1
|
Mao X, Hao C. Recent advances in the use of composite titanium dioxide nanomaterials in the food industry. J Food Sci 2024; 89:1310-1323. [PMID: 38343295 DOI: 10.1111/1750-3841.16968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/08/2023] [Accepted: 01/18/2024] [Indexed: 03/12/2024]
Abstract
Titanium dioxide (TiO2 ) nanomaterials have attracted significant attention due to their good biocompatibility and potential for multifunctional applications. In the last few years, there has been growing interest in the use of TiO2 nanomaterials in the food industry. However, a systematic review of the synthesis methods, properties, and applications of TiO2 nanomaterials in the food industry is lacking. In this review, we provide a summary of the synthesis and properties of TiO2 nanomaterials and their composites, with a focus on their applications in the food industry. We also discuss the potential benefits and risks of using TiO2 nanomaterials in food applications. This review aims to promote food innovation and improve food quality and safety.
Collapse
Affiliation(s)
- Xixi Mao
- School of Marxism, Jiangnan University, Wuxi, Jiangsu, China
| | - Changlong Hao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
2
|
Tsounidi D, Soulis D, Manoli F, Klinakis A, Tsekenis G. AChE-based electrochemical biosensor for pesticide detection in vegetable oils: matrix effects and synergistic inhibition of the immobilized enzyme. Anal Bioanal Chem 2023; 415:615-625. [PMID: 36445454 PMCID: PMC9839810 DOI: 10.1007/s00216-022-04448-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022]
Abstract
Enzyme-based electrochemical biosensors have been widely deployed for the detection of a range of contaminants in different food products due to their significant advantages over other (bio)sensing techniques. Nevertheless, their performance is greatly affected by the sample matrix itself or by the matrix they are presented with in pretreated samples, both of which can impact the accuracy as well as the sensitivity of the measurements. Therefore, and in order to acquire reliable and accurate measurements, matrix effects and their influence on sensor performance should be taken into consideration. Herein, acetylcholinesterase (AChE)-modified electrochemical sensors were employed for the detection of pesticides in vegetable oils. Sensor interrogation with pretreated oil samples, spiked with carbofuran, revealed the inhibitory potential of the extracted matrix varies between different types of vegetable oil and their fatty acid content. In addition, synergies between the extracted matrix from different types of vegetable oils and the carbamate pesticide, carbofuran, were observed, which led to significant deviations of the sensor's performance from its anticipated behavior in buffered solution. Taking the aforementioned into consideration, appropriate calibration curves for each type of vegetable oil were drafted, which allowed for the highly reproducible determination of different pesticide concentrations in pretreated real samples. Collectively, a better understanding of AChE inhibition by single or multiple contaminants present in vegetable oils was gained, which can find many applications in numerous fields, ranging from sensor development to the design of new pesticides and medicinal products.
Collapse
Affiliation(s)
- Dimitra Tsounidi
- grid.417975.90000 0004 0620 8857Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Dionysios Soulis
- grid.417975.90000 0004 0620 8857Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Fotini Manoli
- Minerva SA Edible Oils & Food Enterprises, Athens, Greece
| | - Apostolos Klinakis
- grid.417975.90000 0004 0620 8857Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - George Tsekenis
- grid.417975.90000 0004 0620 8857Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
3
|
Photoelectrochemical biosensor based on FTO modified with BiVO4 film and gold nanoparticles for detection of miRNA-25 biomarker and single-base mismatch. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Ivanov A, Stoikov D, Shafigullina I, Shurpik D, Stoikov I, Evtugyn G. Flow-Through Acetylcholinesterase Sensor with Replaceable Enzyme Reactor. BIOSENSORS 2022; 12:bios12090676. [PMID: 36140061 PMCID: PMC9496324 DOI: 10.3390/bios12090676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022]
Abstract
Fast and reliable determination of enzyme inhibitors are of great importance in environmental monitoring and biomedicine because of the high biological activity and toxicity of such species and the necessity of their reliable assessment in many media. In this work, a flow-through biosensor has been developed and produced by 3D printing from poly(lactic acid). Acetylcholinesterase from an electric eel was immobilized on the inner walls of the reactor cell. The concentration of thiocholine formed in enzymatic hydrolysis of the substrate was monitored amperometrically with a screen-printed carbon electrode modified with carbon black particles, pillar[5]arene, electropolymerized Methylene blue and thionine. In the presence of thiocholine, the cathodic current at −0.25 V decreased because of an alternative chemical reaction of the macrocycle. The conditions of enzyme immobilization and signal measurements were optimized and the performance of the biosensor was assessed in the determination of reversible (donepezil, berberine) and irreversible (carbofuran) inhibitors. In the optimal conditions, the flow-through biosensor made it possible to determine 1.0 nM–1.0 μM donepezil, 1.0 μM–1.0 mM berberine and 10 nM to 0.1 μM carbofuran. The AChE biosensor was tested on spiked samples of artificial urine for drugs and peanuts for carbofuran. Possible interference of the sample components was eliminated by dilution of the samples with phosphate buffer. Easy mounting, low cost of replaceable parts of the cell and satisfactory analytical and metrological characteristics made the biosensor a promising future application as a point-of-care or point-of-demand device outside of a chemical laboratory.
