1
|
Ali M, Ali A, Ali S, Chen H, Wu W, Liu R, Chen H, Ahmed ZFR, Gao H. Global insights and advances in edible coatings or films toward quality maintenance and reduced postharvest losses of fruit and vegetables: An updated review. Compr Rev Food Sci Food Saf 2025; 24:e70103. [PMID: 39812151 PMCID: PMC11734098 DOI: 10.1111/1541-4337.70103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/29/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025]
Abstract
Transitioning to safe, nonthermal, and edible strategies for maintaining fruit and vegetable (F&V) quality, reducing postharvest losses (up to 55% annually), and ensuring food security requires extensive research and innovation in postharvest technologies. This review aims to provide an updated understanding of edible coatings or films (ECF), focusing on their role in reducing F&V postharvest losses, based on data from the last 40 years retrieved from the Web of Science database. The global ECF research network is represented by publication trends, majorly researched F&V, key research areas, influential and emerging authors, and global research ranking. The role of ECF in preserving F&V quality has been assessed by examining critical quality parameters, including weight loss, total soluble solids, titratable acidity, ripening, softening, sensory and organoleptic characteristics, browning, chilling injury, and microbial safety. Furthermore, recent advancements in ECF formulations, including nanoscale ingredients and application methodologies, have been critically discussed. Sources, categorization, application strategies, mode of action, functional properties, sustainable development goals (SDGs), challenges, safety, legislations, and future perspectives in ECF research have also been discussed. The key findings indicate that China (20.34%) and the USA (9.94%) are the leading countries in ECF research. Studies have demonstrated ECF's potential in reducing F&V postharvest losses by maintaining quality parameters through advanced nanoscale compositions and methodologies. Notably, ECF research supports multiple SDG targets, including SDGs 2, 3, 8, 9, 12, 13, and 15. Future ECF research should explore 3D-printed coatings, nonflavor-altering components, and potential crosslinking agents to enhance F&V quality and reduce postharvest losses.
Collapse
Affiliation(s)
- Maratab Ali
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post‐Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co‐Construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science InstituteZhejiang Academy of Agricultural SciencesHangzhouChina
- Department of Food Science and Technology, School of Food and Agricultural SciencesUniversity of Management and TechnologyLahorePunjab ProvincePakistan
| | - Akhtar Ali
- Department of Health, Nutrition and Food SciencesFlorida State UniversityTallahasseeFloridaUSA
| | - Sajid Ali
- Department of Horticulture, Faculty of Agricultural Sciences and TechnologyBahauddin Zakariya UniversityMultanPunjab ProvincePakistan
| | - Hangjun Chen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post‐Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co‐Construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science InstituteZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Weijie Wu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post‐Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co‐Construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science InstituteZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Ruiling Liu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post‐Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co‐Construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science InstituteZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Huizhi Chen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post‐Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co‐Construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science InstituteZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Zienab F. R. Ahmed
- Integrative Agriculture Department, College of Agriculture and Veterinary MedicineUnited Arab Emirates UniversityAl AinUAE
| | - Haiyan Gao
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post‐Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co‐Construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science InstituteZhejiang Academy of Agricultural SciencesHangzhouChina
| |
Collapse
|
2
|
Aswani R, Das S, Sebastian KS, Mathew J, Radhakrishnan EK. Development of biocomposite films incorporated with the extract from pitcher associated bacteria for the postharvest protection from fungi. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:2157-2165. [PMID: 39397836 PMCID: PMC11464650 DOI: 10.1007/s13197-024-05986-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/26/2024] [Accepted: 04/05/2024] [Indexed: 10/15/2024]
Abstract
