1
|
Jacquot G, Lopez Navarro P, Grange C, Boudali L, Harlepp S, Pivot X, Detappe A. Landscape of Subcutaneous Administration Strategies for Monoclonal Antibodies in Oncology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406604. [PMID: 39165046 DOI: 10.1002/adma.202406604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/15/2024] [Indexed: 08/22/2024]
Abstract
In recent decades, subcutaneous (SC) administration of monoclonal antibodies (mAbs) has emerged as a promising alternative to intravenous delivery in oncology, offering comparable therapeutic efficacy while addressing patient preferences. This perspective article provides an in-depth analysis of the technological landscape surrounding SC mAb administration in oncology. It outlines various technologies under evaluation across developmental stages, spanning from preclinical investigations to the integration of established methodologies in clinical practice. Additionally, this perspective article explores emerging trends and prospective trajectories, shedding light on the evolving landscape of SC mAb administration. Furthermore, it emphasizes key checkpoints related to quality attributes essential for optimizing mAb delivery via the SC route. This review serves as a valuable resource for researchers, clinicians, and healthcare policymakers, offering insights into the advancement of SC mAb administration in oncology and its implications for patient care.
Collapse
Affiliation(s)
- Guillaume Jacquot
- Institut de Cancérologie Strasbourg Europe, Strasbourg, 67000, France
- Equipe labellisée Ligue contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, 67000, France
| | - Pedro Lopez Navarro
- Institut de Cancérologie Strasbourg Europe, Strasbourg, 67000, France
- Equipe labellisée Ligue contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, 67000, France
| | - Coralie Grange
- Institut de Cancérologie Strasbourg Europe, Strasbourg, 67000, France
- Equipe labellisée Ligue contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, 67000, France
| | - Lotfi Boudali
- Institut de Cancérologie Strasbourg Europe, Strasbourg, 67000, France
- Equipe labellisée Ligue contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, 67000, France
| | - Sébastien Harlepp
- Institut de Cancérologie Strasbourg Europe, Strasbourg, 67000, France
- Equipe labellisée Ligue contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, 67000, France
| | - Xavier Pivot
- Institut de Cancérologie Strasbourg Europe, Strasbourg, 67000, France
- Equipe labellisée Ligue contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, 67000, France
| | - Alexandre Detappe
- Institut de Cancérologie Strasbourg Europe, Strasbourg, 67000, France
- Equipe labellisée Ligue contre le Cancer, France
- Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, 67000, France
- Equipe de Synthèse Pour l'Analyse, Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/University of Strasbourg, Strasbourg, Cedex 2, 67087, France
| |
Collapse
|
2
|
Yan Y, Vladisavljević GT, Lin Z, Yang H, Zhang X, Yuan W. PEGDA hydrogel microspheres with encapsulated salt for versatile control of protein crystallization. J Colloid Interface Sci 2024; 660:574-584. [PMID: 38266339 DOI: 10.1016/j.jcis.2024.01.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/30/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Due to their biocompatibility and adjustable chemical structure and morphology, hydrogels have great potential in many applications, and can be used to enhance protein crystal quality and crystallization efficiency, contributing to biomedicine manufacturing. Monodispersed PEGDA hydrogel microspheres (HMSs) were synthesized using a Lego-inspired microfluidic device. The generated droplets were then UV polymerized, partially hydrolyzed with 0.1 M NaOH solution to improve their absorption capacity, and soaked in a buffer solution containing 0, 0.5, 1, 2, and 4 M NaCl. Salt-loaded HMSs were used as the medium for the enhanced crystallization of hen egg white lysozyme from aqueous solutions. Different supersaturations were achieved in the protein solutions by releasing NaCl of different concentrations from HMSs, as confirmed by electrical conductivity measurements. HMSs with or without NaCl can both provide heterogeneous nucleation sites due to their nano-porous structure and wrinkled surface. The addition of NaCl-loaded HMSs to the protein solution can also increase or decrease the supersaturation in the whole solution or locally near the HMS, leading to controllable nucleation time and crystal size distribution dependent on the NaCl concentration loaded into HMSs.
