1
|
Tayebi-Khorrami V, Shahgordi S, Dabbaghi MM, Fadaei MS, Masoumi Shahrbabak S, Fallahianshafiei S, Fadaei MR, Hasnain MS, Nayak AK, Askari VR. From nature to nanotech: Harnessing the power of electrospun polysaccharide-based nanofibers as sustainable packaging. Int J Biol Macromol 2025; 299:140127. [PMID: 39842579 DOI: 10.1016/j.ijbiomac.2025.140127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/11/2025] [Accepted: 01/19/2025] [Indexed: 01/24/2025]
Abstract
Today, the applications of natural polysaccharide-based nanofibers are growing in drug delivery and food industries. They also showed their capability as packaging due to biodegradability, mechanical strength, barrier properties, thermal stability, antioxidant, and antimicrobial features. Natural polysaccharides come from different sources, such as plants, microbes, and animals. Natural polysaccharide-based nanofibers can be considered sustainable packaging in contrast to plastic packaging due to their safety and biodegradability. Smart packaging is a new trend in packaging materials, and natural polysaccharides can be applied as smart packaging. They can work as an indicator that confirms food health in food packaging. Electrospinning is one of the most used methods for the fabrication of nanofibers, and it can also be used for the fabrication of natural polysaccharide nanofibers. This method can be scaled up and used to fabricate nanofibers on a large scale. This paper will review recent studies on natural polysaccharide-based nanofiber as packaging materials and their benefits. We also discuss the challenges and limitations of their scale-up and electrospinning process. Furthermore, we will discuss the future perspective of natural polysaccharide-based nanofiber as a new sustainable packaging.
Collapse
Affiliation(s)
- Vahid Tayebi-Khorrami
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saba Shahgordi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mahdi Dabbaghi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Saleh Fadaei
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Masoumi Shahrbabak
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Reza Fadaei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Md Saquib Hasnain
- Department of Pharmacy, Palamau Institute of Pharmacy, Chianki, Daltonganj, Jharkhand, India.
| | - Amit Kumar Nayak
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India.
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Zhang J, Zhang J, Zhang L, Qin Z, Wang T. Review of Recent Advances in Intelligent and Antibacterial Packaging for Meat Quality and Safety. Foods 2025; 14:1157. [PMID: 40238286 PMCID: PMC11989113 DOI: 10.3390/foods14071157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Intelligent and antimicrobial packaging technologies are transforming meat preservation by enhancing food safety, enabling real-time quality monitoring, and extending shelf life. This review critically examines advancements in intelligent systems, including radio frequency identification (RFID), gas sensors, time-temperature indicators (TTIs), and colorimetric indicators for continuous freshness assessment. A key focus is natural compound-based chromogenic indicators, which establish visual spoilage detection via distinct color transitions. Concurrently, antimicrobial systems integrating inorganic compounds, organic bioactive agents, and natural antimicrobials effectively inhibit microbial growth. Strategic incorporation of these agents into polymeric matrices enhances meat safety, supported by standardized evaluation protocols for regulatory compliance and quality assurance. Future research should prioritize optimizing sensitivity, cost-efficiency, and sustainability, alongside developing biodegradable materials to balance food safety with reduced environmental impact, advancing sustainable food supply chains.
Collapse
Affiliation(s)
| | | | | | | | - Tianxing Wang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (J.Z.); (L.Z.); (Z.Q.)
