1
|
Wang Y, Su Y, Zhao K, Huo D, Du Z, Wang Z, Xie H, Liu L, Jin Q, Ren X, Chen X, Zhang D. A deep learning drug screening framework for integrating local-global characteristics: A novel attempt for limited data. Heliyon 2024; 10:e34244. [PMID: 39130417 PMCID: PMC11315141 DOI: 10.1016/j.heliyon.2024.e34244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/31/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
At the beginning of the "Disease X" outbreak, drug discovery and development are often challenged by insufficient and unbalanced data. To address this problem and maximize the information value of limited data, we propose a drug screening model, LGCNN, based on convolutional neural network (CNN), which enables rapid drug screening by integrating features of drug molecular structures and drug-target interactions at both local and global (LG) levels. Experimental results show that LGCNN exhibits better performance compared to other state-of-the-art classification methods under limited data. In addition, LGCNN was applied to anti-SARS-CoV-2 drug screening to realize therapeutic drug mining against COVID-19. LGCNN transcends the limitations of traditional models for predicting interactions between single drug targets and shows new advantages in predicting multi-target drug-target interactions. Notably, the cross-coronavirus generalizability of the model is also implied by the analysis of targets, drugs, and mechanisms in the prediction results. In conclusion, LGCNN provides new ideas and methods for rapid drug screening in emergency situations where data are scarce.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Yangguang Su
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Kairui Zhao
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Diwei Huo
- The Fourth Hospital of Harbin Medical University, No.37 Yiyuan Street, Harbin, Heilongjiang, 150001, China
| | - Zhenshun Du
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Zhiju Wang
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Hongbo Xie
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Lei Liu
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Qing Jin
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Xuekun Ren
- College of Mathematics of Harbin Institute of Technology, No.92 Xidazhi Street, Harbin, Heilongjiang, 150001, China
| | - Xiujie Chen
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Denan Zhang
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| |
Collapse
|
2
|
Mollaamin F. Structural and Functional Characterization of Medicinal Plants as Selective Antibodies towards Therapy of COVID-19 Symptoms. Antibodies (Basel) 2024; 13:38. [PMID: 38804306 PMCID: PMC11130808 DOI: 10.3390/antib13020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/23/2023] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Considering the COVID-19 pandemic, this research aims to investigate some herbs as probable therapies for this disease. Achillea millefolium (Yarrow), Alkanet, Rumex patientia (Patience dock), Dill, Tarragon, and sweet fennel, including some principal chemical compounds of achillin, alkannin, cuminaldehyde, dillapiole, estragole, and fenchone have been selected. The possible roles of these medicinal plants in COVID-19 treatment have been investigated through quantum sensing methods. The formation of hydrogen bonding between the principal substances selected in anti-COVID natural drugs and Tyr-Met-His (the database amino acids fragment), as the active area of the COVID protein, has been evaluated. The physical and chemical attributes of nuclear magnetic resonance, vibrational frequency, the highest occupied molecular orbital energy and the lowest unoccupied molecular orbital energy, partial charges, and spin density have been investigated using the DFT/TD-DFT method and 6-311+G (2d,p) basis set by the Gaussian 16 revision C.01 program toward the industry of drug design. This research has exhibited that there is relative agreement among the results that these medicinal plants could be efficient against COVID-19 symptoms.
Collapse
Affiliation(s)
- Fatemeh Mollaamin
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu 37150, Turkey
| |
Collapse
|
3
|
Varghese R, Digholkar G, Karsiya J, Salvi S, Shah J, Kumar D, Sharma R. PDE5 inhibitors: breaking new grounds in the treatment of COVID-19. Drug Metab Pers Ther 2023; 38:295-307. [PMID: 38167268 DOI: 10.1515/dmpt-2023-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/30/2023] [Indexed: 01/05/2024]
Abstract
INTRODUCTION Despite the ever-increasing occurrences of the coronavirus disease (COVID-19) cases around the world, very few medications have been validated in the clinical trials to combat COVID-19. Although several vaccines have been developed in the past quarter, the time elapsed between deployment and administration remains a major impediment. CONTENT Repurposing of pre-approved drugs, such as phosphodiesterase 5 (PDE5) inhibitors, could be a game-changer while lessening the burden on the current healthcare system. Repurposing and developing phosphodiesterase 5 (PDE5) inhibitors could extrapolate their utility to combat the SARS-CoV-2 infection, and potentially aid in the management of the symptoms associated with its newer variants such as BF.7, BQ.1, BQ.1.1, XBB.1.5, and XBB.1.16. SUMMARY Administration of PDE5 inhibitors via the oral and intravenous route demonstrates other potential off-label benefits, including anti-apoptotic, anti-inflammatory, antioxidant, and immunomodulatory effects, by intercepting several pathways. These effects can not only be of clinical importance in mild-to-moderate, but also moderate-to-severe SARS-CoV-2 infections. This article explores the various mechanisms by which PDE5 inhibitors alleviates the symptoms associated with COVID-19 as well as well as highlights recent studies and findings. OUTLOOK These benefits of PDE5 inhibitors make it a potential drug in the physicians' armamentarium in alleviating symptoms associated with SARS-CoV-2 infection. However, adequate clinical studies must be instituted to eliminate any untoward adverse events.