Pythium aphanidermatum is known to cause diseases like damping-off, root rot, stem rot and fruit rot in a wide range of plants. Eventhough many chemical methods have been demonstrated to have the potential to manage these diseases, their benefits are being offset equally by the negative side effects. Therefore, the control of Pythium spp. using natural antifungal agents is of immense significance due to its environmental safety. Here, the plant associated microorganisms with antifungal metabolites have significant promises to be explored both as sustainable biocontrol agents and also as active constituents of antifungal materials. Antimicrobial packaging films prepared using such components can have significant applications to meet the requirements to prevent postharvest loss of agricultural produce by inhibiting the fungal growth. Eventhough there are reports on the development of antimicrobial packaging films for such applications, the use of bacterial extracts with antifungal activity for the same is least investigated. Hence, the present study demonstrates the development of biocomposite films prepared using polyvinyl alcohol (PVA) incorporated with the extracts prepared from bacterial isolates (Serratia sp. NhPB1, Kocuria sp. NhPB49, and Pantoea dispersa NhPB54) previously isolated from the pitcher plant. Here, the individual films were prepared by incorporating 1 mL of bacterial extract in 40 mL of 3% PVA solution and the developed films were then subjected to antifungal activity screening against P. aphanidermatum. The antifungal activity analysis of the films prepared with the incorporation of extracts from Serratia sp. NhPB1, Kocuria sp. NhPB49, and Pantoea dispersa NhPB54 showed remarkable activity against the tested pathogen. The application of biocomposite films on Solanum lycopersicum and Capsicum annuum fruits for its protection from P. aphanidermatum by dip coating method further indicates the promises of developed biocomposite films for active packaging applications.
Collapse
Affiliation(s)
- R. Aswani
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala 686560 India
| | - Soumya Das
- Department of Zoology, KE College, Mannanam, Kottayam, Kerala 686561 India
| | - K. S. Sebastian
- Department of Zoology, Government College, Kottayam, Kerala 686013 India
| | - Jyothis Mathew
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala 686560 India
| | - E. K. Radhakrishnan
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala 686560 India
| |
Collapse
|
3
|
Miranda M, Bai J, Pilon L, Torres R, Casals C, Solsona C, Teixidó N. Fundamentals of Edible Coatings and Combination with Biocontrol Agents: A Strategy to Improve Postharvest Fruit Preservation. Foods 2024; 13:2980. [PMID: 39335908 PMCID: PMC11431373 DOI: 10.3390/foods13182980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Challenges in global food supply chains include preserving postharvest quality and extending the shelf life of fruits and vegetables. The utilization of edible coatings (ECs) combined with biocontrol agents (BCAs) represents a promising strategy to enhance the postharvest quality and shelf life of these commodities. This review analyzes the most recent developments in EC technologies and their combination with BCAs, highlighting their synergistic effects on postharvest pathogen control and quality maintenance. Various types of ECs, including polysaccharides, proteins, and lipids, are discussed alongside coating fundamentals and the mechanisms through which BCAs contribute to pathogen suppression. The review also highlights the efficacy of these combined approaches in maintaining the physicochemical properties, sensory attributes, and nutritional value of fruits. Key challenges such as regulatory requirements, consumer acceptance, and the scalability of these technologies are addressed. Future research directions are proposed to optimize formulations, improve application techniques, and enhance the overall efficacy of these biocomposite coatings and multifunctional coatings. By synthesizing current knowledge and identifying gaps, this review provides a comprehensive understanding of the potential and limitations of using ECs and BCAs for sustainable postharvest management.
Collapse
Affiliation(s)
- Marcela Miranda
- Institute of Agrifood Research and Technology (IRTA), Postharvest, Edifici Fruitcentre, Parc Agrobiotech Lleida, Parc de Gardeny, 25003 Lleida, Spain; (R.T.); (C.C.); (C.S.); (N.T.)
| | - Jinhe Bai
- US Horticultural Research Laboratory, United States Department of Agriculture (USDA)-ARS, Ft. Pierce, FL 34945, USA;
| | - Lucimeire Pilon
- Embrapa Vegetables—Brazilian Agricultural Research Corporation, Brasilia 70351-970, DF, Brazil;
| | - Rosario Torres
- Institute of Agrifood Research and Technology (IRTA), Postharvest, Edifici Fruitcentre, Parc Agrobiotech Lleida, Parc de Gardeny, 25003 Lleida, Spain; (R.T.); (C.C.); (C.S.); (N.T.)