| |
Collapse
|
3
|
Ebrahimi F, Habibi N, Hosseini M. Nano-Coating Loaded With Leaf and Flowers of Pelargonium graveolens Plant Extract Stabilized With Fenugreek Seed Gum and Soy Protein Isolate in Increasing the Shelf Life of Mutton Fillet. Food Sci Nutr 2025; 13:e4618. [PMID: 39803259 PMCID: PMC11717032 DOI: 10.1002/fsn3.4618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 01/16/2025] Open
Abstract
In this study, the extract of leaf and flower of Pelargonium graveolens was obtained using an ultrasonic-assisted extraction method. The extraction yield and the content of phenolic, flavonoid, and flavonol compounds in the flower extract were higher (13.93%, 74.97 mg GAE g DM-1, 31.93 mg QE g DM-1, and 9.08 mg QEE g DM-1) than leaf extract (10.69%, 67.46 mg GAE g DM-1, 23.04 mg QE g DM-1, and 11.34 mg QEE g DM-1). Both extracts demonstrated antioxidant properties in tests involving the scavenging of DPPH radicals and the ferric reduction assay. Extracts exhibited antimicrobial properties. MIC of flower extract against Staphylococcus aureus and Escherichia coli were 2500 and 5000, while MBC of leaf extract were 15,000, and 20,000 ppm, respectively. The concentration of 2000 ppm of extracts was encapsulated in fenugreek seed gum (FSG) and soy protein isolate (SPI) produced by the emulsification method. All nano-coatings exhibited a nanometric size range between 172.75 to 255.21 nm, and encapsulation efficiency higher than 80.0% (80.82% to 89.59%). The application of nano-coatings significantly reduced microbial counts and delayed lipid oxidation in mutton meat during 12 days of cold storage at 4°C, enhancing meat quality and extending shelf life. The inclusion of bioactive compounds like polyphenols in the coatings contributed to antimicrobial and antioxidant effects, decreasing pH levels and preventing spoilage. The findings indicated that the combination of edible FSG and SPI as wall materials with 2000 ppm of P. graveolens extract demonstrated efficacy in implementation bacterial growth and lipid oxidation in fresh mutton meat.
Collapse
Affiliation(s)
- Farzad Ebrahimi
- Department of Food Science and Technology, Sanandaj BranchIslamic Azad UniversitySanandajIran
| | - Nader Habibi
- Department of Food Science and Technology, Sanandaj BranchIslamic Azad UniversitySanandajIran
| | - Mohammadyar Hosseini
- Department of Food Science and Hygiene, Faculty of Veterinary ScienceIlam UniversityIlamIran
| |
Collapse
|
4
|
Jastrzębska A, Kmieciak A, Gralak Z, Brzuzy K, Nowaczyk J, Cichosz M, Krzemiński MP, Szłyk E. Determination of Biogenic Amine Level Variations upon Storage, in Chicken Breast Coated with Edible Protective Film. Foods 2024; 13:985. [PMID: 38611289 PMCID: PMC11011730 DOI: 10.3390/foods13070985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
A new chitosan-based protective film containing rosemarinic acid (0.282% w/w) has been elaborated. The film was formed from a water-oil emulsion system and applied to poultry meat samples using a dip-coating technique. Various physicochemical parameters of the coatings, such as thickness, Young's modulus, elongation at break, water vapor transmission rates, and antioxidant activity, were tested with free-standing film samples peeled from a Petri dish. Compared to neat chitosan films obtained similarly, new films cast from the emulsion showed significantly better elasticity (Young's modulus was diminished from 1458 MPa to about 29 MPa). Additionally, barrier properties for moisture transition decreased from 7.3 to 5.8 g mm m-2 day-1 kPa-1. The coated poultry samples were subsequently evaluated in juxtaposition with uncoated ones in a storage test. Levels of selected biogenic amines (histamine, tyramine, tryptamine, phenylethylamine, putrescine, cadaverine, spermine, and spermidine), total bacterial count, and lipid oxidation levels in the meat samples were analyzed during storage at 4 °C (up to 96 h). The results obtained for the biogenic amines, total bacterial content, calculated biogenic amine index, and the ratio of spermidine to spermine in meat samples suggest the advantage of the proposed coatings with rosmarinic acid in protecting poultry meat against environmental factors and rapid spoilage.