Collapse
Affiliation(s)
- Ryan Varghese
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Gargi Digholkar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Jainam Karsiya
- River Route Creative Group LLP, Mumbai, Maharashtra, India
| | - Sahil Salvi
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Jeenam Shah
- Department of Pulmonology, Saifee Hospital, Girgaon, Mumbai, Maharashtra, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
- Department of Entomology, University of California, Davis, CA, USA
- UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
4
|
Varghese R, Digholkar G, Karsiya J, Salvi S, Shah J, Kumar D, Sharma R. PDE5 inhibitors: breaking new grounds in the treatment of COVID-19. Drug Metab Pers Ther 2023; 0:dmdi-2023-0011. [PMID: 37608528 DOI: 10.1515/dmdi-2023-0011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/30/2023] [Indexed: 08/24/2023]
Abstract
INTRODUCTION Despite the ever-increasing occurrences of the coronavirus disease (COVID-19) cases around the world, very few medications have been validated in the clinical trials to combat COVID-19. Although several vaccines have been developed in the past quarter, the time elapsed between deployment and administration remains a major impediment. CONTENT Repurposing of pre-approved drugs, such as phosphodiesterase 5 (PDE5) inhibitors, could be a game-changer while lessening the burden on the current healthcare system. Repurposing and developing phosphodiesterase 5 (PDE5) inhibitors could extrapolate their utility to combat the SARS-CoV-2 infection, and potentially aid in the management of the symptoms associated with its newer variants such as BF.7, BQ.1, BQ.1.1, XBB.1.5, and XBB.1.16. SUMMARY Administration of PDE5 inhibitors via the oral and intravenous route demonstrates other potential off-label benefits, including anti-apoptotic, anti-inflammatory, antioxidant, and immunomodulatory effects, by intercepting several pathways. These effects can not only be of clinical importance in mild-to-moderate, but also moderate-to-severe SARS-CoV-2 infections. This article explores the various mechanisms by which PDE5 inhibitors alleviates the symptoms associated with COVID-19 as well as well as highlights recent studies and findings. OUTLOOK These benefits of PDE5 inhibitors make it a potential drug in the physicians' armamentarium in alleviating symptoms associated with SARS-CoV-2 infection. However, adequate clinical studies must be instituted to eliminate any untoward adverse events.
Collapse
Affiliation(s)
- Ryan Varghese
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Gargi Digholkar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Jainam Karsiya
- River Route Creative Group LLP, Mumbai, Maharashtra, India
| | - Sahil Salvi
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Jeenam Shah
- Department of Pulmonology, Saifee Hospital, Girgaon, Mumbai, Maharashtra, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
- Department of Entomology, University of California, Davis, CA, USA
- UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
5
|
Islam MA, Kibria MK, Hossen MB, Reza MS, Tasmia SA, Tuly KF, Mosharof MP, Kabir SR, Kabir MH, Mollah MNH. Bioinformatics-based investigation on the genetic influence between SARS-CoV-2 infections and idiopathic pulmonary fibrosis (IPF) diseases, and drug repurposing. Sci Rep 2023; 13:4685. [PMID: 36949176 PMCID: PMC10031699 DOI: 10.1038/s41598-023-31276-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/09/2023] [Indexed: 03/24/2023] Open
Abstract
Some recent studies showed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and idiopathic pulmonary fibrosis (IPF) disease might stimulate each other through the shared genes. Therefore, in this study, an attempt was made to explore common genomic biomarkers for SARS-CoV-2 infections and IPF disease highlighting their functions, pathways, regulators and associated drug molecules. At first, we identified 32 statistically significant common differentially expressed genes (cDEGs) between disease (SARS-CoV-2 and IPF) and control samples of RNA-Seq profiles by using a statistical r-package (edgeR). Then we detected 10 cDEGs (CXCR4, TNFAIP3, VCAM1, NLRP3, TNFAIP6, SELE, MX2, IRF4, UBD and CH25H) out of 32 as the common hub genes (cHubGs) by the protein-protein interaction (PPI) network analysis. The cHubGs regulatory network analysis detected few key TFs-proteins and miRNAs as the transcriptional and post-transcriptional regulators of cHubGs. The cDEGs-set enrichment analysis identified some crucial SARS-CoV-2 and IPF causing common molecular mechanisms including biological processes, molecular functions, cellular components and signaling pathways. Then, we suggested the cHubGs-guided top-ranked 10 candidate drug molecules (Tegobuvir, Nilotinib, Digoxin, Proscillaridin, Simeprevir, Sorafenib, Torin 2, Rapamycin, Vancomycin and Hesperidin) for the treatment against SARS-CoV-2 infections with IFP diseases as comorbidity. Finally, we investigated the resistance performance of our proposed drug molecules compare to the already published molecules, against the state-of-the-art alternatives publicly available top-ranked independent receptors by molecular docking analysis. Molecular docking results suggested that our proposed drug molecules would be more effective compare to the already published drug molecules. Thus, the findings of this study might be played a vital role for diagnosis and therapies of SARS-CoV-2 infections with IPF disease as comorbidity risk.
Collapse
Affiliation(s)
- Md Ariful Islam
- Bioinformatics Lab(Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Kaderi Kibria
- Bioinformatics Lab(Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Bayazid Hossen
- Bioinformatics Lab(Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Selim Reza
- Bioinformatics Lab(Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Samme Amena Tasmia
- Bioinformatics Lab(Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Khanis Farhana Tuly
- Bioinformatics Lab(Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Parvez Mosharof
- Bioinformatics Lab(Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
- School of Business, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Syed Rashel Kabir
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Hadiul Kabir
- Bioinformatics Lab(Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Nurul Haque Mollah
- Bioinformatics Lab(Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
6
|
Kukreja RC, Wang R, Koka S, Das A, Samidurai A, Xi L. Treating diabetes with combination of phosphodiesterase 5 inhibitors and hydroxychloroquine-a possible prevention strategy for COVID-19? Mol Cell Biochem 2023; 478:679-696. [PMID: 36036333 PMCID: PMC9421626 DOI: 10.1007/s11010-022-04520-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/30/2022] [Indexed: 01/09/2023]
Abstract
Type 2 diabetes (T2D) is one of the major risk factors for developing cardiovascular disease and the resultant devastating morbidity and mortality. The key features of T2D are hyperglycemia, hyperlipidemia, insulin resistance, and impaired insulin secretion. Patients with diabetes and myocardial infarction have worse prognosis than those without T2D. Moreover, obesity and T2D are recognized risk factors in developing severe form of COVID-19 with higher mortality rate. The current lines of drug therapy are insufficient to control T2D and its serious cardiovascular complications. Phosphodiesterase 5 (PDE5) is a cGMP specific enzyme, which is the target of erectile dysfunction drugs including sildenafil, vardenafil, and tadalafil. Cardioprotective effects of PDE5 inhibitors against ischemia/reperfusion (I/R) injury were reported in normal and diabetic animals. Hydroxychloroquine (HCQ) is a widely used antimalarial and anti-inflammatory drug and its hyperglycemia-controlling effect in diabetic patients is also under investigation. This review provides our perspective of a potential use of combination therapy of PDE5 inhibitor with HCQ to reduce cardiovascular risk factors and myocardial I/R injury in T2D. We previously observed that diabetic mice treated with tadalafil and HCQ had significantly reduced fasting blood glucose and lipid levels, increased plasma insulin and insulin-like growth factor-1 levels, and improved insulin sensitivity, along with smaller myocardial infarct size following I/R. The combination treatment activated Akt/mTOR cellular survival pathway, which was likely responsible for the salutary effects. Therefore, pretreatment with PDE5 inhibitor and HCQ may be a potentially useful therapy not only for controlling T2D but also reducing the rate and severity of COVID-19 infection in the vulnerable population of diabetics.