Collapse
Affiliation(s)
- Yizhen Yan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
| | - Goran T Vladisavljević
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
| | - Zhichun Lin
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
| | - Huaiyu Yang
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom.
| | - Xiangyang Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Weikang Yuan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Rajoub N, Gerard CJJ, Pantuso E, Fontananova E, Caliandro R, Belviso BD, Curcio E, Nicoletta FP, Pullen J, Chen W, Heng JYY, Ruane S, Liddell J, Alvey N, Ter Horst JH, Di Profio G. A workflow for the development of template-assisted membrane crystallization downstream processing for monoclonal antibody purification. Nat Protoc 2023; 18:2998-3049. [PMID: 37697106 DOI: 10.1038/s41596-023-00869-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/06/2023] [Indexed: 09/13/2023]
Abstract
Monoclonal antibodies (mAbs) are commonly used biologic drugs for the treatment of diseases such as rheumatoid arthritis, multiple sclerosis, COVID-19 and various cancers. They are produced in Chinese hamster ovary cell lines and are purified via a number of complex and expensive chromatography-based steps, operated in batch mode, that rely heavily on protein A resin. The major drawback of conventional procedures is the high cost of the adsorption media and the extensive use of chemicals for the regeneration of the chromatographic columns, with an environmental cost. We have shown that conventional protein A chromatography can be replaced with a single crystallization step and gram-scale production can be achieved in continuous flow using the template-assisted membrane crystallization process. The templates are embedded in a membrane (e.g., porous polyvinylidene fluoride with a layer of polymerized polyvinyl alcohol) and serve as nucleants for crystallization. mAbs are flexible proteins that are difficult to crystallize, so it can be challenging to determine the optimal conditions for crystallization. The objective of this protocol is to establish a systematic and flexible approach for the design of a robust, economic and sustainable mAb purification platform to replace at least the protein A affinity stage in traditional chromatography-based purification platforms. The procedure provides details on how to establish the optimal parameters for separation (crystallization conditions, choice of templates, choice of membrane) and advice on analytical and characterization methods.
Collapse
Affiliation(s)
- Nazer Rajoub
- CMAC Future Manufacturing Research Hub, c/o Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Technology and Innovation Centre, Glasgow, UK
| | - Charline J J Gerard
- CMAC Future Manufacturing Research Hub, c/o Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Technology and Innovation Centre, Glasgow, UK
| | - Elvira Pantuso
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Tecnologia delle Membrane (ITM), Rende, Italy
| | - Enrica Fontananova
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Tecnologia delle Membrane (ITM), Rende, Italy
| | - Rocco Caliandro
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Cristallografia (IC), Bari, Italy
| | - Benny D Belviso
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Cristallografia (IC), Bari, Italy
| | - Efrem Curcio
- Department of Environmental Engineering, University of Calabria, Rende, Italy
| | - Fiore P Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Edificio Polifunzionale, Rende, Italy
| | - James Pullen
- FUJIFILM Diosynth Biotechnologies, Billingham, UK
| | - Wenqian Chen
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Jerry Y Y Heng
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Sean Ruane
- Center for Process Innovation (CPI), Darlington, UK
| | - John Liddell
- Center for Process Innovation (CPI), Darlington, UK
| | | | - Joop H Ter Horst
- CMAC Future Manufacturing Research Hub, c/o Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Technology and Innovation Centre, Glasgow, UK
| | - Gianluca Di Profio
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Tecnologia delle Membrane (ITM), Rende, Italy.
| |
Collapse
|
4
|
Verma V, Bade I, Karde V, Heng JYY. Experimental Elucidation of Templated Crystallization and Secondary Processing of Peptides. Pharmaceutics 2023; 15:pharmaceutics15041288. [PMID: 37111774 PMCID: PMC10142637 DOI: 10.3390/pharmaceutics15041288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The crystallization of peptides offers a sustainable and inexpensive alternative to the purification process. In this study, diglycine was crystallised in porous silica, showing the porous templates' positive yet discriminating effect. The diglycine induction time was reduced by five-fold and three-fold upon crystallising in the presence of silica with pore sizes of 6 nm and 10 nm, respectively. The diglycine induction time had a direct relationship with the silica pore size. The stable form (α-form) of diglycine was crystallised in the presence of porous silica, with the diglycine crystals obtained associated with the silica particles. Further, we studied the mechanical properties of diglycine tablets for their tabletability, compactability, and compressibility. The mechanical properties of the diglycine tablets were similar to those of pure MCC, even with the presence of diglycine crystals in the tablets. The diffusion studies of the tablets using the dialysis membrane presented an extended release of diglycine through the dialysis membrane, confirming that the peptide crystal can be used for oral formulation. Hence, the crystallization of peptides preserved their mechanical and pharmacological properties. More data on different peptides can help us produce oral formulation peptides faster than usual.