Collapse
Affiliation(s)
- Aneta Jastrzębska
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, NCU in Toruń, 87-100 Toruń, Poland; (Z.G.); (K.B.); (E.S.)
| | - Anna Kmieciak
- Department of Organic Chemistry, Faculty of Chemistry, NCU in Toruń, 87-100 Toruń, Poland; (A.K.); (M.P.K.)
| | - Zuzanna Gralak
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, NCU in Toruń, 87-100 Toruń, Poland; (Z.G.); (K.B.); (E.S.)
| | - Kamil Brzuzy
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, NCU in Toruń, 87-100 Toruń, Poland; (Z.G.); (K.B.); (E.S.)
| | - Jacek Nowaczyk
- Department of Physical Chemistry and Polymer Physical Chemistry, Faculty of Chemistry, NCU in Toruń, 87-100 Toruń, Poland;
| | - Marcin Cichosz
- Department of Chemical Technology, Faculty of Chemistry, NCU in Toruń, 87-100 Toruń, Poland;
| | - Marek P. Krzemiński
- Department of Organic Chemistry, Faculty of Chemistry, NCU in Toruń, 87-100 Toruń, Poland; (A.K.); (M.P.K.)
| | - Edward Szłyk
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, NCU in Toruń, 87-100 Toruń, Poland; (Z.G.); (K.B.); (E.S.)
| |
Collapse
|
5
|
Dragoev SG. Lipid Peroxidation in Muscle Foods: Impact on Quality, Safety and Human Health. Foods 2024; 13:797. [PMID: 38472909 DOI: 10.3390/foods13050797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
The issue of lipid changes in muscle foods under the action of atmospheric oxygen has captured the attention of researchers for over a century. Lipid oxidative processes initiate during the slaughtering of animals and persist throughout subsequent technological processing and storage of the finished product. The oxidation of lipids in muscle foods is a phenomenon extensively deliberated in the scientific community, acknowledged as one of the pivotal factors affecting their quality, safety, and human health. This review delves into the nature of lipid oxidation in muscle foods, highlighting mechanisms of free radical initiation and the propagation of oxidative processes. Special attention is given to the natural antioxidant protective system and dietary factors influencing the stability of muscle lipids. The review traces mechanisms inhibiting oxidative processes, exploring how changes in lipid oxidative substrates, prooxidant activity, and the antioxidant protective system play a role. A critical review of the oxidative stability and safety of meat products is provided. The impact of oxidative processes on the quality of muscle foods, including flavour, aroma, taste, colour, and texture, is scrutinised. Additionally, the review monitors the effect of oxidised muscle foods on human health, particularly in relation to the autooxidation of cholesterol. Associations with coronary cardiovascular disease, brain stroke, and carcinogenesis linked to oxidative stress, and various infections are discussed. Further studies are also needed to formulate appropriate technological solutions to reduce the risk of chemical hazards caused by the initiation and development of lipid peroxidation processes in muscle foods.
Collapse
Affiliation(s)
- Stefan G Dragoev
- Department of Meat and Fish Technology, Technological Faculty, University of Food Technologies, 26 Maritza Blvd., 4002 Plovdiv, Bulgaria
| |
Collapse
|
6
|
Kulawik P, Jamróz E, Tkaczewska J, Vlčko T, Zając M, Guzik P, Janik M, Tadele W, Golian J, Milosavljević V. Application of antimicrobial chitosan-Furcellaran-hydrolysate gelatin edible coatings enriched with bioactive peptides in shelf-life extension of pork loin stored at 4 and -20 °C. Int J Biol Macromol 2024; 254:127865. [PMID: 37939757 DOI: 10.1016/j.ijbiomac.2023.127865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/03/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
In this study, the authors investigate the preservative capabilities of edible coatings comprising a blend of chitosan, furcellaran and gelatin hydrolysate enhanced with the bioactive peptides RW4 and LL37. The preservative effects on pork samples stored for 21 days at 4 °C and 6 months at -20 °C were studied, while examining changes in microbiological contamination, pH levels, water activity and sensory attributes. Microbiological analyses reveal the coatings' antimicrobial efficacy against aerobic bacteria, microscopic fungi and yeasts, particularly during the initial storage period, when coated samples exhibit microbial reductions of 0.5-2 log CFU/g compared to the controls. The coatings have no discernible impact on water activity during storage in refrigerated or freezer conditions. Notably, differences in pH development can be observed between the coated and control samples, potentially attributable to the antimicrobial action of the coatings. Sensory analysis allows to highlight the inhibition of deterioration related to sensory attributes through the use of edible coatings. In conclusion, employing bioactive peptide-enriched edible coatings holds promise for extending the shelf-life of perishable foods.