Collapse
Affiliation(s)
- Rakesh C Kukreja
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-020D, Box 980204, Richmond, VA, 23298-0204, USA.
| | - Rui Wang
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-020D, Box 980204, Richmond, VA, 23298-0204, USA
| | - Saisudha Koka
- Department of Microbiology, Immunology and Pharmacology, Arkansas College of Osteopathic Medicine, Fort Smith, AR, 72916-6024, USA
| | - Anindita Das
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-020D, Box 980204, Richmond, VA, 23298-0204, USA
| | - Arun Samidurai
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-020D, Box 980204, Richmond, VA, 23298-0204, USA
| | - Lei Xi
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-020D, Box 980204, Richmond, VA, 23298-0204, USA.
| |
Collapse
|
7
|
Hanai T. Further quantitative in silico analysis of SARS-CoV-2 S-RBD Omicron BA.4, BA.5, BA.2.75, BQ.1, and BQ.1.1 transmissibility. Talanta 2023; 254:124127. [PMID: 36462284 PMCID: PMC9682881 DOI: 10.1016/j.talanta.2022.124127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
The Covid-19 variants' transmissibility was further quantitatively analyzed in silico to study the binding strength with ACE-2 and find the binding inhibitors. The molecular interaction energy values of their optimized complex structures (MIFS) demonstrated that Omicron BA.4 and 5's MIFS value (344.6 kcal mol-1) was equivalent to wild-type MIFS (346.1 kcal mol-1), that of Omicron BQ.1 and BQ. 1.1's MIFS value (309.9 and 364.6 kcal mol-1). Furthermore, the MIFS value of Omicron BA.2.75 (515.1 kcal mol-1) was about Delta-plus (511.3 kcal mol-1). The binding strength of Omicron BA.4, BA. 5, and BQ.1.1 may be neglectable, but that of Omicron BA.2.75 was urging. Furthermore, the 79 medicine candidates were analyzed as the binding inhibitors from binding strength with ACE-2. Only carboxy compounds were repulsed from the ACE-2 binding site indicating that further modification of medical treatment candidates may produce an effective binding inhibitor.
Collapse
Affiliation(s)
- Toshihiko Hanai
- Health Research Foundation, Research Institute for Production Development 4F, Sakyo-Ku, Kyoto, 606-0805, Japan.
| |
Collapse
|
8
|
Elmi A, Mohamed AS, Said S, Bationo R. A Comparison Study of Medicinal Plants Used Against SARS-CoV-2 and Those Recommended Against Malaria in Africa. ETHNOPHARMACOLOGY AND DRUG DISCOVERY FOR COVID-19: ANTI-SARS-COV-2 AGENTS FROM HERBAL MEDICINES AND NATURAL PRODUCTS 2023:549-573. [DOI: 10.1007/978-981-99-3664-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Zaccaria M, Genovese L, Dawson W, Cristiglio V, Nakajima T, Johnson W, Farzan M, Momeni B. Probing the mutational landscape of the SARS-CoV-2 spike protein via quantum mechanical modeling of crystallographic structures. PNAS NEXUS 2022; 1:pgac180. [PMID: 36712320 PMCID: PMC9802038 DOI: 10.1093/pnasnexus/pgac180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/29/2022] [Indexed: 02/01/2023]
Abstract
We employ a recently developed complexity-reduction quantum mechanical (QM-CR) approach, based on complexity reduction of density functional theory calculations, to characterize the interactions of the SARS-CoV-2 spike receptor binding domain (RBD) with ACE2 host receptors and antibodies. QM-CR operates via ab initio identification of individual amino acid residue's contributions to chemical binding and leads to the identification of the impact of point mutations. Here, we especially focus on the E484K mutation of the viral spike protein. We find that spike residue 484 hinders the spike's binding to the human ACE2 receptor (hACE2). In contrast, the same residue is beneficial in binding to the bat receptor Rhinolophus macrotis ACE2 (macACE2). In agreement with empirical evidence, QM-CR shows that the E484K mutation allows the spike to evade categories of neutralizing antibodies like C121 and C144. The simulation also shows how the Delta variant spike binds more strongly to hACE2 compared to the original Wuhan strain, and predicts that a E484K mutation can further improve its binding. Broad agreement between the QM-CR predictions and experimental evidence supports the notion that ab initio modeling has now reached the maturity required to handle large intermolecular interactions central to biological processes.