| | - Carla Casals
- Institute of Agrifood Research and Technology (IRTA), Postharvest, Edifici Fruitcentre, Parc Agrobiotech Lleida, Parc de Gardeny, 25003 Lleida, Spain; (R.T.); (C.C.); (C.S.); (N.T.)
| | - Cristina Solsona
- Institute of Agrifood Research and Technology (IRTA), Postharvest, Edifici Fruitcentre, Parc Agrobiotech Lleida, Parc de Gardeny, 25003 Lleida, Spain; (R.T.); (C.C.); (C.S.); (N.T.)
| | - Neus Teixidó
- Institute of Agrifood Research and Technology (IRTA), Postharvest, Edifici Fruitcentre, Parc Agrobiotech Lleida, Parc de Gardeny, 25003 Lleida, Spain; (R.T.); (C.C.); (C.S.); (N.T.)
| |
Collapse
|
4
|
Fotiadou R, Fragkaki I, Pettas K, Stamatis H. Valorization of Olive Pomace Using Ultrasound-Assisted Extraction for Application in Active Packaging Films. Int J Mol Sci 2024; 25:6541. [PMID: 38928246 PMCID: PMC11203504 DOI: 10.3390/ijms25126541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Bioactive compounds that can be recovered by the solid wastes of the olive oil sector, such as polyphenols, are known for their significant antioxidant and antimicrobial activities with potential application in nutraceutical, cosmetic, and food industries. Given that industrial demands are growing, and the polyphenol market value is ever increasing, a systematic study on the recovery of natural antioxidant compounds from olive pomace using ultrasound-assisted extraction (UAE) was conducted. Single-factor parameters, i.e., the extraction solvent, time, and solid-to-liquid ratio, were investigated evaluating the total phenolic content (TPC) recovery and the antioxidant activity of the final extract. The acetone-water system (50% v/v, 20 min, 1:20 g mL-1) exhibited the highest total phenolic content recovery (168.8 ± 5.5 mg GAE per g of dry extract). The olive pomace extract (OPE) was further assessed for its antioxidant and antibacterial activities. In DPPH, ABTS, and CUPRAC, OPE exhibited an antioxidant capacity of 413.6 ± 1.9, 162.72 ± 3.36 and 384.9 ± 7.86 mg TE per g of dry extract, respectively. The antibacterial study showed that OPE attained a minimum inhibitory activity (MIC) of 2.5 mg mL-1 against E. coli and 10 mg mL-1 against B. subtilis. Hydroxytyrosol and tyrosol were identified as the major phenolic compounds of OPE. Furthermore, active chitosan-polyvinyl alcohol (CHT/PVA) films were prepared using different OPE loadings (0.01-0.1%, w/v). OPE-enriched films showed a dose-dependent antiradical scavenging activity reaching 85.7 ± 4.6% (ABTS) and inhibition growth up to 81% against B. subtilis compared to the control film. Increased UV light barrier ability was also observed for the films containing OPE. These results indicate that OPE is a valuable source of phenolic compounds with promising biological activities that can be exploited for developing multifunctional food packaging materials.
Collapse
Affiliation(s)
- Renia Fotiadou
- Laboratory of Biotechnology, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; (R.F.); (I.F.)
| | - Ioanna Fragkaki
- Laboratory of Biotechnology, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; (R.F.); (I.F.)
| | - Kyriakos Pettas
- STYMON Natural Products ΙΚΕ, Industrial Area of Patras, Street B2, Building Square 4, 25018 Patras, Greece;
| | - Haralambos Stamatis
- Laboratory of Biotechnology, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; (R.F.); (I.F.)