Collapse
Affiliation(s)
- Piotr Kulawik
- Department of Animal Products Processing, University of Agriculture, Balicka 122, PL-30-149, Kraków, Poland.
| | - Ewelina Jamróz
- Department of Chemistry, University of Agriculture, Balicka 122, PL-30-149, Kraków, Poland
| | - Joanna Tkaczewska
- Department of Animal Products Processing, University of Agriculture, Balicka 122, PL-30-149, Kraków, Poland
| | - Tomáš Vlčko
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949-76, Nitra, Slovakia
| | - Marzena Zając
- Department of Animal Products Processing, University of Agriculture, Balicka 122, PL-30-149, Kraków, Poland
| | - Paulina Guzik
- Department of Animal Products Processing, University of Agriculture, Balicka 122, PL-30-149, Kraków, Poland
| | - Magdalena Janik
- Department of Chemistry, University of Agriculture, Balicka 122, PL-30-149, Kraków, Poland
| | - Wondyfraw Tadele
- Department of Animal Products Processing, University of Agriculture, Balicka 122, PL-30-149, Kraków, Poland; Department of Food Engineering, Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, P.O. Box 26, Bahir Dar, Ethiopia
| | - Jozef Golian
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949-76, Nitra, Slovakia
| | - Vedran Milosavljević
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| |
Collapse
|
7
|
Yaashikaa PR, Kamalesh R, Senthil Kumar P, Saravanan A, Vijayasri K, Rangasamy G. Recent advances in edible coatings and their application in food packaging. Food Res Int 2023; 173:113366. [PMID: 37803705 DOI: 10.1016/j.foodres.2023.113366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 10/08/2023]
Abstract
The food packaging industries are facing the challenge of food waste generation. This can be addressed through the use of edible coating materials. These coatings aid in extending the shelf life of food products, reducing waste. The key components of these coatings include food-grade binding agents, solvents, and fillers. The integration of polysaccharide, protein, lipids, bioactive and composite-based materials with edible coating matrix aids to combat substantial post-harvest loss of highly perishable commodities and elevates the quality of minimally processed food. The aim of this review is to introduce the concept of edible coatings and discuss the different coating materials used in the food industry, along with their properties. Additionally, this review aims to classify the coating types based on characteristic features and explore their application in various food processing industries. This review provides a comprehensive overview of edible coatings, including the integration of polysaccharides, proteins, lipids, bioactive, and composite-based materials into the coating matrix. This review also addresses the significant post-harvest loss of highly perishable commodities and emphasizes the enhancement of quality in minimally processed food. Furthermore, the antimicrobial, anti-corrosive, and edible characteristics are highlighted, showcasing their potential applications in different food packaging industries. Moreover, it also discusses the challenges, safety and regulatory aspects, current trends, and future perspectives, aiming to shed light on the commercialization and future investigation of edible coatings.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602195, Tamil Nadu, India
| | - R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602195, Tamil Nadu, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India.
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602195, Tamil Nadu, India
| | - K Vijayasri
- Department of Biotechnology, Center for Food Technology, Anna University, Chennai 600025, India
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| |
Collapse
|
8
|
Prakoso FAH, Indiarto R, Utama GL. Edible Film Casting Techniques and Materials and Their Utilization for Meat-Based Product Packaging. Polymers (Basel) 2023; 15:2800. [PMID: 37447446 DOI: 10.3390/polym15132800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
According to a profusion of academic studies on the use of organic materials or biopolymers as key components, the current trajectory of food packaging techniques is showing a positive inclination. Notably, one such biopolymer that has attracted much attention is edible film. The biopolymers that have been stated as constitutive components are composed of polysaccharides, lipids, proteins, or a combination of these, which work together to reinforce one another's properties and create homogenous mixtures. An edible film provides a clear, thin layer that encases foodstuffs, including their packaging. The production and use of edible film have recently been the focus of much research in the field of food polymers. Extending the shelf life of food goods is the goal of this research. Given their great susceptibility to change brought on by outside forces or pollutants, which may result in oxidative rancidity, the proper storage of nutrient-dense food items, particularly meat products, deserves careful study. Many edible films have been found to contain active ingredients, such antimicrobials or antioxidants, that can successfully prevent the spoiling of meat products, a process that can happen in a short amount of time. Surprisingly, a number of scholarly examinations reveal that edible film may be cooked alongside meat because of its organic makeup. We hope that the use of edible film will lead to a more environmentally responsible method of food packaging than has previously been possible.