Collapse
Affiliation(s)
- Marco Zaccaria
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | - Luigi Genovese
- Université Grenoble Alpes, CEA, INAC-MEM, L_Sim, 38000 Grenoble, France
| | - William Dawson
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minamimi-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | | | - Takahito Nakajima
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minamimi-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Welkin Johnson
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | - Michael Farzan
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458,
USA
| | - Babak Momeni
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
10
|
Negru PA, Miculas DC, Behl T, Bungau AF, Marin RC, Bungau SG. Virtual screening of substances used in the treatment of SARS-CoV-2 infection and analysis of compounds with known action on structurally similar proteins from other viruses. Biomed Pharmacother 2022; 153:113432. [PMID: 36076487 PMCID: PMC9289048 DOI: 10.1016/j.biopha.2022.113432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 12/12/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is considered the etiological agent of the disease that caused the COVID-19 pandemic, and for which there is currently no effective treatment. This pandemic has shown that the rapid identification of therapeutic compounds is critical (when a new virus with high transmissibility occurs) to prevent or reduce as much as possible the loss of human lives. To meet the urgent need for drugs, many strategies were applied for the discovery, respectively the identification of potential therapies / drugs for SARS-CoV-2. Molecular docking and virtual screening are two of the in silico tools/techniques that provided the identification of few SARS-CoV-2 inhibitors, removing ineffective or less effective drugs and thus preventing the loss of resources such as time and additional costs. The main target of this review is to provide a comprehensive overview of how in-silico tools have been used in the crisis management of anti-SARS-CoV-2 drugs, especially in virtual screening of substances used in the treatment of SARS-CoV-2 infection and analysis of compounds with known action on structurally similar proteins from other viruses; also, completions were added to the way in which these methods came to meet the requirements of biomedical research in the field. Moreover, the importance and impact of the topic approached for researchers was highlighted by conducting an extensive bibliometric analysis.
Collapse
Affiliation(s)
- Paul Andrei Negru
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Denisa Claudia Miculas
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania.
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Alexa Florina Bungau
- Medicine Programm of Study, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Ruxandra-Cristina Marin
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| |
Collapse
|
11
|
Kumar S, Kovalenko S, Bhardwaj S, Sethi A, Gorobets NY, Desenko SM, Poonam, Rathi B. Drug repurposing against SARS-CoV-2 using computational approaches. Drug Discov Today 2022; 27:2015-2027. [PMID: 35151891 PMCID: PMC8830191 DOI: 10.1016/j.drudis.2022.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/05/2022] [Accepted: 02/04/2022] [Indexed: 12/11/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has generated a critical need for treatments to reduce morbidity and mortality associated with this disease. However, traditional drug development takes many years, which is not practical solution given the current pandemic. Therefore, a viable option is to repurpose existing drugs. The structural data of several proteins vital for the virus became available shortly after the start of the pandemic. In this review, we discuss the importance of these targets and their available potential inhibitors predicted by the computational approaches. Among the hits identified by computational approaches, 35 candidates were suggested for further evaluation, among which ten drugs are in clinical trials (Phase III and IV) for treating Coronavirus 2019 (COVID-19).
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry, Miranda House, University of Delhi, Delhi 110007, India
| | - Svitlana Kovalenko
- Department of Organic and Bioorganic Chemistry, State Scientific Institution 'Institute for Single Crystals', National Academy of Sciences of Ukraine, Nauky Ave. 60, Kharkiv 61001, Ukraine
| | - Shakshi Bhardwaj
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, India
| | - Aaftaab Sethi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, India
| | - Nikolay Yu Gorobets
- Department of Organic and Bioorganic Chemistry, State Scientific Institution 'Institute for Single Crystals', National Academy of Sciences of Ukraine, Nauky Ave. 60, Kharkiv 61001, Ukraine.
| | - Sergey M Desenko
- Department of Organic and Bioorganic Chemistry, State Scientific Institution 'Institute for Single Crystals', National Academy of Sciences of Ukraine, Nauky Ave. 60, Kharkiv 61001, Ukraine
| | - Poonam
- Department of Chemistry, Miranda House, University of Delhi, Delhi 110007, India.
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, India.
| |
Collapse
|
12
|
Gonzalez BL, de Oliveira NC, Ritter MR, Tonin FS, Melo EB, Sanches ACC, Fernandez‐Llimos F, Petruco MV, de Mello JCP, Chierrito D, de Medeiros Araújo DC. The naturally-derived alkaloids as a potential treatment for COVID-19: A scoping review. Phytother Res 2022; 36:2686-2709. [PMID: 35355337 PMCID: PMC9111026 DOI: 10.1002/ptr.7442] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/22/2022] [Accepted: 03/04/2022] [Indexed: 12/13/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which has a high mortality rate and transmissibility. In this context, medicinal plants have attracted attention due to the wide availability and variety of therapeutic compounds, such as alkaloids, a vast class with several proven pharmacological effects, like the antiviral and anti-inflammatory activities. Therefore, this scoping review aimed to summarize the current knowledge of the potential applicability of alkaloids for treating COVID-19. A systematic search was performed on PubMed and Scopus, from database inception to August 2021. Among the 63 eligible studies, 65.07% were in silico model, 20.63% in vitro and 14.28% clinical trials and observational studies. According to the in silico assessments, the alkaloids 10-hydroxyusambarensine, cryptospirolepine, crambescidin 826, deoxynortryptoquivaline, ergotamine, michellamine B, nigellidine, norboldine and quinadoline B showed higher binding energy with more than two target proteins. The remaining studies showed potential use of berberine, cephaeline, emetine, homoharringtonine, lycorine, narciclasine, quinine, papaverine and colchicine. The possible ability of alkaloids to inhibit protein targets and to reduce inflammatory markers show the potential for development of new treatment strategies against COVID-19. However, more high quality analyses/reviews in this field are necessary to firmly establish the effectiveness/safety of the alkaloids here described.