Collapse
Affiliation(s)
- Alexey Ivanov
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
- Correspondence: ; Tel.: +7-(843)-233-74-91
| | - Dmitry Stoikov
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Insiya Shafigullina
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Dmitry Shurpik
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Ivan Stoikov
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Gennady Evtugyn
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
- Analytical Chemistry Department, Chemical Technology Institute, Ural Federal University, 19 Mira Street, 620002 Ekaterinburg, Russia
| |
Collapse
|
5
|
Pérez-Fernández B, Muñiz ADLE. Electrochemical biosensors based on nanomaterials for aflatoxins detection: A review (2015–2021). Anal Chim Acta 2022; 1212:339658. [DOI: 10.1016/j.aca.2022.339658] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 12/25/2022]
|
6
|
Guo W, Wang J, Guo W, Kang Q, Zhou F. Interference-free photoelectrochemical immunoassays using carboxymethylated dextran-coated and gold-modified TiO 2 nanotube arrays. Anal Bioanal Chem 2021; 413:4847-4854. [PMID: 34115147 DOI: 10.1007/s00216-021-03442-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/20/2021] [Accepted: 05/28/2021] [Indexed: 11/25/2022]
Abstract
An interference-free photoelectrochemical (PEC) immunoassay was developed for cardiac troponin I (cTnI) detection. Covalent linkage of cTnI antibody to carboxymethylated (CM-) dextran pre-immobilized onto a gold nanoparticles (AuNPs)-modified TiO2 nanotube array (NTA) affords five consecutive analyte captures with surface regenerations in between. Changes in the photocurrents at this photoanode before and after cTnI captures can be well fitted with the Langmuir isotherm from 0.220 pM to 2.20 nM cTnI. Owing to the inherently high sensitivity of the PEC detection, the detection limit (2.20 pg/mL) is lower than the range attainable with the enzyme-linked immunosorbent assay (ELISA) (6.00-40.0 pg/mL). Furthermore, CM-dextran prevents species in complex biological matrices from nonspecifically adsorbing onto the sensor surface, a feature not attainable with uncoated semiconductor electrodes or those coated with non-hydrogel-based chemical modifiers. The excellent anti-fouling property of dextran hydrogel allowed us to validate the accuracy of our regenerable sensors through a comparison of PEC immunoassays of patient sera to those of ELISA.
Collapse
Affiliation(s)
- Wanze Guo
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong, 250022, People's Republic of China
| | - Jinping Wang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong, 250022, People's Republic of China.
| | - Wenjuan Guo
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong, 250022, People's Republic of China
| | - Qing Kang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong, 250022, People's Republic of China.
| | - Feimeng Zhou
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong, 250022, People's Republic of China
| |
Collapse
|
7
|
Long Y, Yuan C, Wang X, Jin D, Zhou H, Wang Q, Lu C, Chen Y, Cong Y, Wang Q, Zhang Y. Dielectric barrier discharge plasma-assisted modification of g-C 3N 4/Ag 2O/TiO 2-NRs composite enhanced photoelectrocatalytic activity. J Environ Sci (China) 2021; 104:113-127. [PMID: 33985715 DOI: 10.1016/j.jes.2020.11.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Dielectric barrier discharge (DBD) plasma applied as surface treatment technology was employed for the modification of Ag2O and graphitic carbon nitride (g-C3N4) powders. Subsequently, the pretreated powders were sequentially loaded onto TiO2 nanorods (TiO2-NRs) via electro-deposition, followed by calcination at N2 atmosphere. The results indicated that at the optimal plasma discharge time of 5 min for modification of g-C3N4 and Ag2O, photocurrent density of ternary composite was 6 times to bare TiO2-NRs under UV-visible light irradiation. Phenol was degraded by using DBD plasma-modified g-C3N4/Ag2O/TiO2-NRs electrode to analyze the photoelectrocatalytic performance. The removal rate of phenol for g-C3N4-5/Ag2O-5/TiO2-NRs electrode was about 3.07 times to that for TiO2-NRs electrode. During active species scavengers' analysis, superoxide radicals and hydroxyl radicals were the main oxidation active species for pollutants degradation. A possible electron-hole separation and transfer mechanism of ternary composite with high photoelectrocatalytic performance was proposed.