Collapse
Affiliation(s)
- Fauzi Atsani Harits Prakoso
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jalan Raya Bandung Sumedang Km. 21 Jatinangor, Sumedang 45363, Indonesia
| | - Rossi Indiarto
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jalan Raya Bandung Sumedang Km. 21 Jatinangor, Sumedang 45363, Indonesia
| | - Gemilang Lara Utama
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jalan Raya Bandung Sumedang Km. 21 Jatinangor, Sumedang 45363, Indonesia
- Centre for Environment and Sustainability Science, Universitas Padjadjaran, Jalan Sekeloa Selatan I No. 1, Bandung 40134, Indonesia
| |
Collapse
|
9
|
Mendes CG, Martins JT, Lüdtke FL, Geraldo A, Pereira A, Vicente AA, Vieira JM. Chitosan Coating Functionalized with Flaxseed Oil and Green Tea Extract as a Bio-Based Solution for Beef Preservation. Foods 2023; 12:foods12071447. [PMID: 37048269 PMCID: PMC10093991 DOI: 10.3390/foods12071447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Ecological and safe packaging solutions arise as pivotal points in the development of an integrated system for sustainable meat production. The aim of this study was to assess the effect of a combined chitosan (Ch) + green tea extract (GTE) + essential oil (thyme oil, TO; flaxseed oil, FO; or oregano oil, OO) coating on the safety and quality of vacuum-packaged beef during storage at 4 °C. An optimized bio-based coating formulation was selected (2% Ch + 2% GTE + 0.1% FO) to be applied to three fresh beef cuts (shoulder, Sh; knuckle, Kn; Striploin, St) based on its pH (5.8 ± 0.1), contact angle (22.3 ± 0.4°) and rheological parameters (viscosity = 0.05 Pa.s at shear rate > 20 s-1). Shelf-life analysis showed that the Ch-GTE-FO coating delayed lipid oxidation and reduced total viable counts (TVC) and Enterobacteriaceae growth compared with uncoated beef samples over five days. In addition, Ch-GTE-FO coating decreased total color changes of beef samples (e.g., ∆E* = 9.84 and 3.94, for non-coated and coated Kn samples, respectively) for up to five days. The original textural parameters (hardness, adhesiveness and springiness) of beef cuts were maintained during storage when Ch-GTE-FO coating was applied. Based on the physicochemical and microbial characterization results, the combination of the Ch-GTE-FO coating developed was effective in preserving the quality of fresh beef cuts during refrigerated storage along with vacuum packaging.