Collapse
Affiliation(s)
| | | | | | - Fernanda Stumpf Tonin
- Programa de Pós‐graduação em Ciências FarmacêuticasUniversidade Federal do Paraná—UFPRCuritibaParanáBrazil
| | - Eduardo Borges Melo
- Centro de Ciências Médicas e FarmacêuticasUniversidade Estadual do Oeste do Paraná—UNIOESTECascavelParanáBrazil
| | | | | | | | | | - Danielly Chierrito
- Departamento de FarmáciaUniversidade Estadual de Maringá—UEMMaringáParanáBrazil
| | | |
Collapse
|
13
|
Piplani S, Singh P, Petrovsky N, Winkler DA. Computational Repurposing of Drugs and Natural Products Against SARS-CoV-2 Main Protease (Mpro) as Potential COVID-19 Therapies. Front Mol Biosci 2022; 9:781039. [PMID: 35359601 PMCID: PMC8964187 DOI: 10.3389/fmolb.2022.781039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/28/2022] [Indexed: 12/18/2022] Open
Abstract
We urgently need to identify drugs to treat patients suffering from COVID-19 infection. Drugs rarely act at single molecular targets. Off-target effects are responsible for undesirable side effects and beneficial synergy between targets for specific illnesses. They have provided blockbuster drugs, e.g., Viagra for erectile dysfunction and Minoxidil for male pattern baldness. Existing drugs, those in clinical trials, and approved natural products constitute a rich resource of therapeutic agents that can be quickly repurposed, as they have already been assessed for safety in man. A key question is how to screen such compounds rapidly and efficiently for activity against new pandemic pathogens such as SARS-CoV-2. Here, we show how a fast and robust computational process can be used to screen large libraries of drugs and natural compounds to identify those that may inhibit the main protease of SARS-CoV-2. We show that the shortlist of 84 candidates with the strongest predicted binding affinities is highly enriched (≥25%) in compounds experimentally validated in vivo or in vitro to have activity in SARS-CoV-2. The top candidates also include drugs and natural products not previously identified as having COVID-19 activity, thereby providing leads for experimental validation. This predictive in silico screening pipeline will be valuable for repurposing existing drugs and discovering new drug candidates against other medically important pathogens relevant to future pandemics.
Collapse
Affiliation(s)
- Sakshi Piplani
- College of Medicine and Public Health, Flinders University, Bedford, SA, Australia
- Vaxine Pty Ltd., Warradale, SA, Australia
| | - Puneet Singh
- College of Medicine and Public Health, Flinders University, Bedford, SA, Australia
- Vaxine Pty Ltd., Warradale, SA, Australia
| | - Nikolai Petrovsky
- College of Medicine and Public Health, Flinders University, Bedford, SA, Australia
- Vaxine Pty Ltd., Warradale, SA, Australia
- *Correspondence: Nikolai Petrovsky, ; David A. Winkler,
| | - David A. Winkler
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
- *Correspondence: Nikolai Petrovsky, ; David A. Winkler,
| |
Collapse
|
14
|
Puk O, Nowacka A, Smulewicz K, Mocna K, Bursiewicz W, Kęsy N, Kwiecień J, Wiciński M. Pulmonary artery targeted therapy in treatment of COVID-19 related ARDS. Literature review. Biomed Pharmacother 2022; 146:112592. [PMID: 35062063 PMCID: PMC8709827 DOI: 10.1016/j.biopha.2021.112592] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION The most grievous complication of the COVID-19 is the acute respiratory distress syndrome. A specific, rescue treatment for rapidly deteriorating patients should emerge to improve respiratory function and help patients to survive the most challenging period. Drugs used in targeted therapy of pulmonary arterial hypertension (PAH) appears to be suitable for this task and this article describes their potential for treatment of severe cases of COVID-19. METHODS The authors reviewed the following databases for randomized controlled trials, reviews and meta-analyses published up to July 2020: Pubmed, Scopus, Google Scholar, Cochrane Database and ClinicalKey. The authors included every study contributory to the assessment of the potential of drugs used in targeted PAH therapy in treatment of COVID-19. RESULTS Endothelin receptor antagonists, phosphodiesterase 5 inhibitors, riociguat and prostacyclin have proven ani-inflammatory effect and reduce pulmonary artery blood pressure, lung oedema and remodelling. Bosentan shows antiviral properties and sildenafil, as well as epoprostenol, inhibits apoptosis of lung epithelial cells. Among patients with lung lesions the decrease of pulmonary blood pressure can lead to increase of ventilation/perfusion mismatch and decrease of blood oxygenation. CONCLUSIONS Among all assessed drugs bosentan, sildenafil and epoprostenol appear to be most promising and a combination of these drugs should be considered due to synergism. The targeted PAH therapy in treatment of COVID-19 associated ARDS could be a useful tool saving lives of patients with severe SARS-CoV-2 infection, however, its introduction should be investigated and monitored very carefully as it can lead to transient deterioration of patient condition.
Collapse
Affiliation(s)
- Oskar Puk
- Department of Neurosurgery and Neurology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, K. Ujejskiego 75, 85-168 Bydgoszcz, Poland; Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland.