Collapse
Affiliation(s)
- Vivek Verma
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Isha Bade
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Vikram Karde
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Jerry Y Y Heng
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
- Institute for Molecular Science and Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
5
|
Gerard CJ, Briuglia ML, Rajoub N, Mastropietro TF, Chen W, Heng JYY, Di Profio G, ter Horst JH. Template-Assisted Crystallization Behavior in Stirred Solutions of the Monoclonal Antibody Anti-CD20: Probability Distributions of Induction Times. CRYSTAL GROWTH & DESIGN 2022; 22:3637-3645. [PMID: 35673394 PMCID: PMC9164231 DOI: 10.1021/acs.cgd.1c01324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/14/2022] [Indexed: 05/14/2023]
Abstract
We present a method to determine the template crystallization behavior of proteins. This method is a statistical approach that accounts for the stochastic nature of nucleation. It makes use of batch-wise experiments under stirring conditions in volumes smaller than 0.3 mL to save material while mimicking larger-scale processes. To validate our method, it was applied to the crystallization of a monoclonal antibody of pharmaceutical interest, Anti-CD20. First, we determined the Anti-CD20 phase diagram in a PEG-400/Na2SO4/water system using the batch method, as, to date, no such data on Anti-CD20 solubility have been reported. Then, the probability distribution of induction times was determined experimentally, in the presence of various mesoporous silica template particles, and crystallization of Anti-CD20 in the absence of templates was compared to template-assisted crystallization. The probability distribution of induction times is shown to be a suitable method to determine the effect of template particles on protein crystallization. The induction time distribution allows for the determination of two key parameters of nucleation, the nucleation rate and the growth time. This study shows that the use of silica particles leads to faster crystallization and a higher nucleation rate. The template particle characteristics are shown to be critical parameters to efficiently promote protein crystallization.
Collapse
Affiliation(s)
- Charline
J. J. Gerard
- EPSRC
Centre for Innovative Manufacturing in Continuous Manufacturing and
Crystallisation, Strathclyde Institute of Pharmacy and Biomedical
Sciences, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, U.K.
- SMS
Laboratory EA 3233, Place Emile Blondel, University of Rouen-Normandie, CEDEX, F-76821 Mont Saint Aignan, France
| | - Maria L. Briuglia
- EPSRC
Centre for Innovative Manufacturing in Continuous Manufacturing and
Crystallisation, Strathclyde Institute of Pharmacy and Biomedical
Sciences, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, U.K.
| | - Nazer Rajoub
- EPSRC
Centre for Innovative Manufacturing in Continuous Manufacturing and
Crystallisation, Strathclyde Institute of Pharmacy and Biomedical
Sciences, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, U.K.
| | - Teresa F. Mastropietro
- Consiglio
Nazionale delle Ricerche (CNR), Istituto
per la Tecnologia delle Membrane (ITM), Via P. Bucci, cubo 17/C, I-87036, Rende, Cosenza, Italy
| | - Wenqian Chen
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, London, SW7 2AZ, U.K.
| | - Jerry Y. Y. Heng
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, London, SW7 2AZ, U.K.
| | - Gianluca Di Profio
- Consiglio
Nazionale delle Ricerche (CNR), Istituto
per la Tecnologia delle Membrane (ITM), Via P. Bucci, cubo 17/C, I-87036, Rende, Cosenza, Italy
| | - Joop H. ter Horst
- EPSRC
Centre for Innovative Manufacturing in Continuous Manufacturing and
Crystallisation, Strathclyde Institute of Pharmacy and Biomedical
Sciences, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, U.K.