Collapse
Affiliation(s)
- Cíntia G Mendes
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS-Associate Laboratory, 4710-057 Braga, Portugal
| | - Joana T Martins
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS-Associate Laboratory, 4710-057 Braga, Portugal
| | - Fernanda L Lüdtke
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS-Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Geraldo
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research, University of Evora, 7006-554, Évora, Portugal
| | - Alfredo Pereira
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research, University of Evora, 7006-554, Évora, Portugal
| | - António A Vicente
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS-Associate Laboratory, 4710-057 Braga, Portugal
| | - Jorge M Vieira
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS-Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
10
|
Tsitsos A, Economou V, Chouliara E, Koutouzidou G, Arsenos G, Ambrosiadis I. Effect of Chitosan and Alginate-Based Edible Membranes with Oregano Essential Oil and Olive Oil in the Microbiological, Physicochemical and Organoleptic Characteristics of Mutton. Microorganisms 2023; 11:microorganisms11020507. [PMID: 36838470 PMCID: PMC9961988 DOI: 10.3390/microorganisms11020507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Edible chitosan or alginate coatings and their combinations with oregano essential oil or olive oil, have been examined for their effect on the microbiological, physicochemical and organoleptic characteristics of mutton. The results indicated that these edible coatings can contribute to maintaining good quality characteristics and extending mutton shelf-life. The total mesophilic counts in mutton ranged from 3.48 to 8.00 log10 CFU/g, the total psychrophilic counts from 4.00 to 9.50 log10 CFU/g, the B. thermosphacta counts from 2.30 to 7.77 log10 CFU/g and the lactic acid bacteria counts from 2.00 to 5.85 log10 CFU/g. Chitosan coatings significantly (p < 0.05) reduced the total mesophilic, the total psychrophilic (1-2 log10 cfu/g), the B. thermosphacta and the lactic acid bacteria counts in mutton. Alginate exhibited a lower L* value and a higher a* value and chroma compared with the control and chitosan lots. No significant differences were observed in the chemical composition of meat pieces among the experimental groups. Oregano oil positively affected the sensory attributes of meat. The most favourable combination, based on the microbiological counts, the organoleptic characteristics and the shelf-life extension of mutton, was that of chitosan with oregano essential oil.
Collapse
Affiliation(s)
- Anestis Tsitsos
- Laboratory of Animal Food Products Hygiene and Veterinary Public Health, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Vangelis Economou
- Laboratory of Animal Food Products Hygiene and Veterinary Public Health, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: ; Tel.: +30-2310-999875
| | - Eirini Chouliara
- Laboratory of Technology of Food Animal Origin, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgia Koutouzidou
- Department of Agriculture, School of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece
| | - Georgios Arsenos
- Laboratory of Animal Husbandry, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Ambrosiadis
- Laboratory of Technology of Food Animal Origin, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
11
|
Physicochemical and Antibacterial Properties of Alginate Films Containing Tansy ( Tanacetum vulgare L.) Essential Oil. Polymers (Basel) 2023; 15:polym15020260. [PMID: 36679141 PMCID: PMC9866307 DOI: 10.3390/polym15020260] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Tansy (Tanacetum vulgare) is a common plant used in folk medicine for digestive problems, fevers, and migraines; against parasites; and as an insect repellent. The active substances in essential oil are responsible for its antimicrobial and antioxidant activity. Thus, tansy essential oil (TO) was added to alginate films to fabricate materials with antioxidant and antibacterial properties for food packaging. Sodium alginate films with glycerol and TO were tested in terms of structure, mechanical, thermal, antioxidant, and antibacterial properties. The structure of the films was examined using SEM and an ATR-FTIR spectrophotometer. The addition of TO to the alginate film significantly changed the films' microstructure, making them rougher and porous. A low-intensity band at 1739 cm-1, indicative of the presence of TO, appeared in all spectra of alginate films with TO. Moreover, the studies revealed that essential oil acted as a plasticizer, slightly reducing tensile strength from about 7 MPa to 5 MPa and increasing elongation at break from 52% to 56% for the sample with 2% TO. The alginate films enriched in TO exhibited antioxidant properties (280 μmol Trolox/100 g of the sample with 2% TO) and antibacterial activity against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa.