| | - Aleksandra Nowacka
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Klaudia Smulewicz
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Katarzyna Mocna
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Wiktor Bursiewicz
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Natalia Kęsy
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Justyna Kwiecień
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Michał Wiciński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| |
Collapse
|
15
|
Kunnumakkara AB, Rana V, Parama D, Banik K, Girisa S, Henamayee S, Thakur KK, Dutta U, Garodia P, Gupta SC, Aggarwal BB. COVID-19, cytokines, inflammation, and spices: How are they related? Life Sci 2021; 284:119201. [PMID: 33607159 PMCID: PMC7884924 DOI: 10.1016/j.lfs.2021.119201] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/20/2021] [Accepted: 01/30/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cytokine storm is the exaggerated immune response often observed in viral infections. It is also intimately linked with the progression of COVID-19 disease as well as associated complications and mortality. Therefore, targeting the cytokine storm might help in reducing COVID-19-associated health complications. The number of COVID-19 associated deaths (as of January 15, 2021; https://www.worldometers.info/coronavirus/) in the USA is high (1199/million) as compared to countries like India (110/million). Although the reason behind this is not clear, spices may have some role in explaining this difference. Spices and herbs are used in different traditional medicines, especially in countries such as India to treat various chronic diseases due to their potent antioxidant and anti-inflammatory properties. AIM To evaluate the literature available on the anti-inflammatory properties of spices which might prove beneficial in the prevention and treatment of COVID-19 associated cytokine storm. METHOD A detailed literature search has been conducted on PubMed for collecting information pertaining to the COVID-19; the history, origin, key structural features, and mechanism of infection of SARS-CoV-2; the repurposed drugs in use for the management of COVID-19, and the anti-inflammatory role of spices to combat COVID-19 associated cytokine storm. KEY FINDINGS The literature search resulted in numerous in vitro, in vivo and clinical trials that have reported the potency of spices to exert anti-inflammatory effects by regulating crucial molecular targets for inflammation. SIGNIFICANCE As spices are derived from Mother Nature and are inexpensive, they are relatively safer to consume. Therefore, their anti-inflammatory property can be exploited to combat the cytokine storm in COVID-19 patients. This review thus focuses on the current knowledge on the role of spices for the treatment of COVID-19 through suppression of inflammation-linked cytokine storm.
Collapse
Affiliation(s)
- Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| | - Varsha Rana
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sahu Henamayee
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Uma Dutta
- Cell and Molecular Biology Lab, Department of Zoology, Cotton University, Guwahati, Assam 781001, India
| | | | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
16
|
Shirvaliloo M. Targeting the SARS-CoV-2 3CL pro and NO/cGMP/PDE5 pathway in COVID-19: a commentary on PDE5 inhibitors. Future Cardiol 2021; 17:765-768. [PMID: 33576273 PMCID: PMC7885524 DOI: 10.2217/fca-2020-0201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/15/2021] [Indexed: 01/03/2023] Open
Affiliation(s)
- Milad Shirvaliloo
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Abstract
Thus far, in 2021, 219 countries with over 175 million people have been infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 is a positive sense, single-stranded RNA virus, and is the causal agent for coronavirus disease (COVID-19). Due to the urgency of the situation, virtual screening as a computational modeling method offers a fast and effective modality of identifying drugs that may be effective against SARS-CoV-2. There has been an overwhelming abundance of molecular docking against SARS-CoV-2 in the last year. Due to the massive volume of computational studies, this systematic review has been created to evaluate and summarize the findings of existing studies. Herein, we report on computational articles of drugs which target, (1) viral protease, (2) Spike protein-ACE 2 interaction, (3) RNA-dependent RNA polymerase, and (4) other proteins and nonstructural proteins of SARS-CoV-2. Based on the studies presented, there are 55 identified natural or drug compounds with potential anti-viral activity. The next step is to show anti-viral activity in vitro and translation to determine effectiveness into human clinical trials.
Collapse
|
18
|
Ouranidis A, Tsiaxerli A, Vardaka E, Markopoulou CK, Zacharis CK, Nicolaou I, Hatzichristou D, Haidich AB, Kostomitsopoulos N, Kachrimanis K. Sildenafil 4.0-Integrated Synthetic Chemistry, Formulation and Analytical Strategies Effecting Immense Therapeutic and Societal Impact in the Fourth Industrial Era. Pharmaceuticals (Basel) 2021; 14:365. [PMID: 33920975 PMCID: PMC8071249 DOI: 10.3390/ph14040365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/14/2022] Open
Abstract
Sildenafil is a potent selective, reversible inhibitor of phosphodiesterase type 5 (PDE5) approved for the treatment of erectile dysfunction and pulmonary arterial hypertension. Whilst twenty years have passed since its original approval by the US Food and Drug Administration (USFDA), sildenafil enters the fourth industrial era catalyzing the treatment advances against erectile dysfunction and pulmonary hypertension. The plethora of detailed clinical data accumulated and the two sildenafil analogues marketed, namely tadalafil and vardenafil, signify the relevant therapeutic and commercial achievements. The pharmacokinetic and pharmacodynamic behavior of the drug appears complex, interdependent and of critical importance whereas the treatment of special population cohorts is considered. The diversity of the available formulation strategies and their compatible administration routes, extend from tablets to bolus suspensions and from per os to intravenous, respectively, inheriting the associated strengths and weaknesses. In this comprehensive review, we attempt to elucidate the multi-disciplinary elements spanning the knowledge fields of chemical synthesis, physicochemical properties, pharmacology, clinical applications, biopharmaceutical profile, formulation approaches for different routes of administration and analytical strategies, currently employed to guide the development of sildenafil-based compositions.
Collapse
Affiliation(s)
- Andreas Ouranidis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (E.V.)
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anastasia Tsiaxerli
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (E.V.)
| | - Elisavet Vardaka
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (E.V.)
| | - Catherine K. Markopoulou
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.K.M.); (C.K.Z.)
| | - Constantinos K. Zacharis
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.K.M.); (C.K.Z.)
| | - Ioannis Nicolaou
- Laboratory of Pharmaceutical Chemistry, Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Dimitris Hatzichristou
- Department of Urology, Medical School, Aristotle University of Thessaloniki, 54635 Thessaloniki, Greece;
| | - Anna-Bettina Haidich
- Department of Hygiene, Social-Preventive Medicine and Medical Statistics, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Nikolaos Kostomitsopoulos
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | - Kyriakos Kachrimanis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (E.V.)
| |
Collapse
|
19
|
Jo S, Kim S, Yoo J, Kim MS, Shin DH. A Study of 3CLpros as Promising Targets against SARS-CoV and SARS-CoV-2. Microorganisms 2021; 9:756. [PMID: 33916747 PMCID: PMC8065850 DOI: 10.3390/microorganisms9040756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/14/2022] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), results in serious chaos all over the world. In addition to the available vaccines, the development of treatments to cure COVID-19 should be done quickly. One of the fastest strategies is to use a drug-repurposing approach. To provide COVID-19 patients with useful information about medicines currently being used in clinical trials, twenty-four compounds, including antiviral agents, were selected and assayed. These compounds were applied to verify the inhibitory activity for the protein function of 3CLpros (main proteases) of SARS-CoV and SARS-CoV-2. Among them, viral reverse-transcriptase inhibitors abacavir and tenofovir revealed a good inhibitory effect on both 3CLpros. Intriguingly, sildenafil, a cGMP-specific phosphodiesterase type 5 inhibitor also showed significant inhibitory function against them. The in silico docking study suggests that the active-site residues located in the S1 and S2 sites play key roles in the interactions with the inhibitors. The result indicates that 3CLpros are promising targets to cope with SAR-CoV-2 and its variants. The information can be helpful to design treatments to cure patients with COVID-19.
