for Biological Cybernetics, Translational Sensory & Circadian Neuroscience, Tübingen, Germany
- TUM Institute for Advanced Study (TUM-IAS), Technical University of Munich, Garching, Germany
| | | | | | | | | | | | | | - Somang Nam
- National Research Council of Canada, Construction Research Centre, Ottawa, Canada
| | - Jennifer A. Veitch
- National Research Council of Canada, Construction Research Centre, Ottawa, Canada
| |
Collapse
|
26
|
Babilon S, Myland P, Klabes J, Simon J, Khanh TQ. Study protocol for measuring the impact of (quasi-)monochromatic light on post-awakening cortisol secretion under controlled laboratory conditions. PLoS One 2022; 17:e0267659. [PMID: 35584105 PMCID: PMC9116651 DOI: 10.1371/journal.pone.0267659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 04/11/2022] [Indexed: 11/21/2022] Open
Abstract
Cortisol secretion has a fundamental role in human circadian regulation. The cortisol awakening response (CAR) can be observed as a daily recurring sharp increase in cortisol concentration within the first hour after awakening and is influenced by environmental light conditions. The current work provides the study protocol for an ongoing research project that is intended to explore the spectral dependencies and to discuss measures of emotional state and cognitive functioning potentially related to the CAR. Based on a controlled within-subjects sleep laboratory study, the impact of a two-hour, (quasi-)monochromatic, post-awakening light exposure of different peak wavelength (applied from 6:00 to 8:00 am) on resulting CAR levels should be investigated in a systematic manner to eventually derive a corresponding spectral sensitivity model. As a secondary outcome, it should be explored whether a potentially light-enhanced cortisol secretion might also impact different measures of sleepiness, mood, and vigilance for certain wavelengths. The study protocol described in the present work discusses the various protocol steps using pilot data collected for two different wavelength settings (i.e., short-wavelength blue-light at λmax = 476 nm and long-wavelength red-light at λmax = 649 nm) experienced by a group of four healthy male adults at an average ± SD age of 25.25 ± 3.59 years.
Collapse
Affiliation(s)
- Sebastian Babilon
- Laboratory of Lighting Technology, Technical University of Darmstadt, Darmstadt, Germany
- Light and Health Research Center, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Paul Myland
- Laboratory of Lighting Technology, Technical University of Darmstadt, Darmstadt, Germany
| | - Julian Klabes
- Laboratory of Lighting Technology, Technical University of Darmstadt, Darmstadt, Germany
| | - Joel Simon
- Laboratory of Lighting Technology, Technical University of Darmstadt, Darmstadt, Germany
| | - Tran Quoc Khanh
- Laboratory of Lighting Technology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
27
|
Feasibility and preliminary efficacy for morning bright light therapy to improve sleep and plasma biomarkers in US Veterans with TBI. A prospective, open-label, single-arm trial. PLoS One 2022; 17:e0262955. [PMID: 35421086 PMCID: PMC9009710 DOI: 10.1371/journal.pone.0262955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022] Open
Abstract
Mild traumatic brain injury (TBI) is associated with persistent sleep-wake dysfunction, including insomnia and circadian rhythm disruption, which can exacerbate functional outcomes including mood, pain, and quality of life. Present therapies to treat sleep-wake disturbances in those with TBI (e.g., cognitive behavioral therapy for insomnia) are limited by marginal efficacy, poor patient acceptability, and/or high patient/provider burden. Thus, this study aimed to assess the feasibility and preliminary efficacy of morning bright light therapy, to improve sleep in Veterans with TBI (NCT03578003). Thirty-three Veterans with history of TBI were prospectively enrolled in a single-arm, open-label intervention using a lightbox (~10,000 lux at the eye) for 60-minutes every morning for 4-weeks. Pre- and post-intervention outcomes included questionnaires related to sleep, mood, TBI, post-traumatic stress disorder (PTSD), and pain; wrist actigraphy as a proxy for objective sleep; and blood-based biomarkers related to TBI/sleep. The protocol was rated favorably by ~75% of participants, with adherence to the lightbox and actigraphy being ~87% and 97%, respectively. Post-intervention improvements were observed in self-reported symptoms related to insomnia, mood, and pain; actigraphy-derived measures of sleep; and blood-based biomarkers related to peripheral inflammatory balance. The severity of comorbid PTSD was a significant positive predictor of response to treatment. Morning bright light therapy is a feasible and acceptable intervention that shows preliminary efficacy to treat disrupted sleep in Veterans with TBI. A full-scale randomized, placebo-controlled study with longitudinal follow-up is warranted to assess the efficacy of morning bright light therapy to improve sleep, biomarkers, and other TBI related symptoms.