Collapse
|
12
|
Characterization of chitosan edible coatings made with natural extracts of Solanum lycopersicum and Moringa oleifera for preserving fresh pork tenderloin. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01784-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Chaari M, Elhadef K, Akermi S, Ben Akacha B, Fourati M, Chakchouk Mtibaa A, Ennouri M, Sarkar T, Shariati MA, Rebezov M, Abdelkafi S, Mellouli L, Smaoui S. Novel Active Food Packaging Films Based on Gelatin-Sodium Alginate Containing Beetroot Peel Extract. Antioxidants (Basel) 2022; 11:2095. [PMID: 36358468 PMCID: PMC9686688 DOI: 10.3390/antiox11112095] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 08/13/2023] Open
Abstract
Currently, the exploration of natural colorants from vegetal waste has gained particular attention. Furthermore, incorporation of these natural sources into biopolymers is an encouraging environmentally friendly approach to establishing active films with biological activities for food packaging. The present study developed bioactive antioxidant films based on gelatin-sodium alginate (NaAlg) incorporated with aqueous beetroot peel extract (BPE). Firstly, the effects of combining gelatin-NaAlg and BPE at 0.25, 0.5, and 1% on the mechanical, physical, antioxidant, and antibacterial properties of the films were analyzed. With increasing BPE, mechanico-physical properties and antioxidant and anti-foodborne pathogen capacities were enhanced. Likewise, when added to gelatin-NaAlg films, BPE remarkably increased the instrumental color properties. Moreover, during 14 days of storage at 4 °C, the impact of gelatin-NaAlg coating impregnated with BPE on microbial and chemical oxidation and on the sensory characteristics of beef meat samples was periodically assessed. Interestingly, by the end of the storage, BPE at 1% limited the microbial deterioration, enhanced the instrumental color, delayed chemical oxidation, and improved sensory traits. By practicing chemometrics tools (principal component analysis and heat maps), all data provided valuable information for categorizing all samples regarding microbiological and oxidative properties, sensory features, and instrumental color. Our findings revealed the ability of gelatin-NaAlg with BPE as an antioxidant to be employed as food packaging for meat preservation.
Collapse
Affiliation(s)
- Moufida Chaari
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| | - Khaoula Elhadef
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| | - Sarra Akermi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| | - Boutheina Ben Akacha
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, Sfax 3018, Tunisia
| | - Mariam Fourati
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| | - Ahlem Chakchouk Mtibaa
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| | - Monia Ennouri
- Olive Tree Institute, University of Sfax, Sfax 3018, Tunisia
- Valuation, Security and Food Analysis Laboratory, National School of Engineers of Sfax, University of Sfax, Sfax 3038, Tunisia
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, Bengal State Council of Technical Education, Government of West Bengal, Malda 732102, West Bengal, India
| | - Mohammad Ali Shariati
- Department of Scientific Research, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127550 Moscow, Russia
| | - Maksim Rebezov
- Department of Scientific Research, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127550 Moscow, Russia
- Department of Scientific Research, V. M. Gorbatov Federal Research, Center for Food Systems, 26 Talalikhin St., 109316 Moscow, Russia
| | - Slim Abdelkafi
- Laboratory of Enzymatic Engineering and Microbiology, Algae Biotechnology Unit, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, Sfax 3038, Tunisia
| | - Lotfi Mellouli
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| |
Collapse
|
14
|
Chitin, Chitosan, and Nanochitin: Extraction, Synthesis, and Applications. Polymers (Basel) 2022; 14:polym14193989. [PMID: 36235937 PMCID: PMC9571330 DOI: 10.3390/polym14193989] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
Crustacean shells are a sustainable source of chitin. Extracting chitin from crustacean shells is ongoing research, much of which is devoted to devising a sustainable process that yields high-quality chitin with minimal waste. Chemical and biological methods have been used extensively for this purpose; more recently, methods based on ionic liquids and deep eutectic solvents have been explored. Extracted chitin can be converted into chitosan or nanochitin. Once chitin is obtained and modified into the desired form, it can be used in a wide array of applications, including as a filler material, in adsorbents, and as a component in biomaterials, among others. Describing the extraction of chitin, synthesis of chitosan and nanochitin, and applications of these materials is the aim of this review. The first section of this review summarizes and compares common chitin extraction methods, highlighting the benefits and shortcomings of each, followed by descriptions of methods to convert chitin into chitosan and nanochitin. The second section of this review discusses some of the wide range of applications of chitin and its derivatives.