Collapse
Affiliation(s)
| | | | | | | | - Dong Hae Shin
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52, Ewhayeodae-gil, Seoul 03760, Korea; (S.J.); (S.K.); (J.Y.); (M.-S.K.)
| |
Collapse
|
20
|
Berries anthocyanins as potential SARS-CoV–2 inhibitors targeting the viral attachment and replication; molecular docking simulation. EGYPTIAN JOURNAL OF PETROLEUM 2021; 30. [PMCID: PMC7825908 DOI: 10.1016/j.ejpe.2021.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The viral respiratory disease, severe acute respiratory syndrome (SARS), has turned into a global health concern. Till now, there is no drug or vaccine has yet been specifically approved for SARS-CoV-2. One of the urgent solutions against the recent COVID-19 disease is the use of dietary molecules, which can be found abundantly in functional food. In the current study, we have conducted a molecular docking approach for eighteen dietary molecules belong to the subclass of anthocyanins, as potential inhibitors of the main protease and spike glycoprotein of SARS-CoV-2. Both selected targets, playing a vital role in attachment and replication of the virus. The results indicated that cyanidin-3-arabinoside exhibited the lowest binding energy and located onto the pocket through a sufficient number of hydrogen bonds with the main protease virus. However, pelargonidin-3-glucoside and pelargonidin 3-rhamnoside display significant binding energy with the spike glycoprotein of SARS-CoV-2. All compounds mentioned above shown high drug-likeness and fulfils the Lipinski’s rule of five, as well as confer favorable toxicity parameters, in addition to ADME values. Considering the obtained results, regular consumption of berry fruits, which are rich in anthocyanin compounds, should be supportive to inhibit viral infectious by reducing of propagation and pathogenicity of SARS-CoV–2.
Collapse
|
21
|
Mostafa T. Could Oral Phosphodiesterase 5 Inhibitors Have a Potential Adjuvant Role in Combating COVID-19 Infection? Sex Med Rev 2021; 9:15-22. [PMID: 33077403 PMCID: PMC7833179 DOI: 10.1016/j.sxmr.2020.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The recent global outbreak of coronavirus disease 2019 (COVID-19) has become a pandemic with a lot of sufferers. Excessive inflammation, exaggerated immune response, with ultimate apoptosis contribute to COVID-19 pathology that progress to acute lung acute respiratory distress. OBJECTIVE To shed a light on the likely benefits of the oral phosphodiesterase 5 (PDE5) inhibitor adjuvant role in combating COVID-19 infection. METHODS A literature review was performed in the PubMed/Medline database, Scopus, Cochrane Library, EMBASE, Academic Search Complete, Google Scholar, and CINAHL databases using the keywords COVID-19; phosphodiesterase-5 inhibitors; cytokine storm; respiratory distress. RESULTS Despite the worsening trends of COVID-19, still no drugs are validated to have significant clinical efficacy in the treatment of patients with COVID-19 in large-scale studies. While the progress toward a curative agent and/or vaccine is certainly hopeful, the principal limiting factor in such public health emergencies is always the time. Therefore, a preexisting licensed therapeutic(s) might offer a reprieve to the healthcare systems operating at the edge of capacity. In this context, the innovation of oral PDE5 inhibitors with their valuable effects on erection have provided a breakthrough in the treatment of erectile dysfunction and opened new fields of clinical application for this class of drugs. Oral PDE5 inhibitors have been demonstrated to possess many beneficial useful additional implications with acknowledged anti-inflammatory, antioxidant, immune response regulation, and antiapoptotic properties. These properties have been elucidated through the nitric oxide/soluble guanylyl cyclase/cyclic guanylate monophosphate pathway in addition to the emerged hemeoxygenase-1 enzyme as well as hydrogen sulfide pathways. These properties could support repurposing oral PDE5 inhibitors' potential adjuvant use in targeting different aspects of COVID-19 infection. CONCLUSION Oral PDE5 inhibitors retain several acknowledged off-labeled useful implications with anti-inflammatory, antioxidant, immune response regulation, and antiapoptotic properties. These properties may support repurposing oral PDE5 inhibitors' potential adjuvant use in the protocols combating COVID-19 manifestations. Mostafa T. Could Oral Phosphodiesterase 5 Inhibitors Have a Potential Adjuvant Role in Combating Coronavirus Disease 2019 Infection? Sex Med Rev 2021;9:15-22.