Collapse
|
28
|
Jao YL, Wang J, Liao YJ, Parajuli J, Berish D, Boltz M, Van Haitsma K, Wang N, McNally L, Calkins M. Effect of Ambient Bright Light on Behavioral and Psychological Symptoms in People with Dementia: A Systematic Review. Innov Aging 2022; 6:igac018. [PMID: 35602310 PMCID: PMC9116897 DOI: 10.1093/geroni/igac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 11/20/2022] Open
Abstract
Background and Objectives Behavioral and psychological symptoms of dementia (BPSD) commonly occur in persons living with dementia. Bright light (BL) interventions have shown some positive impact on BPSD. Ambient lighting is a more efficient approach to delivering BL with better compliance and less staff workload than individual-based lighting interventions. Yet, its effect has not been systematically reviewed. This review synthesized research evidence on the effect of ambient BL on BPSD. Research Design and Methods This review searched literature from PubMed (Medline), CINAHL, Scopus, Web of Science, and Cochrane in February 2021. Original research testing the effect of ambient BL on BPSD in persons with dementia was included. Two reviewers independently screened, extracted data, and assessed the quality of each article. Results Nine studies were reviewed with 1 randomized controlled trial and 8 quasi-experimental studies. The sample size ranged from 14 to 89 participants across care settings. While not all studies showed positive results, evidence from multiple studies revealed the positive effect of ambient BL on depressive symptoms and agitation in persons with dementia. The ambient BL that showed a positive effect targeted at approximately 350–750 lux, 4,500–9,325 K, and/or circadian stimulus = 0.375–0.4 for 10–12 hr a day for 4 weeks or longer. Evidence on other BPSD was mixed or too limited to draw conclusions. Discussion and Implications A preponderance of evidence suggests that, when properly designed and implemented, ambient BL shows promise in reducing depressive symptoms and agitation. Future research, using more rigorous designs, is needed to further test the effect of ambient BL on BPSD with attention to lighting parameters, measurement approaches, and intervention fidelity.
Collapse
Affiliation(s)
- Ying-Ling Jao
- College of Nursing, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Julian Wang
- Department of Architectural Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
- Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Yo-Jen Liao
- College of Nursing, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jyotsana Parajuli
- School of Nursing, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Diane Berish
- College of Nursing, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Marie Boltz
- College of Nursing, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kimberly Van Haitsma
- College of Nursing, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Nan Wang
- Department of Architectural Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Lauren McNally
- College of Nursing, Pennsylvania State University, University Park, Pennsylvania, USA
| | | |
Collapse
|
29
|
Benedetti M, Maierová L, Cajochen C, Scartezzini JL, Münch M. Optimized office lighting advances melatonin phase and peripheral heat loss prior bedtime. Sci Rep 2022; 12:4267. [PMID: 35277539 PMCID: PMC8917232 DOI: 10.1038/s41598-022-07522-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/16/2022] [Indexed: 12/05/2022] Open
Abstract
Improving indoor lighting conditions at the workplace has the potential to support proper circadian entrainment of hormonal rhythms, sleep, and well-being. We tested the effects of optimized dynamic daylight and electric lighting on circadian phase of melatonin, cortisol and skin temperatures in office workers. We equipped one office room with an automated controller for blinds and electric lighting, optimized for dynamic lighting (= Test room), and a second room without any automated control (= Reference room). Young healthy participants (n = 34) spent five consecutive workdays in each room, where individual light exposure data, skin temperatures and saliva samples for melatonin and cortisol assessments were collected. Vertical illuminance in the Test room was 1177 ± 562 photopic lux (mean ± SD) , which was 320 lux higher than in the Reference room (p < 0.01). Melanopic equivalent daylight (D65) illuminance was 931 ± 484 melanopic lux in the Test room and 730 ± 390 melanopic lux in the Reference room (p < 0.01). Individual light exposures resulted in a 50 min earlier time of half-maximum accumulated illuminance in the Test than the Reference room (p < 0.05). The melatonin secretion onset and peripheral heat loss in the evening occurred significantly earlier with respect to habitual sleeptime in the Test compared to the Reference room (p < 0.05). Our findings suggest that optimized dynamic workplace lighting has the potential to promote earlier melatonin onset and peripheral heat loss prior bedtime, which may be beneficial for persons with a delayed circadian timing system.
Collapse
Affiliation(s)
- Marta Benedetti
- Solar Energy and Building Physics Laboratory (LESO-PB), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| | - Lenka Maierová
- University Centre for Energy Efficient Buildings (UCEEB), Czech Technical University in Prague, Trinecka 1024, 27343, Bustehrad, Czech Republic
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Wilhelm Klein-Strasse 27, 4002, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Jean-Louis Scartezzini
- Solar Energy and Building Physics Laboratory (LESO-PB), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Mirjam Münch
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Wilhelm Klein-Strasse 27, 4002, Basel, Switzerland.
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland.
- Research Centre for Hauora and Health, Massey University, Wellington, New Zealand.
| |
Collapse
|
30
|
Siraji MA, Kalavally V, Schaefer A, Haque S. Effects of Daytime Electric Light Exposure on Human Alertness and Higher Cognitive Functions: A Systematic Review. Front Psychol 2022; 12:765750. [PMID: 35069337 PMCID: PMC8766646 DOI: 10.3389/fpsyg.2021.765750] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
This paper reports the results of a systematic review conducted on articles examining the effects of daytime electric light exposure on alertness and higher cognitive functions. For this, we selected 59 quantitative research articles from 11 online databases. The review protocol was registered with PROSPERO (CRD42020157603). The results showed that both short-wavelength dominant light exposure and higher intensity white light exposure induced alertness. However, those influences depended on factors like the participants' homeostatic sleep drive and the time of day the participants received the light exposure. The relationship between light exposure and higher cognitive functions was not as straightforward as the alerting effect. The optimal light property for higher cognitive functions was reported dependent on other factors, such as task complexity and properties of control light. Among the studies with short-wavelength dominant light exposure, ten studies (morning: 3; afternoon: 7) reported beneficial effects on simple task performances (reaction time), and four studies (morning: 3; afternoon: 1) on complex task performances. Four studies with higher intensity white light exposure (morning: 3; afternoon: 1) reported beneficial effects on simple task performance and nine studies (morning: 5; afternoon: 4) on complex task performance. Short-wavelength dominant light exposure with higher light intensity induced a beneficial effect on alertness and simple task performances. However, those effects did not hold for complex task performances. The results indicate the need for further studies to understand the influence of short-wavelength dominant light exposure with higher illuminance on alertness and higher cognitive functions.