| |
Collapse
|
5
|
Innovations in the development and application of edible coatings for fresh and minimally processed Apple. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
6
|
Srisa A, Promhuad K, San H, Laorenza Y, Wongphan P, Wadaugsorn K, Sodsai J, Kaewpetch T, Tansin K, Harnkarnsujarit N. Antibacterial, Antifungal and Antiviral Polymeric Food Packaging in Post-COVID-19 Era. Polymers (Basel) 2022; 14:4042. [PMID: 36235988 PMCID: PMC9573034 DOI: 10.3390/polym14194042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/22/2022] Open
Abstract
Consumers are now more concerned about food safety and hygiene following the COVID-19 pandemic. Antimicrobial packaging has attracted increased interest by reducing contamination of food surfaces to deliver quality and safe food while maintaining shelf life. Active packaging materials to reduce contamination or inhibit viral activity in packaged foods and on packaging surfaces are mostly prepared using solvent casting, but very few materials demonstrate antiviral activity on foods of animal origin, which are important in the human diet. Incorporation of silver nanoparticles, essential oils and natural plant extracts as antimicrobial agents in/on polymeric matrices provides improved antifungal, antibacterial and antiviral properties. This paper reviews recent developments in antifungal, antibacterial and antiviral packaging incorporating natural or synthetic compounds using preparation methods including extrusion, solvent casting and surface modification treatment for surface coating and their applications in several foods (i.e., bakery products, fruits and vegetables, meat and meat products, fish and seafood and milk and dairy foods). Findings showed that antimicrobial material as films, coated films, coating and pouches exhibited efficient antimicrobial activity in vitro but lower activity in real food systems. Antimicrobial activity depends on (i) polar or non-polar food components, (ii) interactions between antimicrobial compounds and the polymer materials and (iii) interactions between environmental conditions and active films (i.e., relative humidity, oxygen and water vapor permeability and temperature) that impact the migration or diffusion of active compounds in foods. Knowledge gained from the plethora of existing studies on antimicrobial polymers can be effectively utilized to develop multifunctional antimicrobial materials that can protect food products and packaging surfaces from SARS-CoV-2 contamination.
Collapse
Affiliation(s)
- Atcharawan Srisa
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Khwanchat Promhuad
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Horman San
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Yeyen Laorenza
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Phanwipa Wongphan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Kiattichai Wadaugsorn
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Janenutch Sodsai
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Thitiporn Kaewpetch
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Kittichai Tansin
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Nathdanai Harnkarnsujarit
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies for Agriculture and Food, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
7
|
Recent advances in poly (vinyl alcohol)/natural polymer based films for food packaging applications: A review. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100904] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Ordoñez R, Atarés L, Chiralt A. Biodegradable active materials containing phenolic acids for food packaging applications. Compr Rev Food Sci Food Saf 2022; 21:3910-3930. [PMID: 35912666 DOI: 10.1111/1541-4337.13011] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 06/05/2022] [Accepted: 06/30/2022] [Indexed: 01/28/2023]
Abstract
The development of new materials for food packaging applications is necessary to reduce the excessive use of disposable plastics and their environmental impact. Biodegradable polymers represent an alternative means of mitigating the problem. To add value to biodegradable materials and to enhance food preservation, the incorporation of active compounds into the polymer matrix is an affordable strategy. Phenolic acids are plant metabolites that can be found in multiple plant extracts and exhibit antioxidant and antimicrobial properties. Compared with other natural active compounds, such as essential oils, phenolic acids do not present a high sensorial impact while exhibiting similar minimal inhibitory concentrations against different bacteria. This study summarizes and discusses recent studies about the potential of both phenolic acids/plant extracts and biodegradable polymers as active food packaging materials, their properties, interactions, and the factors that could affect their antimicrobial efficiency. The molecular structure of phenolic acids greatly affects their potential antioxidant and antimicrobial capacity, as well as their specific interactions with polymer matrices and food substrates. These interactions, in turn, can lead to plasticizing or cross-linking effects. In the present study, the antioxidant and antimicrobial properties of different biodegradable films with phenolic acids have been described, as well as the main factors affecting the active properties of these films as useful materials for active packaging development. More studies applying these active materials in real foods are required.