Collapse
Affiliation(s)
- Taymour Mostafa
- Andrology, Sexology & STIs Department, Faculty of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
22
|
de Almeida SMV, Santos Soares JC, Dos Santos KL, Alves JEF, Ribeiro AG, Jacob ÍTT, da Silva Ferreira CJ, Dos Santos JC, de Oliveira JF, de Carvalho Junior LB, de Lima MDCA. COVID-19 therapy: What weapons do we bring into battle? Bioorg Med Chem 2020; 28:115757. [PMID: 32992245 PMCID: PMC7481143 DOI: 10.1016/j.bmc.2020.115757] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/29/2020] [Accepted: 09/03/2020] [Indexed: 01/18/2023]
Abstract
Urgent treatments, in any modality, to fight SARS-CoV-2 infections are desired by society in general, by health professionals, by Estate-leaders and, mainly, by the scientific community, because one thing is certain amidst the numerous uncertainties regarding COVID-19: knowledge is the means to discover or to produce an effective treatment against this global disease. Scientists from several areas in the world are still committed to this mission, as shown by the accelerated scientific production in the first half of 2020 with over 25,000 published articles related to the new coronavirus. Three great lines of publications related to COVID-19 were identified for building this article: The first refers to knowledge production concerning the virus and pathophysiology of COVID-19; the second regards efforts to produce vaccines against SARS-CoV-2 at a speed without precedent in the history of science; the third comprehends the attempts to find a marketed drug that can be used to treat COVID-19 by drug repurposing. In this review, the drugs that have been repurposed so far are grouped according to their chemical class. Their structures will be presented to provide better understanding of their structural similarities and possible correlations with mechanisms of actions. This can help identifying anti-SARS-CoV-2 promising therapeutic agents.
Collapse
Affiliation(s)
- Sinara Mônica Vitalino de Almeida
- Laboratório de Biologia Molecular, Universidade de Pernambuco, Garanhuns, PE, Brazil; Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil; Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil.
| | - José Cleberson Santos Soares
- Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Keriolaine Lima Dos Santos
- Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Amélia Galdino Ribeiro
- Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Íris Trindade Tenório Jacob
- Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | | - Jamerson Ferreira de Oliveira
- Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Maria do Carmo Alves de Lima
- Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| |
Collapse
|
23
|
Ab Ghani NS, Emrizal R, Makmur H, Firdaus-Raih M. Side chain similarity comparisons for integrated drug repositioning and potential toxicity assessments in epidemic response scenarios: The case for COVID-19. Comput Struct Biotechnol J 2020; 18:2931-2944. [PMID: 33101604 PMCID: PMC7575501 DOI: 10.1016/j.csbj.2020.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 11/29/2022] Open
Abstract
Structures of protein-drug-complexes provide an atomic level profile of drug-target interactions. In this work, the three-dimensional arrangements of amino acid side chains in known drug binding sites (substructures) were used to search for similarly arranged sites in SARS-CoV-2 protein structures in the Protein Data Bank for the potential repositioning of approved compounds. We were able to identify 22 target sites for the repositioning of 16 approved drug compounds as potential therapeutics for COVID-19. Using the same approach, we were also able to investigate the potentially promiscuous binding of the 16 compounds to off-target sites that could be implicated in toxicity and side effects that had not been provided by any previous studies. The investigations of binding properties in disease-related proteins derived from the comparison of amino acid substructure arrangements allows for effective mechanism driven decision making to rank and select only the compounds with the highest potential for success and safety to be prioritized for clinical trials or treatments. The intention of this work is not to explicitly identify candidate compounds but to present how an integrated drug repositioning and potential toxicity pipeline using side chain similarity searching algorithms are of great utility in epidemic scenarios involving novel pathogens. In the case of the COVID-19 pandemic caused by the SARS-CoV-2 virus, we demonstrate that the pipeline can identify candidate compounds quickly and sustainably in combination with associated risk factors derived from the analysis of potential off-target site binding by the compounds to be repurposed.
Collapse
Affiliation(s)
- Nur Syatila Ab Ghani
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Reeki Emrizal
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Haslina Makmur
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Mohd Firdaus-Raih
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.,Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| |
Collapse
|
24
|
Could Oral Phosphodiesterase 5 Inhibitors Have a Potential Adjuvant Role in Combating COVID-19 Infection? Sex Med Rev 2020. [PMID: 33077403 DOI: 10.1016/j.sxmr.2020.08.006.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTION The recent global outbreak of coronavirus disease 2019 (COVID-19) has become a pandemic with a lot of sufferers. Excessive inflammation, exaggerated immune response, with ultimate apoptosis contribute to COVID-19 pathology that progress to acute lung acute respiratory distress. OBJECTIVE To shed a light on the likely benefits of the oral phosphodiesterase 5 (PDE5) inhibitor adjuvant role in combating COVID-19 infection. METHODS A literature review was performed in the PubMed/Medline database, Scopus, Cochrane Library, EMBASE, Academic Search Complete, Google Scholar, and CINAHL databases using the keywords COVID-19; phosphodiesterase-5 inhibitors; cytokine storm; respiratory distress. RESULTS Despite the worsening trends of COVID-19, still no drugs are validated to have significant clinical efficacy in the treatment of patients with COVID-19 in large-scale studies. While the progress toward a curative agent and/or vaccine is certainly hopeful, the principal limiting factor in such public health emergencies is always the time. Therefore, a preexisting licensed therapeutic(s) might offer a reprieve to the healthcare systems operating at the edge of capacity. In this context, the innovation of oral PDE5 inhibitors with their valuable effects on erection have provided a breakthrough in the treatment of erectile dysfunction and opened new fields of clinical application for this class of drugs. Oral PDE5 inhibitors have been demonstrated to possess many beneficial useful additional implications with acknowledged anti-inflammatory, antioxidant, immune response regulation, and antiapoptotic properties. These properties have been elucidated through the nitric oxide/soluble guanylyl cyclase/cyclic guanylate monophosphate pathway in addition to the emerged hemeoxygenase-1 enzyme as well as hydrogen sulfide pathways. These properties could support repurposing oral PDE5 inhibitors' potential adjuvant use in targeting different aspects of COVID-19 infection. CONCLUSION Oral PDE5 inhibitors retain several acknowledged off-labeled useful implications with anti-inflammatory, antioxidant, immune response regulation, and antiapoptotic properties. These properties may support repurposing oral PDE5 inhibitors' potential adjuvant use in the protocols combating COVID-19 manifestations. Mostafa T. Could Oral Phosphodiesterase 5 Inhibitors Have a Potential Adjuvant Role in Combating Coronavirus Disease 2019 Infection? Sex Med Rev 2021;9:15-22.
Collapse
|