Collapse
Affiliation(s)
- Mushfiqul Anwar Siraji
- Department of Psychology, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Vineetha Kalavally
- Department of Electrical and Computer Systems Engineering, School of Engineering, Monash University Malaysia, Subang Jaya, Malaysia
| | - Alexandre Schaefer
- Department of Psychology, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia.,School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Shamsul Haque
- Department of Psychology, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| |
Collapse
|
31
|
Processing RGB Color Sensors for Measuring the Circadian Stimulus of Artificial and Daylight Light Sources. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The three main tasks of modern lighting design are to support the visual performance, satisfy color emotion (color quality), and promote positive non-visual outcomes. In view of large-scale applications, the use of simple and inexpensive RGB color sensors to monitor related visual and non-visual illumination parameters seems to be of great promise for the future development of human-centered lighting control systems. In this context, the present work proposes a new methodology to assess the circadian effectiveness of the prevalent lighting conditions for daylight and artificial light sources in terms of the physiologically relevant circadian stimulus (CS) metric using such color sensors. In the case of daylight, the raw sensor readouts were processed in such a way that the CIE daylight model can be applied as an intermediate step to estimate its spectral composition, from which CS can eventually be calculated straightforwardly. Maximal CS prediction errors of less than 0.0025 were observed when tested on real data. For artificial light sources, on the other hand, the CS approximation method of Truong et al. was applied to estimate its circadian effectiveness from the sensor readouts. In this case, a maximal CS prediction error of 0.028 must be reported, which is considerably larger compared to daylight, but still in an acceptable range for typical indoor lighting applications. The use of RGB color sensors is thus shown to be suitable for estimating the circadian effectiveness of both types of illumination with sufficient accuracy for practical applications.
Collapse
|
32
|
Spitschan M, Smolders K, Vandendriessche B, Bent B, Bakker JP, Rodriguez-Chavez IR, Vetter C. Verification, analytical validation and clinical validation (V3) of wearable dosimeters and light loggers. Digit Health 2022; 8:20552076221144858. [PMID: 36601285 PMCID: PMC9806438 DOI: 10.1177/20552076221144858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/25/2022] [Indexed: 12/27/2022] Open
Abstract
Background Light exposure is an important driver and modulator of human physiology, behavior and overall health, including the biological clock, sleep-wake cycles, mood and alertness. Light can also be used as a directed intervention, e.g., in the form of light therapy in seasonal affective disorder (SAD), jetlag prevention and treatment, or to treat circadian disorders. Recently, a system of quantities and units related to the physiological effects of light was standardized by the International Commission on Illumination (CIE S 026/E:2018). At the same time, biometric monitoring technologies (BioMeTs) to capture personalized light exposure were developed. However, because there are currently no standard approaches to evaluate the digital dosimeters, the need to provide a firm framework for the characterization, calibration, and reporting for these digital sensors is urgent. Objective This article provides such a framework by applying the principles of verification, analytic validation and clinical validation (V3) as a state-of-the-art approach for tools and standards in digital medicine to light dosimetry. Results This article describes opportunities for the use of digital dosimeters for basic research, for monitoring light exposure, and for measuring adherence in both clinical and non-clinical populations to light-based interventions in clinical trials.
Collapse
Affiliation(s)
- Manuel Spitschan
- Translational Sensory & Circadian Neuroscience, Max Planck
Institute for Biological Cybernetics, Tübingen, Germany
- Chronobiology & Health, TUM Department of Sport and Health
Sciences (TUM SG), Technical University of
Munich, Munich, Germany
- TUM Institute for Advanced Study (TUM-IAS), Technical University of
Munich, Garching, Germany
| | - Karin Smolders
- Human-Technology Interaction Group, Eindhoven University of
Technology, Eindhoven, The Netherlands
| | - Benjamin Vandendriessche
- Byteflies, Antwerp, Belgium
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve
University, Cleveland, OH, USA
| | | | | | | | - Céline Vetter
- Department of Integrative Physiology, University of Colorado
Boulder, Boulder, CO, USA
| |
Collapse
|
33
|
Tir S, Steel LCE, Tam SKE, Semo M, Pothecary CA, Vyazovskiy VV, Foster RG, Peirson SN. Rodent models in translational circadian photobiology. PROGRESS IN BRAIN RESEARCH 2022; 273:97-116. [PMID: 35940726 DOI: 10.1016/bs.pbr.2022.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Over the last decades remarkable advances have been made in the understanding of the photobiology of circadian rhythms. The identification of a third photoreceptive system in the mammalian eye, in addition to the rods and cones that mediate vision, has transformed our appreciation of the role of light in regulating physiology and behavior. These photosensitive retinal ganglion cells (pRGCs) express the blue-light sensitive photopigment melanopsin and project to the suprachiasmatic nuclei (SCN)-the master circadian pacemaker-as well as many other brain regions. Much of our understanding of the fundamental mechanisms of the pRGCs, and the processes that they regulate, comes from mouse and other rodent models. Here we describe the contribution of rodent models to circadian photobiology, including both their strengths and limitations. In addition, we discuss how an appreciation of both rodent and human data is important for translational circadian photobiology. Such an approach enables a bi-directional flow of information whereby an understanding of basic mechanisms derived from mice can be integrated with studies from humans. Progress in this field is being driven forward at several levels of analysis, not least by the use of personalized light measurements and photoreceptor specific stimuli in human studies, and by studying the impact of environmental, rather than laboratory, lighting on different rodent models.