Collapse
|
15
|
Hoa VB, Song DH, Seol KH, Kang SM, Kim HW, Kim JH, Moon SS, Cho SH. Application of a Newly Developed Chitosan/Oleic Acid Edible Coating for Extending Shelf-Life of Fresh Pork. Foods 2022; 11:foods11131978. [PMID: 35804793 PMCID: PMC9265712 DOI: 10.3390/foods11131978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 01/19/2023] Open
Abstract
This study aimed at evaluating the applicability of a newly-developed chitosan/oleic acid edible coating for extending the shelf-life of fresh pork under aerobic-packaging conditions. Various coating formulations were used: 2% chitosan alone (CHI), 0.5% (v/v) oleic acid in 2% chitosan (CHI/0.5%OA) and 1% (v/v) oleic acid in 2% chitosan (CHI/1%OA) were prepared. For coating, fresh pork slices were fully immersed in the coating solutions for 30 s and dried naturally at 4 °C for 30 min. The coated samples were placed on trays, over-wrapped with plastic film, stored at 4 °C for 21 days, and were analyzed for shelf-life stability. Samples without coating were used as control. It was found that the aerobic bacteria and Pseudomonas spp. counts, and total volatile basic nitrogen (TVBN) content were almost two to three times lower in the CHI/OA-coated samples compared to the control after 21 days of storage (p < 0.05). The CHI/OA coating combination completely inhibited growth of E. coli, and protected the meat from discoloration after 21 days of storage. In particular, the addition of OA increased the concentration of volatiles associated with pleasant aromas. This study provides an application potential of chitosan/oleic acid edible coating in preservation of fresh pork to prolong the shelf-life and improve safety.
Collapse
Affiliation(s)
- Van-Ba Hoa
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (V.-B.H.); (D.-H.S.); (K.-H.S.); (S.-M.K.); (H.-W.K.); (J.-H.K.)
| | - Dong-Heon Song
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (V.-B.H.); (D.-H.S.); (K.-H.S.); (S.-M.K.); (H.-W.K.); (J.-H.K.)
| | - Kuk-Hwan Seol
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (V.-B.H.); (D.-H.S.); (K.-H.S.); (S.-M.K.); (H.-W.K.); (J.-H.K.)
| | - Sun-Moon Kang
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (V.-B.H.); (D.-H.S.); (K.-H.S.); (S.-M.K.); (H.-W.K.); (J.-H.K.)
| | - Hyun-Wook Kim
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (V.-B.H.); (D.-H.S.); (K.-H.S.); (S.-M.K.); (H.-W.K.); (J.-H.K.)
| | - Jin-Hyoung Kim
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (V.-B.H.); (D.-H.S.); (K.-H.S.); (S.-M.K.); (H.-W.K.); (J.-H.K.)
| | | | - Soo-Hyun Cho
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (V.-B.H.); (D.-H.S.); (K.-H.S.); (S.-M.K.); (H.-W.K.); (J.-H.K.)
- Correspondence: ; Tel.: +82-(0)63-238-7351
| |
Collapse
|
16
|
Natural Polymers Used in Edible Food Packaging—History, Function and Application Trends as a Sustainable Alternative to Synthetic Plastic. POLYSACCHARIDES 2021. [DOI: 10.3390/polysaccharides3010002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this review, a historical perspective, functional and application trends of natural polymers used to the development of edible food packaging were presented and discussed. Polysaccharides and proteins, i.e., alginate; carrageenan; chitosan; starch; pea protein, were considered. These natural polymers are important materials obtained from renewable plant, algae and animal sources, as well as from agroindustrial residues. Historically, some of them have been widely used by ancient populations for food packaging until these were replaced by petroleum-based plastic materials after World War II. Nowadays, biobased materials for food packaging have attracted attention. Their use was boosted especially because of the environmental pollution caused by inappropriate disposal of plastic packaging. Biobased materials are welcome to the design of food packaging because they possess many advantages, such as biodegradability, biocompatibility and low toxicity. Depending on the formulation, certain biopolymer-based packaging may present good barrier properties, antimicrobial and antioxidant activities Thus, polysaccharides and proteins can be combined to form diverse composite films with improved mechanical and biological behaviors, making them suitable for packaging of different food products.
Collapse
|