Collapse
Affiliation(s)
- Ramón Ordoñez
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Valencia, Spain
| | - Lorena Atarés
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Valencia, Spain
| | - Amparo Chiralt
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
9
|
Impact of Bacterial Cellulose Nanocrystals-Gelatin/Cinnamon Essential Oil Emulsion Coatings on the Quality Attributes of ‘Red Delicious’ Apples. COATINGS 2022. [DOI: 10.3390/coatings12060741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study aimed to assess the effectiveness of bacterial cellulose nanocrystals (BCNCs)-gelatin (GelA)/cinnamon essential oil (CEO) emulsion coatings containing various CEO concentrations (1200, 1800, and 2400 μL/L) in retarding ripening and senescence of ‘Red Delicious’ apples during cold storage (60 days at 4 °C). Coatings decreased the weight loss (WL) (~3.6%), as compared to uncoated fruit (~4.8%). A direct relationship between CEO concentration and respiration rate/ethylene production was also disclosed. Flesh firmness was higher for coated samples, with better results detected especially when the highest amount of CEO was applied (36.48 N for the 2400 μL/L delivered dose vs. 32.60 N for the 1200 μL/L one). These findings were corroborated by additional tests on the surface color, total acidity, soluble solids content, pH, ascorbic acid, and activities of polyphenol oxidase (PPO) and peroxidase (POD). This study demonstrated the capability of BCNCs-GelA/CEO systems to dramatically enhance the storability and quality of apples during refrigerated storage, thus avoiding undesired losses and increasing the economic performance of fresh fruit industries.
Collapse
|
10
|
Yu H, Liu Y, Yang F, Xie Y, Guo Y, Cheng Y, Yao W. The combination of hexanal and geraniol in sublethal concentrations synergistically inhibits Quorum Sensing of Pseudomonas fluorescens - in vitro and in silico approaches. J Appl Microbiol 2022; 133:2122-2136. [PMID: 35007388 DOI: 10.1111/jam.15446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/29/2021] [Accepted: 01/07/2022] [Indexed: 11/27/2022]
Abstract
AIM Hexanal and geraniol are essential oil components with anti-Quorum Sensing (QS) activity against Pseudomonas fluorescens. This study demonstrated that QS inhibition (QSI) efficacy of hexanal and geraniol combination (HG) was significantly increased compared with their mono-counterparts at the same concentration. METHODS AND RESULTS Tests on P. fluorescens motility, biofilm formation, acyl-homoserine lactones (AHLs) production, gene expression in vitro, and molecular docking in silico were conducted to evaluate the synergistic effect of hexanal and geraniol on QSI. HG mixture at 0.5 minimal inhibitory concentration (MIC) showed a strong synergistic inhibition of biofilm formation (51.8%), motility (60.13%), and extracellular protease activity (58.9%) of P. fluorescens. The synthesis of AHLs, e.g. C8 -HSL and C12 -HSL was inhibited by hexanal, geraniol, and HG; both AHLs are responsible for regulating virulence factors in P. fluorescens. The expression of pcoI and gacA genes regulating AHLs synthetase and sensor kinase was significantly down-regulated by HG (0.29 and 0.38-fold) at 0.5 MIC. Hexenal and HG showed significant inhibition of pcoR and gacS genes expression regulating AHLs receptor protein and response regulator; however, geraniol failed to down-regulate the two genes. Molecular docking in silico also supported these findings. Hexenal inserted into minor groove of pcoI/pcoR DNA fragments to inhibit genes expression. Both hexanal (-31.487 kcal/mol) and geraniol (-25.716 kcal/mol) had a higher binding affinity with PcoI protein than halogenated furanone C30 (-24.829 kcal/mol) as a known competitor of AHLs. Similarly, hexenal and geraniol would also strongly bind to the PcoR protein. CONCLUSIONS It was found that HG at 0.5 MIC would effectively inhibit QS through suppressing pcoR/gacS and gacA/gacS genes expression and therefore, inhibit motility and biofilm formation in P. fluorescens. SIGNIFICANCE AND IMPACT OF THE STUDY The present study indicated that HG at sub-MIC as QS inhibitor could be further developed as a new preservative of agri-food products.