Collapse
Affiliation(s)
- Selma Tir
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Laura C E Steel
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - S K E Tam
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Ma'ayan Semo
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Carina A Pothecary
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Vladyslav V Vyazovskiy
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Russell G Foster
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Stuart N Peirson
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
34
|
Spitschan M, Santhi N. Individual differences and diversity in human physiological responses to light. EBioMedicine 2022; 75:103640. [PMID: 35027334 PMCID: PMC8808156 DOI: 10.1016/j.ebiom.2021.103640] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/18/2021] [Accepted: 10/06/2021] [Indexed: 02/01/2023] Open
Abstract
Exposure to light affects our physiology and behaviour through a pathway connecting the retina to the circadian pacemaker in the hypothalamus - the suprachiasmatic nucleus (SCN). Recent research has identified significant individual differences in the non-visual effects of light,mediated by this pathway. Here, we discuss the fundamentals and individual differences in the non-visual effects of light. We propose a set of actions to improve our evidence database to be more diverse: understanding systematic bias in the evidence base, dedicated efforts to recruit more diverse participants, routine deposition and sharing of data, and development of data standards and reporting guidelines.
Collapse
Affiliation(s)
- Manuel Spitschan
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany; Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany; Department of Experimental Psychology, University of Oxford, United Kingdom.
| | - Nayantara Santhi
- Department of Psychology, Northumbria University, United Kingdom.
| |
Collapse
|
35
|
St Hilaire MA, Lockley SW. Measuring Dim Light Melatonin Onset in Humans. Methods Mol Biol 2022; 2550:13-20. [PMID: 36180672 DOI: 10.1007/978-1-0716-2593-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The pineal melatonin rhythm provides a robust reference signal for the timing of the endogenous human circadian system. Dim light melatonin onset (DLMO) time is considered a gold-standard marker of the central circadian clock when measured from plasma or saliva. In this chapter, we describe the appropriate conditions for collecting plasma and salivary melatonin and the threshold method to calculate the DLMO.
Collapse
Affiliation(s)
- Melissa A St Hilaire
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
| | - Steven W Lockley
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Surrey Sleep Research Centre, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
36
|
Circadian and visual photometry. PROGRESS IN BRAIN RESEARCH 2022; 273:1-11. [DOI: 10.1016/bs.pbr.2022.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Luo X, Ru T, Chen Q, Hsiao FC, Hung CS, Yang CM, Zhou G. Temporal Dynamics of Subjective and Objective Alertness During Exposure to Bright Light in the Afternoon for 5 h. Front Physiol 2021; 12:771605. [PMID: 34950050 PMCID: PMC8691749 DOI: 10.3389/fphys.2021.771605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/08/2021] [Indexed: 11/22/2022] Open
Abstract
Light can induce an alertness response in humans. The effects of exposure to bright light vs. dim light on the levels of alertness during the day, especially in the afternoon, as reported in the literature, are inconsistent. This study employed a multiple measurement strategy to explore the temporal variations in the effects of exposure to bright light vs. regular office light (1,200 lx vs. 200 lx at eye level, 6,500 K) on the alertness of participants for 5 h in the afternoon. In this study, 20 healthy adults (11 female; mean age 23.25 ± 2.3 years) underwent the Karolinska sleepiness scale (KSS), the auditory psychomotor vigilance test (PVT), and the waking electroencephalogram (EEG) test for two levels of light intervention. The results yielded a relatively lower relative delta power and a relatively higher beta power for the 1,200 lx condition in comparison with the 200 lx condition. However, the light conditions elicited no statistically significant differences in the KSS scores and performance with respect to the PVT. The results suggested that exposure to bright light for 5 h in the afternoon could enhance physiological arousal while exerting insignificant effects on subjective feelings and performance abilities relating to the alertness of the participants.