- SMS
Laboratory EA 3233, Place Emile Blondel, University of Rouen-Normandie, CEDEX, F-76821 Mont Saint Aignan, France
| |
Collapse
|
6
|
Belviso BD, Mangiatordi GF, Alberga D, Mangini V, Carrozzini B, Caliandro R. Structural Characterization of the Full-Length Anti-CD20 Antibody Rituximab. Front Mol Biosci 2022; 9:823174. [PMID: 35480889 PMCID: PMC9037831 DOI: 10.3389/fmolb.2022.823174] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/14/2022] [Indexed: 01/05/2023] Open
Abstract
Rituximab, a murine–human chimera, is the first monoclonal antibody (mAb) developed as a therapeutic agent to target CD20 protein. Its Fab domain and its interaction with CD20 have been extensively studied and high-resolution atomic models obtained by X-ray diffraction or cryo-electron microscopy are available. However, the structure of the full-length antibody is still missing as the inherent protein flexibility hampers the formation of well-diffracting crystals and the reconstruction of 3D microscope images. The global structure of rituximab from its dilute solution is here elucidated by small-angle X-ray scattering (SAXS). The limited data resolution achievable by this technique has been compensated by intensive computational modelling that led to develop a new and effective procedure to characterize the average mAb conformation as well as that of the single domains. SAXS data indicated that rituximab adopts an asymmetric average conformation in solution, with a radius of gyration and a maximum linear dimension of 52 Å and 197 Å, respectively. The asymmetry is mainly due to an uneven arrangement of the two Fab units with respect to the central stem (the Fc domain) and reflects in a different conformation of the individual units. As a result, the Fab elbow angle, which is a crucial determinant for antigen recognition and binding, was found to be larger (169°) in the more distant Fab unit than that in the less distant one (143°). The whole flexibility of the antibody has been found to strongly depend on the relative inter-domain orientations, with one of the Fab arms playing a major role. The average structure and the amount of flexibility has been studied in the presence of different buffers and additives, and monitored at increasing temperature, up to the complete unfolding of the antibody. Overall, the structural characterization of rituximab can help in designing next-generation anti-CD20 antibodies and finding more efficient routes for rituximab production at industrial level.
Collapse
Affiliation(s)
| | | | | | | | | | - Rocco Caliandro
- Institute of Crystallography, CNR, Bari, Italy
- *Correspondence: Rocco Caliandro,
| |
Collapse
|
7
|
The critical role of agitation in moving from preliminary screening results to reproducible batch protein crystallisation. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
|
9
|
Pantuso E, Mastropietro TF, Briuglia ML, Gerard CJJ, Curcio E, Ter Horst JH, Nicoletta FP, Di Profio G. On the Aggregation and Nucleation Mechanism of the Monoclonal Antibody Anti-CD20 Near Liquid-Liquid Phase Separation (LLPS). Sci Rep 2020; 10:8902. [PMID: 32483267 PMCID: PMC7264149 DOI: 10.1038/s41598-020-65776-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/30/2020] [Indexed: 12/02/2022] Open
Abstract
The crystallization of Anti-CD20, a full-length monoclonal antibody, has been studied in the PEG400/Na2SO4/Water system near Liquid-Liquid Phase Separation (LLPS) conditions by both sitting-drop vapour diffusion and batch methods. In order to understand the Anti-CD20 crystallization propensity in the solvent system of different compositions, we investigated some measurable parameters, normally used to assess protein conformational and colloidal stability in solution, with the aim to understand the aggregation mechanism of this complex biomacromolecule. We propose that under crystallization conditions a minor population of specifically aggregated protein molecules are present. While this minor species hardly contributes to the measured average solution behaviour, it induces and promotes crystal formation. The existence of this minor species is the result of the LLPS occurring concomitantly under crystallization conditions.
Collapse
Affiliation(s)
- Elvira Pantuso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci Edificio Polifunzionale, 87036, Rende, CS, Italy
| | - Teresa F Mastropietro
- National Research Council of Italy (CNR) - Institute on Membrane Technology (ITM), Via P. Bucci Cubo 17/C, 87036, Rende, CS, Italy
| | - Maria L Briuglia
- EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation (CMAC), Strathclyde Institute of Pharmacy and Biomedical Sciences, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Charline J J Gerard
- EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation (CMAC), Strathclyde Institute of Pharmacy and Biomedical Sciences, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Efrem Curcio
- Department of Environmental Engineering (DIAm), University of Calabria, Via P. Bucci Cubo 45/A, 87036, Rende, CS, Italy
- Seligenda Membrane Technologies S.r.l., Via P. Bucci Cubo 45/A, 87036, Rende, CS, Italy
| | - Joop H Ter Horst
- EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation (CMAC), Strathclyde Institute of Pharmacy and Biomedical Sciences, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Fiore P Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci Edificio Polifunzionale, 87036, Rende, CS, Italy.
| | - Gianluca Di Profio
- National Research Council of Italy (CNR) - Institute on Membrane Technology (ITM), Via P. Bucci Cubo 17/C, 87036, Rende, CS, Italy.