Collapse
Affiliation(s)
- Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.,School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.,Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Yu Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.,School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.,Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Fangwei Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.,School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.,Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.,School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.,Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.,School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.,Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.,School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.,Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.,School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.,Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| |
Collapse
|
11
|
Łopusiewicz Ł, Kwiatkowski P, Drozłowska E, Trocer P, Kostek M, Śliwiński M, Polak-Śliwińska M, Kowalczyk E, Sienkiewicz M. Preparation and Characterization of Carboxymethyl Cellulose-Based Bioactive Composite Films Modified with Fungal Melanin and Carvacrol. Polymers (Basel) 2021; 13:polym13040499. [PMID: 33562865 PMCID: PMC7914822 DOI: 10.3390/polym13040499] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
Preparation of biodegradable packaging materials and valorisation of food industry residues to achieve "zero waste" goals is still a major challenge. Herein, biopolymer-based (carboxymethyl cellulose-CMC) bioactive films were prepared by the addition, alone or in combination, of carvacrol and fungal melanin isolated from champignon mushroom (Agaricus bisporus) agro-industrial residues. The mechanical, optical, thermal, water vapour, and UV-Vis barrier properties were studied. Fourier-transform infrared (FT-IR) spectroscopy studies were carried out to analyse the chemical composition of the resulting films. Antibacterial, antifungal, and antioxidant activities were also determined. Both CMC/melanin and CMC/melanin/carvacrol films showed some antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Candida albicans. The addition of melanin increased the UV-blocking, mechanical, water vapour barrier, and antioxidant properties without substantially reducing the transparency of the films. The addition of carvacrol caused loss of transparency, however, composite CMC/melanin/carvacrol films showed excellent antioxidant activity and enhanced mechanical strength. The developed bioactive biopolymer films have a good potential to be green bioactive alternatives to plastic films in food packaging applications.
Collapse
Affiliation(s)
- Łukasz Łopusiewicz
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland; (E.D.); (P.T.); (M.K.)
- Correspondence: ; Tel.: +48-91-449-6135
| | - Paweł Kwiatkowski
- Chair of Microbiology, Immunology and Laboratory Medicine, Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Emilia Drozłowska
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland; (E.D.); (P.T.); (M.K.)
| | - Paulina Trocer
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland; (E.D.); (P.T.); (M.K.)
| | - Mateusz Kostek
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland; (E.D.); (P.T.); (M.K.)
| | - Mariusz Śliwiński
- Dairy Industry Innovation Institute Ltd., Kormoranów 1, 11-700 Mrągowo, Poland;
| | - Magdalena Polak-Śliwińska
- Chair of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Pl. Cieszyński 1, 10-957 Olsztyn, Poland;
| | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, Medical University of Łódź, 90-752 Łódź, Poland;
| | - Monika Sienkiewicz
- Department of Allergology and Respiratory Rehabilitation, Medical University of Łódź, Żeligowskiego 7/9, 90-752 Łódź, Poland;
| |
Collapse
|
12
|
Kumar N, Tokas J, Raghavendra M, Singal HR. Impact of exogenous salicylic acid treatment on the cell wall metabolism and ripening process in postharvest tomato fruit stored at ambient temperature. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Naresh Kumar
- Department of Biochemistry CCS Haryana Agricultural University Hisar India
| | - Jayanti Tokas
- Department of Biochemistry CCS Haryana Agricultural University Hisar India
| | | | - Hari R. Singal
- Department of Biochemistry CCS Haryana Agricultural University Hisar India
| |
Collapse
|