Collapse
Affiliation(s)
- Xue Luo
- School of Psychology, South China Normal University, Guangzhou, China
| | - Taotao Ru
- Lab of Light and Physiopsychological Health, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Normal University, South China Academy of Advanced Optoelectronics, Guangzhou, China
| | - Qingwei Chen
- Lab of Light and Physiopsychological Health, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Normal University, South China Academy of Advanced Optoelectronics, Guangzhou, China
| | - Fan-Chi Hsiao
- Department of Counseling and Industrial/Organizational Psychology, Ming Chuan University, Taoyuan, Taiwan
| | - Ching-Sui Hung
- Department of Psychology, National Chengchi University, Taipei, Taiwan
| | - Chien-Ming Yang
- Department of Psychology, National Chengchi University, Taipei, Taiwan.,The Research Center for Mind, Brain, and Learning, National Chengchi University, Taipei, Taiwan
| | - Guofu Zhou
- Lab of Light and Physiopsychological Health, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Normal University, South China Academy of Advanced Optoelectronics, Guangzhou, China
| |
Collapse
|
38
|
Zandi B, Stefani O, Herzog A, Schlangen LJM, Trinh QV, Khanh TQ. Optimising metameric spectra for integrative lighting to modulate the circadian system without affecting visual appearance. Sci Rep 2021; 11:23188. [PMID: 34848762 PMCID: PMC8633386 DOI: 10.1038/s41598-021-02136-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/10/2021] [Indexed: 01/15/2023] Open
Abstract
Smart integrative lighting systems aim to support human health and wellbeing by capitalising on the light-induced effects on circadian rhythms, sleep, and cognitive functions, while optimising the light's visual aspects like colour fidelity, visual comfort, visual preference, and visibility. Metameric spectral tuning could be an instrument to solve potential conflicts between the visual preferences of users with respect to illuminance and chromaticity and the circadian consequences of the light exposure, as metamers can selectively modulate melanopsin-based photoreception without affecting visual properties such as chromaticity or illuminance. This work uses a 6-, 8- and 11-channel LED luminaire with fixed illuminance of 250 lx to systematically investigate the metameric tuning range in melanopic equivalent daylight illuminance (EDI) and melanopic daylight efficacy ratio (melanopic DER) for 561 chromaticity coordinates as optimisation targets (2700 K to 7443 K ± Duv 0 to 0.048), while applying colour fidelity index Rf criteria from the TM-30-20 Annex E recommendations (i.e. Rf [Formula: see text] 85, Rf,h1 [Formula: see text] 85). Our results reveal that the melanopic tuning range increases with rising CCT to a maximum tuning range in melanopic DER of 0.24 (CCT: 6702 K, Duv: 0.003), 0.29 (CCT: 7443 K, Duv: 0) and 0.30 (CCT: 6702, Duv: 0.006), depending on the luminaire's channel number of 6, 8 or 11, respectively. This allows to vary the melanopic EDI from 212.5-227.5 lx up to 275-300 lx without changes in the photopic illuminance (250 lx) or chromaticity ([Formula: see text] [Formula: see text] 0.0014). The highest metameric melanopic Michelson contrast for the 6-, 8- and 11-channel luminaire is 0.16, 0.18 and 0.18, which is accomplished at a CCT of 3017 K (Duv: - 0.018), 3456 K (Duv: 0.009) and 3456 K (Duv: 0.009), respectively. By optimising ~ 490,000 multi-channel LED spectra, we identified chromaticity regions in the CIExy colour space that are of particular interest to control the melanopic efficacy with metameric spectral tuning.
Collapse
Affiliation(s)
- Babak Zandi
- Department of Electrical Engineering and Information Technology, Laboratory of Lighting Technology, Technical University of Darmstadt, Darmstadt, Germany.
| | - Oliver Stefani
- Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), Centre for Chronobiology, University of Basel, Basel, Switzerland
| | - Alexander Herzog
- Department of Electrical Engineering and Information Technology, Laboratory of Lighting Technology, Technical University of Darmstadt, Darmstadt, Germany
| | - Luc J M Schlangen
- Department Human-Technology, Intelligent Lighting Institute, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Quang Vinh Trinh
- Department of Electrical Engineering and Information Technology, Laboratory of Lighting Technology, Technical University of Darmstadt, Darmstadt, Germany
| | - Tran Quoc Khanh
- Department of Electrical Engineering and Information Technology, Laboratory of Lighting Technology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
39
|
Price LLA, Khazova M, Udovičić L. Assessment of the Light Exposures of Shift-working Nurses in London and Dortmund in Relation to Recommendations for Sleep and Circadian Health. Ann Work Expo Health 2021; 66:447-458. [PMID: 34693970 PMCID: PMC9030150 DOI: 10.1093/annweh/wxab092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/22/2021] [Accepted: 10/07/2021] [Indexed: 11/14/2022] Open
Abstract
Shift work causes disruption to circadian physiological processes in the human body, and desynchronization from the natural day-and-night rhythm. Circadian disruption is thought to explain the associations between shift work and various long-term diseases; light is an unrivalled synchronizer (or Zeitgeber) of circadian processes and inappropriate light exposure plausibly plays a critical role in the development of health impairments. As published measurement data on the actual light environments encountered by shift workers are sparse, nurses working in two hospitals in London (UK) and Dortmund (Germany) wore light-logging dosimetry devices to measure personal light exposures continuously over a week in three different seasons. The study identifies and quantifies several of the characteristics of light exposure related to different working patterns in winter, spring, and summer, and quantifies interindividual variations. These data enable informed design of light exposure interventions or changes to shifts to reduce unwanted effects of disruptive light exposure profiles.
Collapse
Affiliation(s)
- Luke L A Price
- Radiation Dosimetry Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Campus, Chilton, Didcot, Oxfordshire, OX11 0RQ, UK
| | - Marina Khazova
- Radiation Dosimetry Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Campus, Chilton, Didcot, Oxfordshire, OX11 0RQ, UK
| | - Ljiljana Udovičić
- Federal Institute for Occupational Safety and Health (BAuA), Friedrich-Henkel-Weg 1-25, 44149 Dortmund, Germany
| |
Collapse
|
40
|
The Effect of Bright Light Treatment on Rest-Activity Rhythms in People with Dementia: A 24-Week Cluster Randomized Controlled Trial. Clocks Sleep 2021; 3:449-464. [PMID: 34563054 PMCID: PMC8482074 DOI: 10.3390/clockssleep3030032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Bright light treatment is an effective way to influence circadian rhythms in healthy adults, but previous research with dementia patients has yielded mixed results. The present study presents a primary outcome of the DEM.LIGHT trial, a 24-week randomized controlled trial conducted at nursing homes in Bergen, Norway, investigating the effects of a bright light intervention. The intervention consisted of ceiling-mounted LED panels providing varying illuminance and correlated color temperature throughout the day, with a peak of 1000 lx, 6000 K between 10 a.m. and 3 p.m. Activity was recorded using actigraphs at baseline and after 8, 16, and 24 weeks. Non-parametric indicators and extended cosine models were used to investigate rest-activity rhythms, and outcomes were analyzed with multi-level regression models. Sixty-one patients with severe dementia (median MMSE = 4) were included. After 16 weeks, the acrophase was advanced from baseline in the intervention group compared to the control group (B = -1.02, 95%; CI = -2.00, -0.05). There was no significant difference between the groups on any other rest-activity measures. When comparing parametric and non-parametric indicators of rest-activity rhythms, 25 out of 35 comparisons were significantly correlated. The present results indicate that ambient bright light treatment did not improve rest-activity rhythms for people with dementia.