- Seligenda Membrane Technologies S.r.l., Via P. Bucci Cubo 45/A, 87036, Rende, CS, Italy.
| |
Collapse
|
10
|
Reichert P, Prosise W, Fischmann TO, Scapin G, Narasimhan C, Spinale A, Polniak R, Yang X, Walsh E, Patel D, Benjamin W, Welch J, Simmons D, Strickland C. Pembrolizumab microgravity crystallization experimentation. NPJ Microgravity 2019; 5:28. [PMID: 31815178 PMCID: PMC6889310 DOI: 10.1038/s41526-019-0090-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/31/2019] [Indexed: 01/10/2023] Open
Abstract
Crystallization processes have been widely used in the pharmaceutical industry for the manufacture, storage, and delivery of small-molecule and small protein therapeutics. However, the identification of crystallization processes for biologics, particularly monoclonal antibodies, has been prohibitive due to the size and the flexibility of their overall structure. There remains a challenge and an opportunity to utilize the benefits of crystallization of biologics. The research laboratories of Merck Sharp & Dome Corp. (MSD) in collaboration with the International Space Station (ISS) National Laboratory performed crystallization experiments with pembrolizumab (Keytruda®) on the SpaceX-Commercial Resupply Services-10 mission to the ISS. By leveraging microgravity effects such as reduced sedimentation and minimal convection currents, conditions producing crystalline suspensions of homogeneous monomodal particle size distribution (39 μm) in high yield were identified. In contrast, the control ground experiments produced crystalline suspensions with a heterogeneous bimodal distribution of 13 and 102 μm particles. In addition, the flight crystalline suspensions were less viscous and sedimented more uniformly than the comparable ground-based crystalline suspensions. These results have been applied to the production of crystalline suspensions on earth, using rotational mixers to reduce sedimentation and temperature gradients to induce and control crystallization. Using these techniques, we have been able to produce uniform crystalline suspensions (1–5 μm) with acceptable viscosity (<12 cP), rheological, and syringeability properties suitable for the preparation of an injectable formulation. The results of these studies may help widen the drug delivery options to improve the safety, adherence, and quality of life for patients and caregivers.
Collapse
Affiliation(s)
- Paul Reichert
- 1Computational and Structural Chemistry, Merck & Co., Inc., Kenilworth, NJ USA
| | - Winifred Prosise
- 1Computational and Structural Chemistry, Merck & Co., Inc., Kenilworth, NJ USA
| | - Thierry O Fischmann
- 1Computational and Structural Chemistry, Merck & Co., Inc., Kenilworth, NJ USA
| | - Giovanna Scapin
- 1Computational and Structural Chemistry, Merck & Co., Inc., Kenilworth, NJ USA
| | | | - April Spinale
- International Space Station National Laboratory Integration, Melbourne, FL USA
| | | | - Xiaoyu Yang
- 5Biologics and Vaccines Formulation-Process Characterization, Merck & Co., Inc., Kenilworth, NJ USA
| | - Erika Walsh
- 2Sterile Formulations Sciences, Merck & Co., Inc., Kenilworth, NJ USA
| | - Daya Patel
- 5Biologics and Vaccines Formulation-Process Characterization, Merck & Co., Inc., Kenilworth, NJ USA
| | - Wendy Benjamin
- 2Sterile Formulations Sciences, Merck & Co., Inc., Kenilworth, NJ USA
| | - Johnathan Welch
- 5Biologics and Vaccines Formulation-Process Characterization, Merck & Co., Inc., Kenilworth, NJ USA
| | - Denarra Simmons
- 6Biologics and Vaccines Formulation-Potency and Functional Characterization, Merck & Co., Inc., Kenilworth, NJ USA
| | - Corey Strickland
- 1Computational and Structural Chemistry, Merck & Co., Inc., Kenilworth, NJ USA
| |
Collapse
|