Collapse
Affiliation(s)
- Yupei Long
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Chenchen Yuan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xiaomin Wang
- Ecological Environmental Science Design and Research Institute of Zhejiang Province, Hangzhou, 310007, China
| | - Dongyan Jin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Hong Zhou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Qiongyin Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Chenyang Lu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yuqi Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yanqing Cong
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Qi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yi Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
8
|
|
9
|
Enhancement of Biosensors by Implementing Photoelectrochemical Processes. SENSORS 2020; 20:s20113281. [PMID: 32526947 PMCID: PMC7308923 DOI: 10.3390/s20113281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 12/15/2022]
Abstract
Research on biosensors is growing in relevance, taking benefit from groundbreaking knowledge that allows for new biosensing strategies. Electrochemical biosensors can benefit from research on semiconducting materials for energy applications. This research seeks the optimization of the semiconductor-electrode interfaces including light-harvesting materials, among other improvements. Once that knowledge is acquired, it can be implemented with biological recognition elements, which are able to transfer a chemical signal to the photoelectrochemical system, yielding photo-biosensors. This has been a matter of research as it allows both a superior suppression of background electrochemical signals and the switching ON and OFF upon illumination. Effective electrode-semiconductor interfaces and their coupling with biorecognition units are reviewed in this work.
Collapse
|
10
|
|
11
|
The Influence of the Parameters of a Gold Nanoparticle Deposition Method on Titanium Dioxide Nanotubes, Their Electrochemical Response, and Protein Adsorption. BIOSENSORS-BASEL 2019; 9:bios9040138. [PMID: 31756994 PMCID: PMC6956335 DOI: 10.3390/bios9040138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 12/20/2022]
Abstract
The goal of this research was to find the best conditions to prepare titanium dioxide nanotubes (TNTs) modified with gold nanoparticles (AuNPs). This paper, for the first time, reports on the influence of the parameters of cyclic voltammetry process (CV) -based AuNP deposition, i.e., the number of cycles and the concentration of gold salt solution, on corrosion resistance and the capacitance of TNTs. Another innovation was to fabricate AuNPs with well-formed spherical geometry and uniform distribution on TNTs. The AuNPs/TNTs were characterized using scanning electron microscopy, X-ray photoelectron spectroscopy, electrochemical impedance spectroscopy, and open-circuit potential measurement. From the obtained results, the correlation between the deposition process parameters, the AuNP diameters, and the electrical conductivity of the TNTs was found in a range from 14.3 ± 1.8 to 182.3 ± 51.7 nm. The size and amount of the AuNPs could be controlled by the number of deposition cycles and the concentration of the gold salt solution. The modification of TNTs using AuNPs facilitated electron transfer, increased the corrosion resistance, and caused better adsorption properties for bovine serum albumin.
Collapse
|
12
|
Xue Z, Zhang Y, Yu W, Zhang J, Wang J, Wan F, Kim Y, Liu Y, Kou X. Recent advances in aflatoxin B1 detection based on nanotechnology and nanomaterials-A review. Anal Chim Acta 2019; 1069:1-27. [DOI: 10.1016/j.aca.2019.04.032] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/22/2019] [Accepted: 04/15/2019] [Indexed: 02/02/2023]
|
13
|
Shamagsumova RV, Yu. Efimova O, Gorbatchuk VV, Evtugyn VG, Stoikov II, Evtugyn GA. Electrochemical Acetylcholinesterase Biosensor Based on Polylactide–Nanosilver Composite for the Determination of Anti-dementia Drugs. ANAL LETT 2019. [DOI: 10.1080/00032719.2018.1557202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rezeda V. Shamagsumova
- Chemistry Institute named after A.M. Butlerov of Kazan Federal University, Kazan, Russian Federation
| | - Olga Yu. Efimova
- Chemistry Institute named after A.M. Butlerov of Kazan Federal University, Kazan, Russian Federation
| | | | - Vladimir G. Evtugyn
- Interdisciplinary Center of Analytical Microscopy, Kazan Federal University, Kazan, Russian Federation
| | - Ivan I. Stoikov
- Chemistry Institute named after A.M. Butlerov of Kazan Federal University, Kazan, Russian Federation
| | - Gennady A. Evtugyn
- Chemistry Institute named after A.M. Butlerov of Kazan Federal University, Kazan, Russian Federation
| |
Collapse
|