Collapse
|
41
|
Spitschan M. Time-Varying Light Exposure in Chronobiology and Sleep Research Experiments. Front Neurol 2021; 12:654158. [PMID: 34335437 PMCID: PMC8319561 DOI: 10.3389/fneur.2021.654158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022] Open
Abstract
Light exposure profoundly affects human physiology and behavior through circadian and neuroendocrine photoreception primarily through the melanopsin-containing intrinsically photosensitive retinal ganglion cells. Recent research has explored the possibility of using temporally patterned stimuli to manipulate circadian and neuroendocrine responses to light. This mini-review, geared to chronobiologists, sleep researchers, and scientists in adjacent disciplines, has two objectives: (1) introduce basic concepts in time-varying stimuli and (2) provide a checklist-based set of recommendations for documenting time-varying light exposures based on current best practices and standards.
Collapse
Affiliation(s)
- Manuel Spitschan
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom.,Centre for Chronobiology, Psychiatric Hospital of the University of Basel (UPK), Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| |
Collapse
|
42
|
Prayag AS, Münch M, Aeschbach D, Chellappa SL, Gronfier C. Reply to Bracke et al. Comment on "Prayag et al. Light Modulation of Human Clocks, Wake, and Sleep. Clocks&Sleep 2019, 1, 193-208". Clocks Sleep 2021; 3:398-402. [PMID: 34287255 PMCID: PMC8293177 DOI: 10.3390/clockssleep3030026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/07/2021] [Indexed: 02/08/2023] Open
Abstract
We thank Bracke and colleagues [...].
Collapse
Affiliation(s)
- Abhishek S. Prayag
- Lyon Neuroscience Research Center (CRNL), Waking Team, Inserm UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, 69000 Lyon, France;
| | - Mirjam Münch
- Centre for Public Health Research, Massey University, Wellington 6140, New Zealand;
| | - Daniel Aeschbach
- Department of Sleep and Human Factors Research, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51170 Cologne, Germany;
- Faculty of Medicine, University of Bonn, 53127 Bonn, Germany
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA;
| | - Sarah L. Chellappa
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA;
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Claude Gronfier
- Lyon Neuroscience Research Center (CRNL), Waking Team, Inserm UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, 69000 Lyon, France;
| |
Collapse
|
43
|
Zhou Y, Chen Q, Luo X, Li L, Ru T, Zhou G. Does Bright Light Counteract the Post-lunch Dip in Subjective States and Cognitive Performance Among Undergraduate Students? Front Public Health 2021; 9:652849. [PMID: 34164367 PMCID: PMC8215386 DOI: 10.3389/fpubh.2021.652849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/19/2021] [Indexed: 11/24/2022] Open
Abstract
The post-lunch dip in alertness and performance was widely experienced during the early afternoon. Taking a short nap was documented as a practical strategy for habitual nappers to counteract the decline of alertness and performance. Yet, it remains unknown whether bright light exposure in the early afternoon working hours could alleviate the performance deficits caused by a post-lunch nap loss for habitual nappers. Seventeen undergraduate students who had a long-term habit of taking a post-lunch nap were assigned to three interventions: (1) a short nap + normal indoor light (100 lx, 4,000 K at eye level); (2) no nap + normal indoor light, and (3) no nap + blue-enriched bright light (1,000 lx, 6,500 K at eye level), in which subjective alertness (Karolinska Sleepiness Scale, KSS), mood (Positive and Negative Affect Schedule, PANAS), and task performance in sustained attention (psychomotor vigilance test, PVT), response inhibition (go/no-go task), and working memory (paced visual serial addition test, PVSAT) were measured. Results showed that a post-lunch nap deprivation significantly increased subjective sleepiness and negative mood and impaired performance in PVT and PVSAT, while exposure to bright blue-enriched white light vs. normal indoor light in the early afternoon significantly relieved such negative effects on mood, sleepiness, and performance in PVSAT; subjective positive mood and performance in PVT and go/no-go task remained unaffected with light intervention. These findings suggested that bright blue-enriched white light exposure could be a potential strategy for those who are suffering from drowsiness and low working memory following a habitual midday nap loss.
Collapse
Affiliation(s)
- Ying Zhou
- Lab of Lighting and Physio-Psychological Health, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
| | - Qingwei Chen
- Lab of Lighting and Physio-Psychological Health, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
| | - Xue Luo
- School of Psychology, South China Normal University, Guangzhou, China
| | - Le Li
- Lab of Lighting and Physio-Psychological Health, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
| | - Taotao Ru
- Lab of Lighting and Physio-Psychological Health, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
| | - Guofu Zhou
- Lab of Lighting and Physio-Psychological Health, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
| |
Collapse
|
44
|
Spitschan M, Mead J, Roos C, Lowis C, Griffiths B, Mucur P, Herf M. luox: novel validated open-access and open-source web platform for calculating and sharing physiologically relevant quantities for light and lighting. Wellcome Open Res 2021; 6:69. [PMID: 34017925 PMCID: PMC8095192 DOI: 10.12688/wellcomeopenres.16595.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 12/16/2022] Open
Abstract
Light exposure has a profound impact on human physiology and behaviour. For example, light exposure at the wrong time can disrupt our circadian rhythms and acutely suppress the production of melatonin. In turn, appropriately timed light exposure can support circadian photoentrainment. Beginning with the discovery that melatonin production is acutely suppressed by bright light more than 40 years ago, understanding which aspects of light drive the 'non-visual' responses to light remains a highly active research area, with an important translational dimension and implications for "human-centric" or physiologically inspired architectural lighting design. In 2018, the International Commission on Illumination (CIE) standardised the spectral sensitivities for predicting the non-visual effects of a given spectrum of light with respect to the activation of the five photoreceptor classes in the human retina: the L, M and S cones, the rods, and the melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs). Here, we described a novel, lean, user-friendly, open-access and open-source platform for calculating quantities related to light. The platform, called luox, enables researchers and research users in chronobiology, sleep research and adjacent field to turn spectral measurements into reportable quantities. The luox code base, released under the GPL-3.0 License, is modular and therefore extendable to other spectrum-derived quantities. luox has been endorsed by the CIE following black-box validation.
Collapse
Affiliation(s)
- Manuel Spitschan
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Sleep and Circadian Neuroscience Institute (SCNi), University of Oxford, Oxford, UK.,Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
45
|
Smart Lighting Application for Energy Saving and User Well-Being in the Residential Environment. SUSTAINABILITY 2021. [DOI: 10.3390/su13116198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The idea of smart lighting has emerged over the years in commercial and industrial environments, with a focus on energy saving. With the advancement in technology, smart lighting can now offer opportunities in addition to energy saving to users in home environments for the provision of a comfortable atmosphere and the maintenance of user well-being. Currently, research in the smart lighting field is predominantly dedicated to energy saving in non-residential environments; meanwhile, the residential environments have not been explored. Therefore, a literature review was conducted to provide an overview of smart lighting systems’ effect on energy and well-being in the residential environment. Current research is mostly limited to designing and developing a smart lighting system in a controlled environment, with a limited evaluation of well-being and comfort. The review shows that residential smart lighting application possibilities and opportunities are not widely and thoroughly explored.
Collapse
|
46
|
Investigation of the Optimum Display Luminance of an LCD Screen under Different Ambient Illuminances in the Evening. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ambient illuminance and screen luminance have a significant influence on the visual fatigue and visual performance associated with the use of computers. The current study was conducted to investigate optimal screen luminance under different ambient illuminances and fit a curve of the optimum luminance of LCD screens under evening illumination. Thirty-three participants were assigned to rate screen brightness, visual comfort with screen luminance, satisfaction with ambient illuminance and visual fatigue under six screen luminance levels (3.87, 21.47, 42.74, 64.12, 84.77 and 106.7 cd/m2) combined with five ambient illuminance levels (0, 25, 50, 75 and 100 lx) in the evening. The results showed that optimum LCD screen luminance increased with increasing ambient illuminance. Moreover, ambient illuminance and screen luminance levels should be in the range of 13.08–62.16 lx and 20.63–75.15 cd/m2, respectively, to obtain the optimal subjective feelings of visual fatigue and visual comfort during the evening.
Collapse
|
47
|
Violet-blue light exposure of the skin: is there need for protection? Photochem Photobiol Sci 2021; 20:615-625. [PMID: 33893982 DOI: 10.1007/s43630-021-00043-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
Advocates of skin protection against blue light express concern about exposure to indoor lighting and electronic screens as well as natural outdoor exposure. However, the nature of adverse effects in skin is unclear and the doses to induce effects are unknown. We aimed to reveal whether there is a scientific basis for promoting skin protection against violet-blue light (400-500 nm, VBL). Based on published literature, we determined the time to reach a threshold dose that induced a biological response in human skin. In the absence of an action spectrum for effects on skin, we used a hand held probe with a defined spectral response and measurements of the unweighted exposure between 400 and 500 nm to estimate the exposure by a selection of artificial light sources and solar light. For comparison, an outdoor threshold erythemally weighted UV dose was set to 1 SED (standard erythema dose). Outdoor, weighted irradiances were obtained using a radiative transfer model. Induction of pigmentation in human skin tissue was the only consistently reported endpoint after VBL exposure of about 65 Jcm-2. This threshold dose was reached in 0.5 to 20 months of exposure to indoor lighting sources. In comparison, specialised medical sources reached this dose in 0.5 min to 45 h. The time outdoors to reach 1 SED was shorter than the time to reach a VBL threshold dose throughout all seasons. Skin protection against VBL is superfluous for exposures to domestic lighting sources or screens and for solar radiation; however, it may be advantageous for patients suffering from photosensitive diseases or taking photosensitising medication.
Collapse
|
48
|
Spitschan M, Mead J, Roos C, Lowis C, Griffiths B, Mucur P, Herf M. luox: novel open-access and open-source web platform for calculating and sharing physiologically relevant quantities for light and lighting. Wellcome Open Res 2021; 6:69. [DOI: 10.12688/wellcomeopenres.16595.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2021] [Indexed: 11/20/2022] Open
Abstract
Light exposure has a profound impact on human physiology and behaviour. For example, light exposure at the wrong time can disrupt our circadian rhythms and acutely suppress the production of melatonin. In turn, appropriately timed light exposure can support circadian photoentrainment. Beginning with the discovery that melatonin production is acutely suppressed by bright light more than 40 years ago, understanding which aspects of light drive the 'non-visual' responses to light remains a highly active research area, with an important translational dimension and implications for "human-centric" or physiologically inspired architectural lighting design. In 2018, the International Commission on Illumination (CIE) standardised the spectral sensitivities for predicting the non-visual effects of a given spectrum of light with respect to the activation of the five photoreceptor classes in the human retina: the L, M and S cones, the rods, and the melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs). Here, we described a novel, lean, user-friendly, open-access and open-source platform for calculating quantities related to light. The platform, called luox, enables researchers and research users in chronobiology, sleep research and adjacent field to turn spectral measurements into reportable quantities. The luox code base, released under the GPL-3.0 License, is modular and therefore extendable to other spectrum-derived quantities.
Collapse
|
49
|
Eto T, Ohashi M, Nagata K, Shin N, Motomura Y, Higuchi S. Crystalline lens transmittance spectra and pupil sizes as factors affecting light-induced melatonin suppression in children and adults. Ophthalmic Physiol Opt 2021; 41:900-910. [PMID: 33772847 DOI: 10.1111/opo.12809] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/27/2021] [Indexed: 12/23/2022]
Abstract
PURPOSE To investigate the contributions of ocular crystalline lens transmittance spectra and pupil size on age-related differences in the magnitude of light-induced melatonin suppression at night. The first aim was to demonstrate that spectral lens transmittance in children can be measured in vivo with a Purkinje image-based system. The second aim was to test the hypothesis that the magnitude of melatonin suppression in children is enhanced by larger pupils and higher lens transmittance of short wavelengths. METHODS Fourteen healthy children and 14 healthy adults participated in this study. The experiment was conducted for two nights in our laboratory. On the first night, the participants spent time under dim light conditions (<10 lux) until one hour after their habitual bedtime (BT+1.0). On the second night, the participants spent time under dim light conditions until 30 min before their habitual bedtime (BT-0.5). They were then exposed to LED light for 90 min up to BT+1.0. Individual pupil sizes were measured between BT and BT+1.0 for both conditions. Lens transmittance spectra were measured in vivo using the Purkinje image-based system during the daytime. Non-visual photoreception was calculated from lens transmittance and pupil size. This was taken as an index of the influence of age-related ocular changes on the non-visual photopigment melanopsin. RESULTS Measured lens transmittance in children was found to be higher than for adults, especially in the short wavelength region (p < 0.001). Pupil size in children was significantly larger than that of adults under both dim (p = 0.003) and light (p < 0.001) conditions. Children's non-visual photoreception was 1.48 times greater than that of adults, which was very similar to the finding that melatonin suppression was 1.52 times greater in children (n = 9) than adults (n = 9). CONCLUSIONS Our Purkinje image-based system can measure children's lens transmittance spectra in vivo. Lens transmittance and pupil size may contribute to differences in melatonin suppression between primary school children and middle-aged adults.
Collapse
Affiliation(s)
- Taisuke Eto
- Graduate School of Integrated Frontier Sciences, Kyushu University, Fukuoka, Japan.,Research Fellow of Japan Society for the Promotion of Science, Fukuoka, Japan
| | - Michihiro Ohashi
- Graduate School of Integrated Frontier Sciences, Kyushu University, Fukuoka, Japan.,Research Fellow of Japan Society for the Promotion of Science, Fukuoka, Japan
| | - Kotaro Nagata
- Graduate School of Integrated Frontier Sciences, Kyushu University, Fukuoka, Japan
| | - Nakyeong Shin
- Graduate School of Integrated Frontier Sciences, Kyushu University, Fukuoka, Japan
| | - Yuki Motomura
- Department of Human Science, Faculty of Design, Kyushu University, Fukuoka, Japan
| | - Shigekazu Higuchi
- Department of Human Science, Faculty of Design, Kyushu University, Fukuoka, Japan
| |
Collapse
|
50
|
Hazelhoff EM, Dudink J, Meijer JH, Kervezee L. Beginning to See the Light: Lessons Learned From the Development of the Circadian System for Optimizing Light Conditions in the Neonatal Intensive Care Unit. Front Neurosci 2021; 15:634034. [PMID: 33815040 PMCID: PMC8013699 DOI: 10.3389/fnins.2021.634034] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
The circadian timing system optimizes health by temporally coordinating behavior and physiology. During mammalian gestation, fetal circadian rhythms are synchronized by the daily fluctuations in maternal body temperature, hormones and nutrients. Circadian disruption during pregnancy is associated with negative effects on developmental outcomes in the offspring, highlighting the importance of regular and robust 24-h rhythms over gestation. In the case of preterm birth (before 37 weeks of gestation), maternal cues no longer synchronize the neonate's circadian system, which may adversely affect the neonate. There is increasing evidence that introducing robust light-dark cycles in the Neonatal Intensive Care Unit has beneficial effects on clinical outcomes in preterm infants, such as weight gain and hospitalization time, compared to infants exposed to constant light or constant near-darkness. However, the biological basis for these effects and the relationship with the functional and anatomical development of the circadian system is not fully understood. In this review, we provide a concise overview of the effects of light-dark cycles on clinical outcomes of preterm neonates in the NICU and its alignment with the development of the circadian system.
Collapse
Affiliation(s)
- Esther M. Hazelhoff
- Laboratory for Neurophysiology, Department of Cellular and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Jeroen Dudink
- Department of Neonatology, Wilhelmina Children’s Hospital and Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Johanna H. Meijer
- Laboratory for Neurophysiology, Department of Cellular and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Laura Kervezee
- Laboratory for Neurophysiology, Department of Cellular and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|